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doi:10.3906/mat-0903-32

Order continuous operators on CD0(K,E) and CDw(K,E)-spaces

Faruk Polat

Abstract

In [2], Alpay and Ercan characterized order continuous duals of spaces CD0(K,E) and CDw(K,E)

where K is a compact Hausdorff space without isolated points and E is a Banach lattice. In this note, we

generalize their results to an arbitrary Dedekind complete Banach lattice F , that is to say, we characterize

order continuous operators on these spaces taking values in an arbitrary Dedekind complete Banach lattice

F .
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1. Introduction

Recall that a topological space is called basically disconnected if the closure of any Fσ -open set is open.
A compact Hausdorff space that is basically disconnected will be referred to as a quasi-Stonean space. For a
quasi-Stonean space K without isolated points, the following function spaces were introduced by Abramovich
and Wickstead [1]:

l∞w (K) = {f : f is real valued, bounded and the set

{k : f(k) �= 0} is countable};

c0(K) = {f : f is real valued and the set

{k : |f(k)| > ε} is finite for each ε > 0}.

These spaces were used to define CD0(K) = C(K)⊕c0(K) and CDw(K) = C(K)⊕l∞w (K). Both spaces

CD0(K) and CDw(K) are AM -spaces with strong order unit 1 under the pointwise order and supremum norm.
Properties such as Cantor property, Dedekind completeness, sequential order continuity of the norm in these
spaces were studied in [1]. Further, Alpay and Ercan [2] relaxed the condition on the quasi-Stonean space K

and took it to be a compact Hausdorff space without isolated points and they defined the following vector-valued
versions of l∞w (K) and c0(K).
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Definition 1 For a set K and a normed space E , let C0(K, E) be the space of all E -valued functions f on

K such that for each ε > 0 , the set {s ∈ K : ||f(s)|| > ε} is finite. Similarly, let l∞w (K, E) be the space of all
bounded E -valued functions on K with countable support.

The following vector-valued versions of the spaces CD0(K) and CDw(K) were given in [2].

Definition 2 Let K be a compact Hausdorff space without isolated points and E be a normed space. CD0(K, E)

denotes the set of all E -valued functions on K of the form f + d such that f ∈ C(K, E) and d ∈ C0(K, E) .

Similarly, CDw(K, E) denotes the set of all E -valued functions on K of the form f +d such that f ∈ C(K, E)

but d ∈ l∞w (K, E) .

As order continuous operators as well as order continuous duals are very much in use here, it is useful to
give their definitions. For more details on order continuous operators, see [3].

Definition 3 (1) A net {xα} in a Riesz space is said to be decreasing to zero (in symbols xα ↓ 0) whenever

α ≥ β implies xα ≤ xβ and inf{xα} = 0 holds.

(2) A net {xα} in a Riesz space is said to be order convergent to x , denoted by xα →o x whenever there exists

a net {yα} with the same indexed set satisfying |xα − x| ≤ yα ↓ 0 .

(3) A linear operator T : E → F between two Riesz spaces is said to be order continuous whenever xα →o 0

in E implies Txα →o 0 in F . The collection of all order continuous operators will be denoted by Ln(E, F ) .
It is useful to note that a positive operator T : E → F is order continuous if and only if xα ↓ 0 in E implies
Txα ↓ 0 in F . The vector space Ln(E, R) of all order continuous linear fuctionals is referred to as the order
continuous dual of E and denoted by Eñ .

Alpay and Ercan [2] proved that the spaces CD0(K, E) and CDw(K, E) are Banach lattices for a Banach
lattice E . They investigated order properties of these spaces and characterized their order continuous duals.

The following definitions and theorems were given in [2].

Definition 4 Let K be a compact Hausdorff space without isolated points and E be a Banach lattice. Then
D0(K, Eñ ) denotes the set of all mappings β = β(k) from K into Eñ satisfying

sup
||f||≤1

∑
k

|β(k)|(|f(k)|) < ∞

for each f ∈ CD0(K, E) and
∑

k |β(k)|(fα(k)) ↓α 0 whenever fα ↓ 0 .

As usual,
∑

k |β(k)|(|f(k)|) is the supremum of the sums

∑
S

|β(k)|(|f(k)|),

where S ⊂ K and is finite. D0(K, Eñ ) is a normed Riesz space under pointwise operations and supremum
norm.

Theorem 5 Let K and E be as above. Then CD0(K, E)ñ and D0(K, Eñ ) are isometrically lattice isomorphic
spaces.
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Definition 6 Let K be a compact Hausdorff space without isolated points and E be a Banach lattice. Then
Dw(K, Eñ ) denotes the set of all mappings β = β(k) from K into Eñ satisfying

sup
||f||≤1

∑
k

|β(k)|(|f(k)|) < ∞

for each f ∈ CDw(K, E) and
∑

k |β(k)|(fα(k)) ↓α 0 whenever fα ↓ 0 .

As usual,
∑

k |β(k)|(|f(k)|) is the supremum of the sums

∑
S

|β(k)|(|f(k)|),

where S ⊂ K and is finite. Dw(K, Eñ ) is a normed Riesz space under pointwise operations and supremum
norm.

Theorem 7 Let K and E be as above. Then CDw(K, E)ñ and Dw(K, Eñ ) are isometrically lattice isomor-
phic spaces.

2. Main results

Throughout this section, the symbol χk ⊗ f denotes the vector-valued function which takes the value
f(k) at k and 0 otherwise.

We start with the following definition which is not very commonly known.

Definition 8 Let E and F be two Banach lattices. The regular norm, denoted by || · ||r of a linear operator

T : E → F with modulus |T | is defined by

||T ||r := || |T | || := sup
||x||≤1

|| |T |(x) ||

It is useful to note that Ln(E, F ) under the norm || · ||r is a Dedekind complete Banach lattice whenever F is
Dedekind complete.

In this section, we give a generalization of Theorem 5 and Theorem 7 in two directions. Firstly, we
replace CD0(K, E)ñ (or CDw(K, E)ñ ) by Ln(CD0(K, E), F ) (or Ln(CDw(K, E), F ) ) where E and F are
Banach lattices with F Dedekind complete. We take F as a Dedekind complete Banach lattice to ensure that
Ln(CD0(K, E), F ) (or Ln(CDw(K, E), F )) is a Dedekind complete Banach lattice under the regular norm

|| · ||r . Secondly, we replace Eñ by Ln(E, F ). We now give the following definition which is similar to Definition
4.

Definition 9 Let K be a compact Hausdorff space without isolated points, E and F be two Banach lattices

with F Dedekind complete. We define l1(K, Ln(E, F )) as the set of all mappings ϕ = ϕ(k) from K into

Ln(E, F ) satisfying ∑
k

|ϕ(k)|(|f(k)|) ∈ F

for each f ∈ CD0(K, E) and
∑

k |ϕ(k)|(fα(k)) ↓α 0 whenever fα ↓ 0 in CD0(K, E) .
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As usual,
∑

k |ϕ(k)|(|f(k)|) is the supremum of the sums

∑
S

|ϕ(k)|(|f(k)|)

where S ⊂ K and is finite.
l1(K, Ln(E, F )) is a Banach lattice under pointwise operations and supremum norm.

We now give the following theorem which is the main result of this note.

Theorem 10 Let K be a compact Hausdorff space without isolated points, E and F be two Banach lattices

with F Dedekind complete. Then Ln(CD0(K, E), F ) is isometrically lattice isomorphic to l1(K, Ln(E, F )) .

Proof. Let us define a map

φ : Ln(CD0(K, E), F ) → l1(K, Ln(E, F ))

at e ∈ E by the formula
φ(G)(k)(e) = G(χk ⊗ e)

for each G ∈ Ln(CD0(K, E), F ) and k ∈ K . It is clear that φ is a linear map. Using the linearity of φ and the

fact that φ(G+)(k) and φ(G−)(k) are order bounded F -valued operators for each G on CD0(K, E), φ(G)(k)
is order bounded.

Moreover, if eα ↓ 0 in E , then χk⊗eα ↓ 0 in CD0(K, E) for each k ∈ K . Using the order continuity of G ,

we have that G(χk ⊗ e) is order convergent to 0 so that φ(G)(k) ∈ Ln(E, F ) for each G ∈ Ln(CD0(K, E), F ).

We thus have a map φ(G) from K into Ln(E, F ).

Now we will show that ∑
k∈K

|φ(G)(k)|(|f(k)|) ∈ F, (f ∈ CD0(K, E)).

Let S be a finite subset of K and G ∈ Ln(CD0(K, E), F ). Then

∑
k∈S

|φ(G)(k)|(|f(k)|) =
∑
k∈S

|φ(G+ − G−)(k)|(|f(k)|)

≤
∑
k∈S

φ(G+)(k)(|(f(k)|)

+
∑
k∈S

φ(G−)(k)(|f(k)|)

=
∑
k∈S

G+(χk ⊗ |f |) +
∑
k∈S

G−(χk ⊗ |f |)

= G+(
∑
k∈S

χk ⊗ |f |) + G−(
∑
k∈S

χk ⊗ |f |)

for each f ∈ CD0(K, E). As
∑

k∈S χk ⊗ |f | ↑S |f | , G+ and G− are order continuous, we obtain

∑
k∈S

|φ(G)(k)|(|f(k)|) ≤ G+(|f |) + G−(|f |) = |G|(|f |).
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Hence ∑
k∈K

|φ(G)(k)|(|f(k)|) ∈ F,

since F is Dedekind complete. We also have to show that

∑
k

|φ(G)(k)|(fα(k)) ↓α 0 in F

for each fα ∈ CD0(K, E) such that fα ↓ 0. It is enough to show this for positive elements in Ln(CD0(K, E), F ).

Let us take 0 ≤ G ∈ Ln(CD0(K, E), F ) and fα ↓ 0 in CD0(K, E). For a fixed α , we have
∑

k∈S χk⊗fα ↑S fα .

As G is order continuous and positive,

G

(∑
k∈S

χk ⊗ fα

)
=

∑
k∈S

G(χk ⊗ fα) ↑ G(fα),

so that

∑
k∈K

|φ(G)(k)|(fα(k)) =
∑
k∈K

φ(G)(k)(fα(k))

=
∑
k∈K

G(χk ⊗ fα) = G(fα) ↓ 0.

Hence the map φ(G) is an element of l1(K, Ln(E, F )).

We now show that φ is bipositive. It is easy to show that φ(G) ≥ 0 whenever G ≥ 0. Conversely, assume

that φ(G) ≥ 0 for some G ∈ Ln(CD0(K, E), F ) and take 0 ≤ f ∈ CD0(K, E). We have
∑

k∈S G(χk ⊗ f) →
G(f), since

∑
k∈S χk ⊗ f ↑S f in CD0(K, E). As G(χk ⊗ f) = φ(G)(k)(f) ≥ 0 and thus G(f) ≥ 0 for each

0 ≤ f ∈ CD0(K, E), i.e., G ≥ 0.

To show that φ is one-to-one, let φ(G) = 0 for some G ∈ Ln(CD0(K, E), F ). Then G(χk ⊗ f) = 0

for each k ∈ K and 0 ≤ f ∈ CD0(K, E). As G is order continuous and
∑

k∈S χk ⊗ f ↑S f , this gives that

0 =
∑

k∈S G(χk ⊗ f) → G(f) or G(f) = 0. As CD0(K, E) is a vector lattice, we get G = 0.

To show that φ is surjective, let us take an arbitrary 0 ≤ α ∈ l1(K, Ln(E, F )) and define G :

CD0(K, E)+ → F+ by G(f) =
∑

k∈K α(k)(f(k)). As G is additive on CD0(K, E) and so G(f) = G(f+) −
G(f−) extends G to CD0(K, E). We now verify that φ(G) = α . If 0 ≤ e ∈ E , then

φ(G)(k0)(e) = G(χk0 ⊗ e) =
∑
k∈K

α(k)(χk0 ⊗ e)(k) = α(k0)e.

Since e ∈ E is arbitrary, we conclude that φ(G)(k0) = α(k0) and k0 is arbitrary, we have φ(G) = α .
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Finally we show that φ is an isometry. Assume that G ∈ Ln(CD0(K, E), F ) and f ∈ CD0(K, E). Then

||G||r = sup
||f||≤1

|| |G|(f) || = sup
||f||≤1

|| |G|(|f |) ||

= sup
||f||≤1

|| |G|
(∑

k∈K

χk ⊗ |f |
)

||

= sup
||f||≤1

||
∑
k∈K

|G|(χk ⊗ |f |) ||

= ||φ(|G|)|| = ||φ(G)||r.

This completes the proof. �

Definition 11 Let K be a compact Hausdorff space without isolated points, E and F be two Banach lattices

with F Dedekind complete. Then we define l1w(K, Ln(E, F )) as the set of all maps ϕ = ϕ(k) from K into

Ln(E, F ) satisfying ∑
k

|ϕ(k)|(|f(k)|) ∈ F

for each f ∈ CDw(K, E) and
∑

k |ϕ(k)|(fα(k)) ↓α 0 whenever fα ↓ 0 in CDw(K, E) .

l1w(K, Ln(E, F )) is a Banach lattice under pointwise operations and supremum norm. The following
theorem is similar to Theorem 10 so we omit its proof.

Theorem 12 Let K be a compact Hausdorff space without isolated points, E and F be two Banach lattices

with F Dedekind complete. Then Ln(CDw(K, E), F ) is isometrically lattice isomorphic to l1w(K, Ln(E, F )) .
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