

A fixed point theorem for a compact and connected set in Hilbert space

Hülya Duru

Abstract

Let (H, <>) be a real Hilbert space and let K be a compact and connected subset of H. We show that every continuous mapping $T: K \to K$ satisfying a mild condition has a fixed point.

Key Words: Fixed point, nonexpansive mapping, Hilbert space a fixed point theorem for a compact and connected set in Hilbert space

1. Introduction

Let K be a nonempty, close, convex and bounded subset of a real Hilbert space H. Let $T: K \to K$ be a continuous mapping.

If K is compact, then by The Schauder Fixed Point Theorem [8] (a generalization of [1]), T has a fixed point. If K = B is the closed unit ball of H and the dimension of H is finite, then by The Brouwer Fixed Point Theorem [1], T has a fixed point. In the case where the dimension of H is infinite this is no longer the case [4, p.198 and 207]. In this case, it is necessary to impose some extra conditions to assure the existence of a fixed point of T. The conditions imposed are usually compactness or monotonicity or nonexpansiveness of T [6]. For instance, Browder [2], Browder [3] – Göhde [5] and Kirk [7] discovered in 1965 independently that the nonexpansiveness of T is a guarantee the existence of a fixed point of T.

In the present paper, we impose an extra condition on T to obtain the same result. The extra condition imposed is this: For a certain number r > 0, the inclusion $T(\partial B_r) \subseteq B_r$ holds. Here, B_r denotes the closed ball, $B_r = \{x \in H : ||x|| \le r\}$ and ∂B_r is the boundary of the ball B_r .

Moreover we impose some new conditions for The Schauder Fixed Point Theorem [8], and for Theorem 1 in [2]. In addition, we obtain some results related to the imposed conditions. To explain these conditions let us define a subset $A^T(x_0)$ of K, for $x_0 \in K$, as

$$A^{T}(x_{0}) = \{ x \in K : ||x - x_{0}|| \le ||T(x)|| - ||x_{0}|| | \}.$$

The main theorem of this paper obtains The Schauder Fixed Point Theorem, which states that every continuous mapping on a compact and convex subset of a Banach space has a fixed point, for compact and

²⁰⁰⁰ AMS Mathematics Subject Classification: 47H09, 47H10.

connected subset K of H. To get this we replace the convexity of K in this theorem with the condition $K = A^T(x_0)$ for some $x_0 \neq 0$. To obtain Theorem 1 in [2] for continuous mapping T, we replace the nonexpansiveness of T with the following conditions:

(a) The existence of a point a in K satisfying ||a|| = ||T(a)||;

and

 $(b)((f \circ P)(\partial B_r)) \cap \partial B_r \neq \emptyset,$

where f is the mapping defined by, f(x) = (x + T(x)) / 2, $r = \sup\{||x|| : x \in K\}$ and $P : B_r \to K$ is the nearest point projection, that is, for $x \in B_r$,

$$||x - P(x)|| = \inf\{||x - u|| : u \in K\}$$

We remark that the mapping f also applies K into itself.

Proposition 1 Let K be a nonempty and convex subset of H. Let $T : K \to K$ be a continuous mapping. Suppose that there exists a point $a \in K$ such that

$$||a|| = ||T(a)|| = ||f(a)||.$$

Then a is a fixed point of T.

Proof. Let ||a|| = ||T(a)|| = ||f(a)||. The equality ||a|| = ||f(a)|| is equivalent to

$$< a, a > = \frac{1}{4} < a + T(a), a + T(a) > .$$

Developing this product, and taking into account the condition ||T(a)|| = ||a||, we obtain the equality

 $||a||^2 = \langle a, T(a) \rangle$.

This equality in turn implies that $||a - T(a)||^2 = \langle a - T(a), a - T(a) \rangle = 0$ so that T(a) = a.

The following corollary is now obvious. Since the inequality $||a|| \leq ||f(a)||$ in turn implies that $||a|| \leq ||T(a)||$.

Corollary 2 Let K be a nonempty and convex subset of H and let $T : K \to K$ be a continuous mapping. If there exists a point $a \in K$ such that $||T(a)|| \le ||a|| \le ||f(a)||$, then a is a fixed point of T.

Proposition 3 Let K be a nonempty and convex subset of H and let $T : K \to K$ be a continuous mapping. If there exists a point $x_0 \in K$ such that both sets $A^T(x_0)$ and $A^f(x_0)$ are at most countable then x_0 is a fixed point of the mapping T.

Proof. Remark that $A^f(x_0) = \{x \in K : ||x - x_0|| \le |||f(x)|| - ||x_0|||\}$. Let both $A^T(x_0)$ and $A^f(x_0)$ be at most countable. We shall show that $||x_0|| = ||T(x_0)||$ and $||x_0|| = ||f(x_0)||$. Let show that $||x_0|| = ||T(x_0)||$. On the contrary, assume that $||x_0|| \neq ||T(x_0)||$. Let $\varepsilon = (|||x_0|| - ||T(x_0)||) / 2$. Since T is continuous, there exists $\delta > 0$ such that if $x \in K$ and $||x - x_0|| < \delta$ then $||||T(x)|| - ||T(x_0)|| < \varepsilon$. Let $\delta_0 = \min\{\varepsilon, \delta\}$. We claim that $B_{\delta_0}(x_0) \cap K \subset A^T(x_0)$. Indeed, let $x \in K$ and $|||x - x_0|| < \delta_0$. Then,

$$||x - x_0|| < 2\varepsilon - \varepsilon \leq ||x_0|| - ||T(x_0)|| - ||T(x)|| - ||T(x_0)|| - ||T(x_0)||$$

From here we conclude that

$$||x - x_0|| \le ||T(x)|| - ||x_0|||$$
.

That means $x \in A^T(x_0)$. This implies that $B_{\delta_0}(x_0) \cap K \subset A^T(x_0)$. But this is impossible, since K is convex and $A^T(x_0)$ is at most countable. To prove that $\|x_0\| = \|f(x_0)\|$, it is enough to replace T with f and repeat the proof. By Proposition 1, x_0 is a fixed point of T.

Next is the main theorem of this paper.

Theorem 4 Let K be a nonempty, compact and connected subset of H and let $T : K \to K$ be a continuous mapping. Assume that there exists a point $x_0 \in K$, $x_0 \neq 0$, such that $A^T(x_0) = K$. Then T has a fixed point. **Proof.** Let $a \in K$ be fixed. Now we define the sequences $\alpha_n = ||T^n(a) - x_0||$ and $\beta_n = ||T^n(a)|| - ||x_0|||$. Since $A^T(x_0) = K$ for some $x_0 \in K$, $x_0 \neq 0$, the sequence $(T^n(a))_{n \in N}$ is in the set $A^T(x_0)$. Hence we have

$$||a - x_0|| \le ||T(a)|| - ||x_0|| \le |T(a) - x_0||$$

$$||T(a) - x_0|| \le ||T^2(a)|| - ||x_0|| \le ||T^2(a) - x_0|| \dots$$

and so on. In this way we get,

$$||T^{n}(a) - x_{0}|| \leq ||T^{n+1}(a)|| - ||x_{0}|| \leq ||T^{n+1}(a) - x_{0}||$$

for all n = 0, 1, 2... (Here $T^n = T \circ T \circ T \circ ... n - times$ and $a = T^0(a)$)

Hence, for all n, we get

$$\alpha_n \le \beta_{n+1} \le \alpha_{n+1}.$$

The last inequalities show that $(\alpha_n)_{n \in N}$ and $(\beta_n)_{n \in N}$ are increasing sequences. Moreover, since K is bounded, they converge and approach the same limit. On the other hand, since K is compact, the sequence $(T^n(a))_{n \in N}$ has a convergent subsequence. We show this subsequence $(T^{n_k}(a))_{k \in N}$. Let $\lim_{n \to \infty} T^{n_k}(a) = b \in K$. Since T is continuous, we get

$$\lim_{n\to\infty} ||T^{n_k+p}(a)|| = ||T^p(b)||$$

for all p = 0, 1, 2... Now $\alpha_{n_k+p} = \prod T^{n_k+p}(a) - x_0 \prod$ and $\beta_{n_k+p} = \prod T^{n_k+p}(a) \prod - \prod x_0 \prod$ are all subsequences of $(\alpha_n)_{n \in \mathbb{N}}$ and $(\beta_n)_{n \in \mathbb{N}}$. Since they have the same limit, we get

$$||b - x_0|| = ||b|| - ||x_0|| = ||T(b) - x_0|| = ||T(b)|| - ||x_0|| = \cdots$$
(1)

That is,

$$||T^{n}(b) - x_{0}|| = ||T^{n}(b)|| - ||x_{0}|| = ||T^{n+1}(b) - x_{0}||.$$

From here we conclude that, for all $n \in N$,

295

$$\langle x_0, T^n(b) \rangle = \parallel x_0 \parallel T^n(b) \parallel x_0$$

The last equality implies that there exist positive real numbers t_n such that all equalities below,

$$x_0 = t_0 b = t_1 T(b) = t_2 T^2(b) = \dots = t_n T^n(b) = \dots$$
(2)

hold. Now there exist two cases:

Case 1. Assume that the equality $||T^n(b)|| = ||T^{n+1}(b)||$ holds for some n. Then the point $T^n(b)$ is a fixed point of T. Indeed by (2),

$$|| x_0 || = t_n || T^n(b) || = t_{n+1} || T^{n+1}(b) || .$$

Hence $t_n = t_{n+1}$. Again by (2), we get $T^n(b) = T^{n+1}(b) = T(T^n(b))$.

Case 2. Suppose that $||T^n(b)|| \neq ||T^{n+1}(b)||$ for all n. In this case x_0 is a fixed point of T. Indeed, by taking square of the equalities in (1), we obtain,

$$||x_0|| = (||b|| + ||T(b)||)/2 = (||T(b)|| + ||T^2(b)||)/2 = \cdots$$
(3)

From here, we get for all n

$$||b|| = ||T^{2}(b)|| = ||T^{2n}(b)|| \text{ and } ||T(b)|| = ||T^{3}(b)|| = ||T^{2n+1}(b)||.$$
(4)

Together with (2), the equalities in (4) imply that both

$$||x_0|| = t_0 ||b|| = t_2 ||T^2(b)|| = t_{2n} ||T^{2n}(b)||$$
(5)

and

$$||x_0|| = t_1 ||T(b)|| = t_3 ||T^3(b)|| = t_{2n+1} ||T^{2n+1}(b)||.$$
(6)

Hence relations (4), (5) and (6) give us for all n

$$t_0 = t_2 = t_{2n}$$
 and $t_1 = t_3 = t_{2n+1}$.

By $(2), b = T^2(b) = T^{2n}(b)$. Let $g: K \to R$ be a function defined by

$$g(x) = |||b|| - ||T^{2}(x)|| - |||T(b)|| - ||T^{2}(x)|| .$$

Clearly g is continuous and g(b) < 0 and 0 < g(T(b)) hold. Since K is connected, by The Intermediate Value Theorem, there exists a point c in K such that

$$g(c) = |||b|| - ||T^{2}(c)|| - |||T(b)|| - ||T^{2}(c)|| = 0.$$

That is, $\|T^2(c)\| = (\|b\| + \|T(b)\|) / 2$. By (3), $\|x_0\| = \|T^2(c)\|$. On the other hand since $T(c) \in A^T(x_0) = K$, we get $\|x_0 - T(c)\| \le \|x_0\| - \|T^2(c)\| = 0$. Hence x = T(c). Similarly since $c \in A^T(x_0)$, we get $\|x_0 - c\| \le \|x_0\| - \|T(c)\| = 0$. Hence $x_0 = c$. From here we conclude that x_0 is a fixed point of T. \Box

We use the symbol \overline{A} to denote the closure of a set A.

296

Corollary 5 Let K and T be as in Theorem 4. If T has no fixed point then

$$A^T(x) \cap \overline{K/A^T(x)} \neq \emptyset$$

for all $x \in K$, $x \neq 0$. That is, for all $x \in K$, there exists a point y in K such that

$$||x - y|| = ||x|| - ||T(y)||$$

Proof. On the contrary, suppose that $A^T(x) \cap \overline{K/A^T(x)} = \emptyset$ for some $x \in K$. Then the set $A^T(x)$ is both open and closed in K. Since K is connected and $x \in A^T(x) \neq \emptyset$ we must have $A^T(x) = K$. By Theorem 4, T has a fixed point, which is not the case.

Lemma 6 Let K be a nonempty, closed, convex and bounded subset of H and $0 \in K$. Let $\dot{T} : K \to K$ be a continuous mapping. Assume that there exists at least one point $a \in K$ such that the equality ||T(a)|| = ||a|| holds. Then,

- (a) The set $F = \{x \in K : ||x|| = ||f(x)||\} = A^f(0) \cap \overline{K/A^f(0)}$ is nonempty.
- (b) The quantity $\delta(f) = \inf\{||x|| : x \in F\}$ is zero iff T(0) = 0.

Proof. (a) If f(0) = 0, then there is nothing to prove. If

$$a \in A^{f}(0) = F \cup \{x \in K : ||x|| < ||f(x)||\}$$

then, $||a|| \leq ||f(a)||$. By Corollary 2, a is a fixed point of both T and f. Hence $a \in F \neq \emptyset$. Hence we suppose that 0 < ||f(0)|| and $a \notin A^f(0)$. Let $g: K \to R$ be a continuous function defined by, g(x) = ||x|| - ||f(x)||. Since g(0) < 0 and g(a) > 0 and since K is connected, by the intermediate value theorem, there is a point $b \in K$ such that g(b) = 0. Hence $b \in F \neq \emptyset$.

b) Since $F \neq \emptyset$, the quantity $\delta(f) = \inf\{||x|| : x \in F\}$ exists. This quantity is zero iff T(0) = 0. Indeed, if T(0) = 0 then $0 \in F$ so that $\delta(f) = 0$. Conversely, if $\delta(f) = 0$ then there is a sequence $(x_n)_{n \in N}$ in F such that $||x_n|| \to 0$, as $n \to \infty$. Since f is continuous on K and since $||x_n|| = ||f(x_n)||$, we see that f(0) = 0. This implies that T(0) = 0, too \Box

Let K be a nonempty, closed, convex and bounded subset of H. In this case the quantity $\sup\{||x||: x \in K\} = r$ exists and $K \subset B_r$. Let $P : B_r \to K$ be the nearest point projection, that is, for $x \in B_r$, $||x - P(x)|| = \inf\{||x - u||: u \in K\}$. Now we give the next corollary below.

Corollary 7 Let K, T and a be as in lemma 6. Suppose that

$$((f \circ P)(\partial B_r)) \cap \partial B_r \neq \emptyset.$$

Then T has a fixed point.

Proof. Let $((f \circ P)(\partial B_r)) \cap \partial B_r \neq \emptyset$. In this case, there is a $x \in \partial B_r$ such that $||((f \circ P)(x))| = ||x|| = r$. The equality $||((f \circ P)(x))| = r$ implies that both

$$||P(x)|| \le ||((f \circ P)(x))||$$
 and $||T(P(x))|| \le ||((f \circ P)(x))||$.

As $(f \circ P)(x) = (P(x) + T(P(x)) / 2$, we have $||P(x)|| = ||T(P(x))|| = ||((f \circ P)(x)||$. By Proposition 1, P(x) is a fixed point of \dot{T} .

In the previous corollary the nearest point projection can be replaced with the radial retraction, which uniquely defined for a ball in any strictly convex normed space.

Theorem 8 Let K = B be the closed unit ball of H and let $T : K \to K$ be a continuous mapping. Suppose that for each $r \ge \delta(f)$, the inclusion $T(\partial B_r) \subseteq B_r$ holds. Then T has a fixed point in B.

Proof. If we take $a \in K$ with ||a|| = 1 and repeat the proof of Lemma 6(a), we see that the set $F \neq \emptyset$. By Lemma 6(b), If $\delta(f) = 0$ then zero is a fixed point of T so that there is nothing to prove in this case. Hence we suppose that $\delta(f) > 0$.

Case 1. $f(\partial B) \cap \partial B \neq \emptyset$. In this case, there is a point $x \in \partial B$ such that ||f(x)|| = 1 = ||x||. As f(x) = (x + T(x)) / 2, the equality ||f(x)|| = ||x|| implies that $||T(x)|| \ge ||x||$. Since ||x|| = 1, this is possible only if ||T(x)|| = ||x||. By Proposition 1, T(x) = x.

Case 2. $f(\partial B) \cap \partial B = \emptyset$. In this case, for all $x \in \partial B$, ||f(x)|| < 1 so that ||f(x)|| < ||x||. We fix a $y \in \partial B$. Since ||f(y)|| < ||y|| and ||f(0)|| > 0, as in the proof of Lemma 6(a), the function g(x) = ||x|| - ||f(x)|| vanishes at some point $a \in B$. That is, ||a|| = ||f(a)||. This point a belongs to F so that $||a|| \ge \delta(f)$. As $a \in \partial B_r$, where r = ||a|| and since $T(\partial B_r) \subseteq B_r$, we have $||T(a)|| \le ||a||$. On the other hand, since ||a|| = ||f(a)||, we also have $||T(a)|| \ge ||a||$. Hence ||T(a)|| = ||a||. By Proposition 1, T(a) = a. Hence T has a fixed point in B.

The next corollaries are now obvious.

Corollary 9 Suppose that for each $x \in B$ with $||x|| \ge \delta(f)$, we have $||T(x)|| \le ||x||$. Then T has a fixed point in B.

Corollary 10 Let K be a closed, convex and bounded subset of H with $0 \in K$, and let $T : K \to K$ be a continuous mapping. Suppose that the inclusion $T(\partial C) \subseteq C$ holds for all convex and closed subsets of K. Then T has a fixed point in K.

Theorem 11 Let H be infinite dimensional and let K = B be the closed unit ball of H. Let $T : K \to K$ be a continuous mapping. Set

$$M_i = \{ x \in B : x = x_i e_i \},\$$

where $e_i = (0, 0, ..., y_i, 0, ..), y_i = 1$. Then $F \cap M_i \neq \emptyset$, for all i.

Proof. Let $H = \ell_2$. We give the proofs without loss of generality for $M = M_1$.

(a) If f(0) = 0 then $0 \in F \cap M$. If $a = (x_1, 0, 0, ...) \in F$ where $|x_1| = 1$ then $a \in F \cap M$. So we suppose that $\{0, e_1, -e_1\} \cap F = \emptyset$. Now define the function $g: M \to R$, g(x) = ||x|| - ||f(x)||. Then since g(0) < 0 and $g(e_1) > 0$ and since M is convex, by the intermediate value theorem, there is a point $b \in M$ such that

g(b) = 0. That is $b \in F \cap M \neq \emptyset$.

For the next corollary we put $\sup\{||x||: x \in F \cap M_i\} = ||x_i|| = r_i$ for some $x_i \in F \cap M_i$. If $r_i = 1$ for some i, then $||x_i|| = ||f(x_i)|| = 1 \ge ||T(x_i)||$. By Proposition 1, x_i is a fixed point of T.

Corollary 12 Let B be the closed unit ball of H and $T: B \to B$ be a continuous mapping. If the inclusion $T(\partial B_{r_i}) \subseteq B_{r_i}$ for some i, then T has a fixed point.

Proof. We remark that $r_i = ||x_i||$ for some $x_i \in F \cap M_i$, for all *i*. If $r_i = 1$ for some *i*, then

$$||x_i|| = ||f(x_i)|| = 1 \ge ||T(x_i)||.$$

By Proposition 1, x_i is a fixed point of T. Let $0 < r_i < 1$ for all i. Then since $T(\partial B_{r_i}) \subseteq B_{r_i}$ and $x_i \in \partial B_{r_i}$, $|| T(x_i) || \le r_i = || x_i || = || f(x_i) ||$. By Proposition 1, x_i is a fixed point of T. \Box

Example 13 Let $H = \ell_2$ and B its closed unit ball.

1- For $x = (x_1, x_2, ...) \in B$, let $T(x) = (1 - ||x||, ||x||, x_3, x_4, ...)$. Then clearly T takes B into itself. By a simple calculation, we have $r_1 = 1$ $\sqrt{3}$, $r_2 = 1$ and $r_i = \sqrt{2} - 1$, for all i = 3, 4, It is clear that $T(\partial B_{r_2}) \subseteq B_{r_2}$. By Corollary 12, T has a fixed point. Moreover, T is not a nonexpansive mapping.

2- For $x = (x_1, x_2, ...) \in B$, let $T(x) = (1 - ||x||, x_2, x_3, x_4, ...)$. Then we have, $r_1 = 1 / 2$ and $r_i = 1$ for all $i \ge 2$. It is clear that $T(\partial B_{r_1}) \subseteq B_{r_1}$. By Corollary 12, T has a fixed point.

References

- [1] Brouwer, L.E.:Über abbildungen von mannigfaltigkeiten, Math. Ann. 71, 97-115,(1912).
- [2] Browder, F.E.: Fixed point theorems for noncompact mappings in Hilbert space, Proc. Nat. Acad. Sci. U.S.A. 53, 1272-1276, (1965).
- [3] Browder, F.E.: Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Sci. U.S.A 54, 1041-1044, (1965).
- [4] Goebel, K. and Kirk, W.A.: Topics in metric fixed point theory, Cambridge University press (1990).
- [5] Göhde, D.: Zum prinzep der kontractiven abbildung, Math. Nachr. 30, 251-258,(1965)
- [6] Kirk,W.A and Sims,Brailey. (editor).: Handbook of Metric Fixed point Theory, Kluwer Academic Publishers Dordrecht, 2001
- [7] Kirk, W.A.: A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72, 1004-1006, (1965)
- [8] Schauder, J.: Der fixpunktsatz in funktionalraumen, Studia Math. 2, 171-180, (1930).

Hülya DURU İstanbul University, Faculty of Science Mathematics Department 34134, Vezneciler, İstanbul-TURKEY e-mail: hduru@istanbul.edu.tr Received: 30.05.2008

299