A fixed point theorem for a compact and connected set in Hilbert space

Hülya Duru

Abstract

Let $(H,<>)$ be a real Hilbert space and let K be a compact and connected subset of H. We show that every continuous mapping $T: K \rightarrow K$ satisfying a mild condition has a fixed point.

Key Words: Fixed point, nonexpansive mapping, Hilbert space a fixed point theorem for a compact and connected set in Hilbert space

1. Introduction

Let K be a nonempty,close,convex and bounded subset of a real Hilbert space H. Let $T: K \rightarrow K$ be a continuous mapping.

If K is compact, then by The Schauder Fixed Point Theorem [8] (a generalization of [1]), T has a fixed point. If $K=B$ is the closed unit ball of H and the dimension of H is finite, then by The Brouwer Fixed Point Theorem [1], T has a fixed point. In the case where the dimension of H is infinite this is no longer the case [4, p. 198 and 207]. In this case, it is necessary to impose some extra conditions to assure the existence of a fixed point of T. The conditions imposed are usually compactness or monotonicity or nonexpansiveness of T [6]. For instance, Browder [2], Browder [3] - Göhde [5] and Kirk [7] discovered in 1965 independently that the nonexpansiveness of T is a guarantee the existence of a fixed point of T.

In the present paper, we impose an extra condition on T to obtain the same result. The extra condition imposed is this: For a certain number $r>0$, the inclusion $T\left(\partial B_{r}\right) \subseteq B_{r}$ holds. Here, B_{r} denotes the closed ball, $B_{r}=\{x \in H:\|x\| \leq r\}$ and ∂B_{r} is the boundary of the ball B_{r}.

Moreover we impose some new conditions for The Schauder Fixed Point Theorem [8], and for Theorem 1 in [2]. In addition, we obtain some results related to the imposed conditions. To explain these conditions let us define a subset $A^{T}\left(x_{0}\right)$ of K, for $x_{0} \in K$, as

$$
A^{T}\left(x_{0}\right)=\left\{x \in K:\left\|x-x_{0}\right\| \leq\left|\|T(x)\|-\left\|x_{0}\right\|\right|\right\} .
$$

The main theorem of this paper obtains The Schauder Fixed Point Theorem, which states that every continuous mapping on a compact and convex subset of a Banach space has a fixed point, for compact and

[^0]
DURU

connected subset K of H. To get this we replace the convexity of K in this theorem with the condition $K=$ $A^{T}\left(x_{0}\right)$ for some $x_{0} \neq 0$. To obtain Theorem 1 in [2] for continuous mapping T, we replace the nonexpansiveness of T with the following conditions:
(a) The existence of a point a in K satisfying $\|a\|=\|T(a)\|$;
and

$$
(b)\left((f \circ P)\left(\partial B_{r}\right)\right) \cap \partial B_{r} \neq \emptyset,
$$

where f is the mapping defined by, $f(x)=(x+T(x)) / 2, r=\sup \{\|x\|: x \in K\}$ and $P: B_{r} \rightarrow K$ is the nearest point projection, that is, for $x \in B_{r}$,

$$
\|x-P(x)\|=\inf \{\|x-u\|: u \in K\}
$$

We remark that the mapping f also applies K into itself.

Proposition 1 Let K be a nonempty and convex subset of H. Let $T: K \rightarrow K$ be a continuous mapping. Suppose that there exists a point $a \in K$ such that

$$
\|a\|=\|T(a)\|=\|f(a)\|
$$

Then a is a fixed point of T.
Proof. Let $\|a\|=\|T(a)\|=\|f(a)\|$. The equality $\|a\|=\|f(a)\|$ is equivalent to

$$
<a, a>=\frac{1}{4}<a+T(a), a+T(a)>
$$

Developing this product, and taking into account the condition $\|T(a)\|=\|a\|$, we obtain the equality

$$
\|a\|^{2}=<a, T(a)>
$$

This equality in turn implies that $\|a-T(a)\|^{2}=<a-T(a), a-T(a)>=0$ so that $T(a)=a$.

The following corollary is now obvious. Since the inequality $\|a\| \leq\|f(a)\|$ in turn implies that $\|a\| \leq\|T(a)\|$.

Corollary 2 Let K be a nonempty and convex subset of H and let $T: K \rightarrow K$ be a continuous mapping. If there exists a point $a \in K$ such that $\|T(a)\| \leq\|a\| \leq\|f(a)\|$, then a is a fixed point of T.

Proposition 3 Let K be a nonempty and convex subset of H and let $T: K \rightarrow K$ be a continuous mapping. If there exists a point $x_{0} \in K$ such that both sets $A^{T}\left(x_{0}\right)$ and $A^{f}\left(x_{0}\right)$ are at most countable then x_{0} is a fixed point of the mapping T.

Proof. Remark that $A^{f}\left(x_{0}\right)=\left\{x \in K:\left\|x-x_{0}\right\| \leq\| \| f(x)\|-\| x_{0} 川\right\}$. Let both $A^{T}\left(x_{0}\right)$ and $A^{f}\left(x_{0}\right)$ be at most countable. We shall show that ॥ $x_{0} \|=॥ T\left(x_{0}\right)$ ॥ and ॥ $x_{0} ॥=\| f\left(x_{0}\right)$ ॥. Let show that ॥ x_{0} ॥=॥ $T\left(x_{0}\right)$ ॥. On the contrary, assume that ॥ $x_{0}\|\neq\| T\left(x_{0}\right) \Perp$. Let $\varepsilon=\left(\left\|x_{0}\right\|-\left\|T\left(x_{0}\right)\right\|\right) / 2$. Since T is continuous, there exists $\delta>0$ such that if $x \in K$ and $\Vdash x-x_{0} \|<\delta$ then $\mid ॥ T(x) \Perp-॥ T\left(x_{0}\right) 川<\varepsilon$. Let $\delta_{0}=\min \{\varepsilon, \delta\}$. We claim that $B_{\delta_{0}}\left(x_{0}\right) \cap K \subset A^{T}\left(x_{0}\right)$. Indeed, let $x \in K$ and $॥ x-x_{0} \|<\delta_{0}$. Then ,

$$
॥ x-x_{0} \|<2 \varepsilon-\varepsilon \leq\left|॥ x_{0} \Perp-॥ T\left(x_{0}\right) \Perp-\left|\Perp T(x) \Perp-\Perp T\left(x_{0}\right) \Perp\right| .\right.
$$

From here we conclude that

$$
\left\|x-x_{0}\right\| \leq \mid ॥ T(x) \|-\Perp x_{0} 川 .
$$

That means $x \in A^{T}\left(x_{0}\right)$ ．This implies that $B_{\delta_{0}}\left(x_{0}\right) \cap K \subset A^{T}\left(x_{0}\right)$ ．But this is impossible，since K is convex and $A^{T}\left(x_{0}\right)$ is at most countable．To prove that ॥ $x_{0}\|=\| f\left(x_{0}\right) \|$ ，it is enough to replace T with f and repeat the proof．By Proposition $1, x_{0}$ is a fixed point of T ．

Next is the main theorem of this paper．

Theorem 4 Let K be a nonempty，compact and connected subset of H and let $T: K \rightarrow K$ be a continuous mapping．Assume that there exists a point $x_{0} \in K, x_{0} \neq 0$ ，such that $A^{T}\left(x_{0}\right)=K$ ．Then T has a fixed point． Proof．Let $a \in K$ be fixed．Now we define the sequences $\alpha_{n}=\left\|T^{n}(a)-x_{0}\right\|$ and $\beta_{n}=\mid » T^{n}(a) ॥-॥ x_{0} 川$ ．Since $A^{T}\left(x_{0}\right)=K$ for some $x_{0} \in K, x_{0} \neq 0$ ，the sequence $\left(T^{n}(a)\right)_{n \in N}$ is in the set $A^{T}\left(x_{0}\right)$ ．Hence we have

$$
\begin{aligned}
& \text { ॥ } a-x_{0} \| \leq \mid ॥ T(a) \text { ॥ }- \text { ॥ } x_{0} 川 \leq \text { ॥ } T(a)-x_{0} \text { ॥ } \\
& \text { ॥ } T(a)-x_{0} \| \leq \mid ॥ T^{2}(a) ॥-॥ x_{0} 川 \leq \text { ॥ } T^{2}(a)-x_{0} ॥ \ldots,
\end{aligned}
$$

and so on．In this way we get，

$$
\left\|T^{n}(a)-x_{0}\right\| \leq \mid ॥ T^{n+1}(a)\|-\| x_{0}\|\leq\| T^{n+1}(a)-x_{0} \|,
$$

for all $n=0,1,2 \ldots$（Here $T^{n}=T \circ T \circ T \circ \ldots n-$ times and $\left.a=T^{0}(a)\right)$
Hence，for all n ，we get

$$
\alpha_{n} \leq \beta_{n+1} \leq \alpha_{n+1}
$$

The last inequalities show that $\left(\alpha_{n}\right)_{n \in N}$ and $\left(\beta_{n}\right)_{n \in N}$ are increasing sequences．Moreover，since K is bounded， they converge and approach the same limit．On the other hand，since K is compact，the sequence $\left(T^{n}(a)\right)_{n \in N}$ has a convergent subsequence．We show this subsequence $\left(T^{n_{k}}(a)\right)_{k \in N}$ ．Let $\lim _{n \rightarrow \infty} T^{n_{k}}(a)=b \in K$ ．Since T is continuous，we get

$$
\lim _{n \rightarrow \infty} ॥ T^{n_{k}+p}(a) ॥=॥ T^{p}(b) ॥
$$

for all $p=0,1,2 \ldots$ Now $\alpha_{n_{k}+p}=\left\|T^{n_{k}+p}(a)-x_{0}\right\|$ and $\beta_{n_{k}+p}=\mid ॥ T^{n_{k}+p}(a) ॥-॥ x_{0} 川$ are all subsequences of $\left(\alpha_{n}\right)_{n \in N}$ and $\left(\beta_{n}\right)_{n \in N}$ ．Since they have the same limit，we get

$$
\begin{equation*}
\left\|b-x_{0}\right\|=\left|\Perp b \left\|-\Perp x_{0} 川\left|=॥ T(b)-x_{0} \|=\left|\Perp T(b) \Perp-\Perp x_{0} 川\right|=\cdots .\right.\right.\right. \tag{1}
\end{equation*}
$$

That is，

$$
\text { ॥ } T^{n}(b)-x_{0} \text { ॥=|» } T^{n}(b) \Perp-\| x_{0} 川=॥ T^{n+1}(b)-x_{0} \text { ॥. }
$$

From here we conclude that，for all $n \in N$ ，

$$
<x_{0}, T^{n}(b)>=\left\|x_{0}\right\| ॥ T^{n}(b) \|
$$

The last equality implies that there exist positive real numbers t_{n} such that all equalities below,

$$
\begin{equation*}
x_{0}=t_{0} b=t_{1} T(b)=t_{2} T^{2}(b)=\cdots=t_{n} T^{n}(b)=\cdots \tag{2}
\end{equation*}
$$

hold. Now there exist two cases:
Case 1. Assume that the equality ॥ $T^{n}(b) ॥=॥ T^{n+1}(b) ॥$ holds for some n. Then the point $T^{n}(b)$ is a fixed point of T. Indeed by (2),

$$
\left\|x_{0}\right\|=t_{n}\left\|T^{n}(b) ॥=t_{n+1}\right\| T^{n+1}(b) ॥ \text {. }
$$

Hence $t_{n}=t_{n+1}$. Again by (2), we get $T^{n}(b)=T^{n+1}(b)=T\left(T^{n}(b)\right)$.
Case 2. Suppose that ॥ $T^{n}(b)\|\neq\| T^{n+1}(b) \|$ for all n. In this case x_{0} is a fixed point of T. Indeed, by taking square of the equalities in (1), we obtain,

$$
\begin{equation*}
\left\|x_{0}\right\|=(॥ b\|+\| T(b) ») / 2=\left(॥ T(b) ॥+॥ T^{2}(b) »\right) / 2=\cdots . \tag{3}
\end{equation*}
$$

From here, we get for all n

$$
\begin{equation*}
\text { ॥ } b \text { ॥=॥ } T^{2}(b) \|=॥ T^{2 n}(b) \text { ॥ and ॥ } T(b) \text { ॥=॥ } T^{3}(b) \|=॥ T^{2 n+1}(b) \text { ॥. } \tag{4}
\end{equation*}
$$

Together with (2), the equalities in (4) imply that both

$$
\begin{equation*}
\left\|x_{0}\right\|=t_{0}\|b\|=t_{2}\left\|T^{2}(b)\right\|=t_{2 n}\left\|T^{2 n}(b)\right\| \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { ॥ } x_{0}\left\|=t_{1}\right\| T(b)\left\|=t_{3}\right\| T^{3}(b) ॥=t_{2 n+1} \| T^{2 n+1}(b) ॥ \text {. } \tag{6}
\end{equation*}
$$

Hence relations (4), (5) and (6) give us for all n

$$
t_{0}=t_{2}=t_{2 n} \text { and } t_{1}=t_{3}=t_{2 n+1}
$$

By $(2), b=T^{2}(b)=T^{2 n}(b)$. Let $g: K \rightarrow R$ be a function defined by

$$
\left.g(x)=\mid » b \text { ॥ }- \text { ॥ } T^{2}(x) \Perp|-| » T(b) \Perp-\Perp T^{2}(x)\right) \Perp .
$$

Clearly g is continuous and $g(b)<0$ and $0<g(T(b))$ hold. Since K is connected, by The Intermediate Value Theorem, there exists a point c in K such that

$$
\left.g(c)=\left|» b »-\Perp T^{2}(c) \Perp-\right| » T(b) \Perp-\Perp T^{2}(c)\right) \Perp \mid=0 .
$$

That is, ॥ $T^{2}(c) ॥=(॥ b \|+॥ T(b) ») / 2$. By $(3), ॥ x_{0} ॥=॥ T^{2}(c) ॥$. On the other hand since $T(c) \in A^{T}\left(x_{0}\right)=$ K, we get $\left\|x_{0}-T(c)\right\| \leq \mid ॥ x_{0}\|-\| T^{2}(c) \|=0$. Hence $x=T(c)$. Similarly since $c \in A^{T}\left(x_{0}\right)$, we get $\left\|x_{0}-c\right\| \leq \mid ॥ x_{0}\|-॥ T(c)\|=0$. Hence $x_{0}=c$. From here we conclude that x_{0} is a fixed point of T.

We use the symbol \bar{A} to denote the closure of a set A.

DURU

Corollary 5 Let K and T be as in Theorem 4. If T has no fixed point then

$$
A^{T}(x) \cap \overline{K / A^{T}(x)} \neq \emptyset
$$

for all $x \in K, \quad x \neq 0$. That is, for all $x \in K$, there exists a point y in K such that

$$
\|x-y\|=\|x\|-\|T(y)\| \| .
$$

Proof. On the contrary, suppose that $A^{T}(x) \cap \overline{K / A^{T}(x)}=\emptyset$ for some $x \in K$. Then the set $A^{T}(x)$ is both open and closed in K. Since K is connected and $x \in A^{T}(x) \neq \emptyset$ we must have $A^{T}(x)=K$. By Theorem $4, T$ has a fixed point, which is not the case.

Lemma 6 Let K be a nonempty, closed, convex and bounded subset of H and $0 \in K$. Let $\dot{T}: K \rightarrow K$ be a continuous mapping. Assume that there exists at least one point $a \in K$ such that the equality $\|T(a)\|=\|a\|$ holds. Then,
(a) The set $F=\{x \in K:\|x\|=\|f(x)\|\}=A^{f}(0) \cap \overline{K / A^{f}(0)}$ is nonempty.
(b) The quantity $\delta(f)=\inf \{\|x\|: x \in F\}$ is zero iff $T(0)=0$.

Proof. (a) If $f(0)=0$, then there is nothing to prove. If

$$
a \in A^{f}(0)=F \cup\{x \in K:\|x\|<\|f(x)\|\}
$$

then, $\|a\| \leq\|f(a)\|$. By Corollary $2, a$ is a fixed point of both T and f. Hence $a \in F \neq \emptyset$. Hence we suppose that $0<\|f(0)\|$ and $a \notin A^{f}(0)$. Let $g: K \rightarrow R$ be a continuous function defined by, $g(x)=\|x\|-\|f(x)\|$. Since $g(0)<0$ and $g(a)>0$ and since K is connected, by the intermediate value theorem, there is a point b $\in K$ such that $g(b)=0$. Hence $b \in F \neq \emptyset$.
b) Since $F \neq \emptyset$, the quantity $\delta(f)=\inf \{\|x\|: x \in F\}$ exists. This quantity is zero iff $T(0)=0$. Indeed, if $T(0)=0$ then $0 \in F$ so that $\delta(f)=0$. Conversely, if $\delta(f)=0$ then there is a sequence $\left(x_{n}\right)_{n \in N}$ in F such that $\left\|x_{n}\right\| \rightarrow 0$, as $n \rightarrow \infty$. Since f is continuous on K and since $\left\|x_{n}\right\|=\left\|f\left(x_{n}\right)\right\|$, we see that $f(0)=0$. This implies that $T(0)=0$, too

Let K be a nonempty, closed, convex and bounded subset of H. In this case the quantity $\sup \{\|x\|$: $x \in K\}=r$ exists and $K \subset B_{r}$. Let $P: B_{r} \rightarrow K$ be the nearest point projection, that is, for $x \in B_{r}$, $\|x-P(x)\|=\inf \{\|x-u\|: u \in K\}$. Now we give the next corollary below.

Corollary 7 Let K, T and a be as in lemma 6. Suppose that

$$
\left((f \circ P)\left(\partial B_{r}\right)\right) \cap \partial B_{r} \neq \emptyset .
$$

Then T has a fixed point.
Proof. Let $\left((f \circ P)\left(\partial B_{r}\right)\right) \cap \partial B_{r} \neq \emptyset$. In this case, there is a $x \in \partial B_{r}$ such that $\|((f \circ P)(x)\|=\| x \|=r$. The equality $\|((f \circ P)(x) \|=r$ implies that both

DURU

$$
\|P(x)\| \leq \|((f \circ P)(x) \| \text { and }\|T(P(x))\| \leq \|((f \circ P)(x) \| .
$$

As $(f \circ P)(x)=(P(x)+T(P(x)) / 2$, we have $\|P(x)\|=\|T(P(x))\|=\|((f \circ P)(x) \|$. By Proposition $1, P(x)$ is a fixed point of \dot{T}.

In the previous corollary the nearest point projection can be replaced with the radial retraction, which uniquely defined for a ball in any strictly convex normed space.

Theorem 8 Let $K=B$ be the closed unit ball of H and let $T: K \rightarrow K$ be a continuous mapping. Suppose that for each $r \geq \delta(f)$, the inclusion $T\left(\partial B_{r}\right) \subseteq B_{r}$ holds. Then T has a fixed point in B.

Proof. If we take $a \in K$ with $\|a\|=1$ and repeat the proof of Lemma $6(\mathrm{a})$, we see that the set $F \neq \emptyset$. By Lemma $6(\mathrm{~b})$, If $\delta(f)=0$ then zero is a fixed point of T so that there is nothing to prove in this case. Hence we suppose that $\delta(f)>0$.

Case 1. $f(\partial B) \cap \partial B \neq \varnothing$. In this case, there is a point $x \in \partial B$ such that $\|f(x)\|=1=\|x\|$. As $f(x)=(x+T(x)) / 2$, the equality $\|f(x)\|=\|x\|$ implies that $\|T(x)\| \geq\|x\|$. Since $\|x\|=1$, this is possible only if $\|T(x)\|=\|x\|$. By Proposition $1, T(x)=x$.

Case 2. $f(\partial B) \cap \partial B=\varnothing$. In this case, for all $x \in \partial B,\|f(x)\|<1$ so that $\|f(x)\|<\|x\|$. We fix a $y \in \partial B$. Since $\|f(y)\|<\|y\|$ and $\|f(0)\|>0$, as in the proof of Lemma $6($ a $)$, the function $g(x)=\|x\|-\|f(x)\|$ vanishes at some point $a \in B$. That is, $\|a\|=\|f(a)\|$. This point a belongs to F so that $\|a\| \geq \delta(f)$. As $a \in \partial B_{r}$, where $r=\|a\|$ and since $T\left(\partial B_{r}\right) \subseteq B_{r}$, we have $\|T(a)\| \leq\|a\|$. On the other hand, since $\|a\|=\|f(a)\|$, we also have $\|T(a)\| \geq\|a\|$. Hence $\|T(a)\|=\|a\|$. By Proposition $1, T(a)=a$. Hence T has a fixed point in B.

The next corollaries are now obvious.
Corollary 9 Suppose that for each $x \in B$ with $\|x\| \geq \delta(f)$, we have $\|T(x)\| \leq\|x\|$. Then T has a fixed point in B.

Corollary 10 Let K be a closed, convex and bounded subset of H with $0 \in K$, and let $T: K \rightarrow K$ be a continuous mapping. Suppose that the inclusion $T(\partial C) \subseteq C$ holds for all convex and closed subsets of K. Then T has a fixed point in K.

Theorem 11 Let H be infinite dimensional and let $K=B$ be the closed unit ball of H.Let $T: K \rightarrow K$ be a continuous mapping. Set

$$
M_{i}=\left\{x \in B: x=x_{i} e_{i}\right\}
$$

where $e_{i}=\left(0,0, \ldots, y_{i}, 0, ..\right), y_{i}=1$. Then $F \cap M_{i} \neq \varnothing$, for all i.
Proof. Let $H=\ell_{2}$. We give the proofs without loss of generality for $M=M_{1}$.
(a) If $f(0)=0$ then $0 \in F \cap M$. If $a=\left(x_{1}, 0,0, \ldots\right) \in F$ where $x_{1} \mid=1$ then $a \in F \cap M$. So we suppose that $\left\{0, e_{1},-e_{1}\right\} \cap F=\varnothing$. Now define the function $g: M \rightarrow R, g(x)=\|x\|-\|f(x)\|$. Then since $g(0)<0$ and $g\left(e_{1}\right)>0$ and since M is convex, by the intermediate value theorem, there is a point $b \in M$ such that

DURU

$g(b)=0$. That is $b \in F \cap M \neq \emptyset$.

For the next corollary we put $\sup \left\{\|x\|: x \in F \cap M_{i}\right\}=\left\|x_{i}\right\|=r_{i}$ for some $x_{i} \in F \cap M_{i}$. If $r_{i}=1$ for some i, then $\left\|x_{i}\right\|=\left\|f\left(x_{i}\right)\right\|=1 \geq\left\|T\left(x_{i}\right)\right\|$. By Proposition $1, x_{i}$ is a fixed point of T.

Corollary 12 Let B be the closed unit ball of H and $T: B \rightarrow B$ be a continuous mapping. If the inclusion $T\left(\partial B_{r_{i}}\right) \subseteq B_{r_{i}}$ for some i, then T has a fixed point .
Proof. We remark that $r_{i}=\left\|x_{i}\right\|$ for some $x_{i} \in F \cap M_{i}$, for all i. If $r_{i}=1$ for some i, then

$$
\left\|x_{i}\right\|=\left\|f\left(x_{i}\right)\right\|=1 \geq\left\|T\left(x_{i}\right)\right\|
$$

By Proposition $1, x_{i}$ is a fixed point of T. Let $0<r_{i}<1$ for all i. Then since $T\left(\partial B_{r_{i}}\right) \subseteq B_{r_{i}}$ and $x_{i} \in \partial B_{r_{i}}$, $\left\|T\left(x_{i}\right)\right\| \leq r_{i}=\left\|x_{i}\right\|=\left\|f\left(x_{i}\right)\right\|$. By Proposition $1, x_{i}$ is a fixed point of T.

Example 13 Let $H=\ell_{2}$ and B its closed unit ball.
1- For $x=\left(x_{1}, x_{2}, ..\right) \in B$, let $T(x)=\left(1-\|x\|,\|x\|, x_{3}, x_{4}, \ldots\right)$. Then clearly T takes B into itself. By a simple calculation, we have $r_{1}=1 \sqrt{3}, r_{2}=1$ and $r_{i}=\sqrt{2}-1$, for all $i=3,4, \ldots$ It is clear that $T\left(\partial B_{r_{2}}\right) \subseteq B_{r_{2}}$. By Corollary 12, T has a fixed point. Moreover, T is not a nonexpansive mapping.

2- For $x=\left(x_{1}, x_{2}, ..\right) \in B$, let $T(x)=\left(1-\|x\|, x_{2}, x_{3}, x_{4}, \ldots\right)$. Then we have, $r_{1}=1 / 2$ and $r_{i}=1$ for all $i \geq 2$. It is clear that $T\left(\partial B_{r_{1}}\right) \subseteq B_{r_{1}}$. By Corollary 12, T has a fixed point.

References

[1] Brouwer, L.E.:Über abbildungen von mannigfaltigkeiten, Math. Ann. 71, 97-115,(1912).
[2] Browder, F.E.: Fixed point theorems for noncompact mappings in Hilbert space, Proc. Nat. Acad. Sci. U.S.A. 53, 1272-1276, (1965).
[3] Browder, F.E.: Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Sci. U.S.A 54, 1041-1044, (1965).
[4] Goebel ,K. and Kirk,W.A.: Topics in metric fixed point theory, Cambridge University press (1990).
[5] Göhde, D.: Zum prinzep der kontractiven abbildung, Math. Nachr. 30, 251-258,(1965)
[6] Kirk,W.A and Sims,Brailey. (editor).: Handbook of Metric Fixed point Theory, Kluwer Academic Publishers Dordrecht, 2001
[7] Kirk, W.A.: A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72, 10041006, (1965)
[8] Schauder, J.: Der fixpunktsatz in funktionalraumen, Studia Math. 2, 171-180, (1930).

Hülya DURU
Received: 30.05.2008
İstanbul University, Faculty of Science
Mathematics Department
34134, Vezneciler, İstanbul-TURKEY
e-mail: hduru@istanbul.edu.tr

[^0]: 2000 AMS Mathematics Subject Classification: 47H09, 47H10.

