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A fixed point theorem for a compact and connected set in
Hilbert space

Hiilya Duru

Abstract
Let (H,<>) be a real Hilbert space and let K be a compact and connected subset of H. We show that

every continuous mapping T : K — K satisfying a mild condition has a fixed point.
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1. Introduction

Let K be a nonempty,close,convex and bounded subset of a real Hilbert space H. Let T : K — K be a
continuous mapping.

If K is compact, then by The Schauder Fixed Point Theorem [8] (a generalization of [1] ), T" has a fixed
point. If K = B is the closed unit ball of H and the dimension of H is finite, then by The Brouwer Fixed
Point Theorem[1], T has a fixed point. In the case where the dimension of H is infinite this is no longer the
case[4,p.198 and 207].In this case, it is necessary to impose some extra conditions to assure the existence of
a fixed point of T. The conditions imposed are usually compactness or monotonicity or nonexpansiveness of
T [6]. For instance, Browder [2], Browder[3]— Goéhde[5] and Kirk[7] discovered in 1965 independently that the
nonexpansiveness of 1" is a guarantee the existence of a fixed point of T' .

In the present paper, we impose an extra condition on 7T to obtain the same result. The extra condition
imposed is this: For a certain number r > 0, the inclusion T'(9B,) C B, holds. Here, B, denotes the closed
ball, B, = {z € H :||z|| <r} and 0B, is the boundary of the ball B,.

Moreover we impose some new conditions for The Schauder Fixed Point Theorem [8], and for Theorem
1 in [2]. In addition, we obtain some results related to the imposed conditions. To explain these conditions let

us define a subset A7 (zg) of K, for xp € K, as
AT (20) = {z € K : ||z — zol| <| [|T(@)]] = ||zol| [}-

The main theorem of this paper obtains The Schauder Fixed Point Theorem, which states that every

continuous mapping on a compact and convex subset of a Banach space has a fixed point, for compact and
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connected subset K of H. To get this we replace the convexity of K in this theorem with the condition K =
AT () for some x¢ # 0. To obtain Theorem 1 in [2] for continuous mapping 7', we replace the nonexpansiveness
of T with the following conditions:

(a) The existence of a point a in K satisfying |la|| = ||T(a)]|;
and

(0)((f o P)(0By)) N OB, # 1,
where f is the mapping defined by, f(z) = (¢ +T(z)) / 2, r =sup{||z||: v € K} and P: B, — K is the

nearest point projection, that is, for = € B,

|z — P(z)|| = inf{||z — u|| : uw € K}.

We remark that the mapping f also applies K into itself.

Proposition 1 Let K be a nonempty and convex subset of H. Let T : K — K be a continuous mapping.

Suppose that there exists a point a € K such that

llall = [IT(@)|| = [If(a)]].

Then a is a fixed point of T.
Proof. Let |la]| =||T(a)|| = ||f(a)||. The equality ||a|| = ||f(a)|| is equivalent to

1
<a,a>= 1 <a+T(a),a+T(a)>.
Developing this product, and taking into account the condition ||7'(a)|| = ||a||, we obtain the equality

||a||2 =<a,T(a) >.

This equality in turn implies that ||a — T'(a)||?> =< a — T'(a),a — T'(a) >= 0 so that T'(a) = a. O

The following corollary is now obvious. Since the inequality ||a|| < [|f(a)|| in turn implies that
[lall < [T (a)]l.

Corollary 2 Let K be a nonempty and convex subset of H and let T : K — K be a continuous mapping. If
there exists a point a € K such that ||T(a)|| < |la || < ||f(a)||, then a is a fized point of T .

Proposition 3 Let K be a nonempty and convex subset of H and let T : K — K be a continuous mapping.
If there exists a point xo € K such that both sets AT (x¢) and A (x¢) are at most countable then xq is a fived
point of the mapping T.

Proof. Remark that Af(zg) ={z € K :nx—xon< |uf(z)n—1zoi|}. Let both AT (z0) and Af(xq) be
at most countable. We shall show that 11 zg 1= T'(zo) n and 1 z¢ 1=n f(xo) 1. Let show that 1 xo 1=nT (z¢) 11 .
On the contrary, assume that n xg 171 T'(xo) 1. Let e = (juxogn — nT(zo) n|) / 2. Since T is continuous,
there exists d > 0 such that if x € K and n o — 2o n< 0 then | nT(x) n —nT(zo) n|< €. Let dp = min{e, J}.
We claim that Bs,(z¢) N K C AT (). Indeed, let x € K and 112 — 2o 1< §y. Then ,
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ne—xon<2e—e<juxzgn— nT(xo)ul — nT(x)n—nT(xo) .

From here we conclude that
ne—xon<|nT(x)u—nzon| .
That means z € AT (zg). This implies that Bs,(xo) N K C AT (z0). But this is impossible, since K is convex

and AT (z) is at most countable. To prove that 11 zo =11 f(x¢) 11, it is enough to replace T' with f and repeat

the proof. By Proposition 1, xg is a fixed point of T. a

Next is the main theorem of this paper.

Theorem 4 Let K be a nonempty, compact and connected subset of H and let T : K — K be a continuous
mapping. Assume that there exists a point xg € K, x¢ # 0,such that AT (xzo) = K . Then T has a fived point.
Proof. Let a € K be fixed. Now we define the sequences «,, =1 T"(a) —zo 1 and G, =[n T"(a) n — n g 1|

.Since AT (x¢) = K for some x¢ € K ,xq # 0, the sequence (T"(a))nen is in the set AT (zg). Hence we have

na—xzou<nT(a)n—nzon|<nT(a) —zon
nT(a) — zo n<|n T (a) n— v zo n|<n T?(a) — xo 1 ...,
and so on. In this way we get,
WT™(a) — zo 1< T (@) 1 — vz 1| <n T (@) — o 1,

for all n=0,1,2.... (Here T" =T oT oT o...n— times and a = T%(a))
Hence, for all n, we get
(079 S ﬂnJrl S CVn+1~

The last inequalities show that (o, )nen and (8,)nen are increasing sequences. Moreover, since K is bounded,
they converge and approach the same limit. On the other hand, since K is compact, the sequence (T"(a))nen
has a convergent subsequence. We show this subsequence (77 (a))gen. Let lim,_ oo T™ (a) = b € K. Since

T is continuous, we get

lm 1 T™*P(a) n=u TP (b) 1,

n—oo

for all p=0,1,2... Now a,4p =1 TP (a) — xo 1 and B, +p =1 TP (a) 1 — 1 2o 1| are all subsequences of

(an)nen and (Bn)nen - Since they have the same limit, we get

nb—axzou=lnbn—nzoun|=nTb)—zor=TO) u—nzon=---. (1)

That is,

T (b) — xo n=|n T™(b) 11 — 1o n|=n T"T1(b) — o 11 .

From here we conclude that, for all n € N,
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<z, T"(b) >=nxom T™(b) .
The last equality implies that there exist positive real numbers t,, such that all equalities below,

To = toh = tlT(b) = t2T2(b) == tnT"(b) — ... (2)

hold. Now there exist two cases:
Case 1. Assume that the equality 1 77 (b) =1 T"1(b) 11 holds for some n. Then the point T™(b) is a
fixed point of T. Indeed by (2),

g =ty 1 T"(b) 1=ty 1 T" (D) 1.

Hence t, = t,+1. Again by (2), we get T™(b) = T"L(b) = T(T™(b)).
Case 2. Suppose that 11 77 (b) 1z T 1(b) 1 for all n. In this case zg is a fixed point of T. Indeed, by

taking square of the equalities in (1), we obtain,
wazgu= (1bu4+nT®) 1)/2=0T®d) n+uT?*b)u)/2="--. (3)
From here, we get for all n
wb =i T%(b) n=n T?"(b) 1 and 1 T(b) u=uT3() n=nT*"T1(b) i . (4)
Together with (2), the equalities in (4) imply that both

o 1= to 1 b=ty 1 T?(b) 11= to, 1 T*"(b) 1 (5)

and
wao =ty nT(b) n=tz 1 T3(b) 1= topi1 1 T>"TL(b) 1. (6)
Hence relations (4), (5) and (6) give us for all n
to=ts = toy and t; = t3 = tani1.
By (2),b=T?(b) = T?"(b). Let g : K — R be a function defined by
glx) =[nbu—nT%x) | — nT(b) 1 —uT?(z)) | .

Clearly g is continuous and g(b) < 0 and 0 < g(T'(b)) hold. Since K is connected, by The Intermediate Value

Theorem, there exists a point ¢ in K such that

gle) =lwb i —uT?(c)u| — [nT®) 1 —nT%c)) u|=0.
That is, 1 T%(c) n= (nbu+uT(b) 1) / 2. By (3),1 29 1=nT?(c) 1. On the other hand since T'(c) € AT (zo) =
K, we get 1 29 — T(c) n<|i xo 1 — 1 T?(c) n|= 0. Hence z = T(c). Similarly since ¢ € AT (zq),we get
nxzo—cn<|uzg i —nT(c)n=0. Hence g = c¢. From here we conclude that z( is a fixed point of 7. O

We use the symbol A to denote the closure of a set A.
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Corollary 5 Let K and T be as in Theorem 4. If T has no fixed point then

AT(2) N K/AT (z) # 0

forall x € K, x#0. That is, for all x € K, there exists a point y in K such that

[z =yl =l =]l = [ITW)II ] -
Proof. On the contrary, suppose that AT (z) N K/AT(z) = ) for some = € K. Then the set AT (z) is both
) we must have AT (z) = K. By Theorem 4, T

has a fixed point, which is not the case. O

open and closed in K. Since K is connected and x € AT (x) #

Lemma 6 Let K be a nonempty, closed, conver and bounded subset of H and 0 € K. Let T:K — K bea
continuous mapping. Assume that there exists at least one point a € K such that the equality ||T(a)|| = ||al]
holds. Then,

(a) The set F={x € K :||z|| = ||f(x)|]|} = AT(0) N K/AS(0) is nonempty.
(b) The quantity o(f) = inf{||z||: = € F} is zero iff T(0) = 0.
Proof. (a) If f(0) =0, then there is nothing to prove. If

a€ AT(0)=FU{z € K : [[z]| <[|f(2)I]}

then, ||a|| < [|f(a)||. By Corollary 2, a is a fixed point of both 7" and f. Hence a € F # (). Hence we suppose
that 0 < ||f(0)|| and a ¢ Af(0). Let g : K — R be a continuous function defined by, g(x) = ||z|| — || f(x)]|.
Since ¢(0) < 0 and g(a) > 0 and since K is connected, by the intermediate value theorem, there is a point b
€ K such that g(b) = 0. Hence b € F # .

b) Since F # (), the quantity §(f) = inf{||z|| : = € F} exists. This quantity is zero iff 7(0) = 0. Indeed,
if T(0) = 0 then 0 € F so that 4(f) = 0. Conversely, if §(f) = 0 then there is a sequence (x,)nen in F such
that [|z,|] — 0, as n — oco. Since f is continuous on K and since ||z,|| = ||f(xn)||, we see that f(0) = 0.
This implies that T'(0) = 0, too O

Let K be a nonempty, closed , convex and bounded subset of H. In this case the quantity sup{||z|| :
x € K} = r exists and K C B,. Let P : B, — K be the nearest point projection, that is, for z € B,,

[|lx — P(x)|| = inf{||z — u|| : u € K}. Now we give the next corollary below.

Corollary 7 Let K , T and a be as in lemma 6. Suppose that

((f o P)(@B,)) N OB, # 0.

Then T has a fized point.

Proof. Let ((fo P)(0B,)) NOB, # 0. In this case, there is a x € 9B, such that ||((f o P)(x)|| = ||z|| =
The equality ||((f o P)(z)|| = r implies that both
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1P @@)I] < [[((f o P)(x)]| and [|T(P(z))|| < [[((f o P)(2)]]-
As (foP)(@) = (P(x) + T(P(x)) / 2, we have |[P(2)]| = IT(P(«))l| = |((f o P)()||. By Proposition 1, P(x)
is a fixed point of 7. a

In the previous corollary the nearest point projection can be replaced with the radial retraction, which

uniquely defined for a ball in any strictly convex normed space.

Theorem 8 Let K = B be the closed unit ball of H and let T : K — K be a continuous mapping. Suppose
that for each r > §(f), the inclusion T(0B,) C B, holds. Then T has a fized point in B.
Proof. If we take a € K with ||a|| = 1 and repeat the proof of Lemma 6(a), we see that the set F' # (). By
Lemma 6(b), If 6(f) = 0 then zero is a fixed point of T so that there is nothing to prove in this case. Hence
we suppose that §(f) > 0.

Case 1. f(0B) NOB # @. In this case, there is a point @ € 0B such that ||f(z)|| = 1 = ||z||. As
f(x) = (z+T(x)) / 2, the equality || f(x)|| = ||z|| implies that ||T'(x)|| > ||«||. Since ||z|| =1, this is possible
only if ||T(x)|| = ||z||. By Proposition 1, T'(z) = «.

Case 2. f(0B) N 0B = @. In this case, for all x € 9B, ||f(x)|| <1 so that ||f(z)|| < ||z||. We fix a
y € 9B. Since || f(y)|| < |lyl| and || f(0)|| > 0, as in the proof of Lemma 6(a), the function g(x) = ||z||—|| f(x)]|

vanishes at some point a € B. That is, ||a|| = ||f(a)||. This point @ belongs to F' so that ||a|| > §(f). As
a € 0B, where r = ||a|| and since T(0B,) C B,, we have ||T(a)]| < |la|]|. On the other hand, since
[lal] = || f(a)||, we also have ||T'(a)|| > ||a||. Hence ||T(a)|| = ||a||. By Proposition 1, T'(a) = a. Hence T has
a fixed point in B. O

The next corollaries are now obvious.

Corollary 9 Suppose that for each x € B with ||z|| > §(f), we have ||T(x)|| < ||z||. Then T has a fized point
in B. O

Corollary 10 Let K be a closed, conver and bounded subset of H with 0 € K, and let T : K — K be a
continuous mapping. Suppose that the inclusion T(0C) C C holds for all convex and closed subsets of K. Then
T has a fixed point in K .

Theorem 11 Let H be infinite dimensional and let K = B be the closed unit ball of H.Let T : K — K be a

continuous mapping. Set

Mi:{xGB:x:xiei},

where e; = (0,0, ...,v;,0,..), yi = 1. Then FNM,; # &, for all i.
Proof. Let H = {¢3. We give the proofs without loss of generality for M = M;.

(a) If f(0)=0then 0 € FNM. If a = (21,0,0,...) € F where| 21 |=1 then a € FN M. So we suppose
that {0,e1, —e1} N F = @. Now define the function g : M — R, g(z) =| = || — || f(z) || .Then since ¢g(0) <0

and g(e;) > 0 and since M is convex, by the intermediate value theorem, there is a point b € M such that
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g(b) =0. That is be FNM # 0. O

For the next corollary we put sup{|| = ||: z € FNM; } =| =; |=r; for some z; € FNM,;. If r;, =1 for
some 14, then || z; [|=|| f(z;) [|[=1 >|| T(«;) || . By Proposition 1, z; is a fixed point of T.

Corollary 12 Let B be the closed unit ball of H and T : B — B be a continuous mapping. If the inclusion
T(0By,) C By, for some i, then T has a fized point .

Proof. We remark that r; =| z; || for some z; € F'N M;, for all 4. If r, = 1 for some 4, then

@i =1 f (o) [[= 12 T || -

By Proposition 1, z; is a fixed point of T'. Let 0 < r; < 1 for all <. Then since T(9B,,) C B,, and z; € 0B, ,
| T(z:) [|[< ri =|| =i ||=] f(zi) || - By Proposition 1, z; is a fixed point of T. O

Example 13 Let H = {5 and B its closed unit ball.
1- For x = (x1,x2,..) € B, let T(z) = (1— || = ||, || « ||, ®3, X4,...). Then clearly T takes B into itself.

By a simple calculation, we have 1 = 1 /3, 1o = 1 and r; = V2 — 1, for all i = 3,4,....1t is clear that
T(0B,,) C B,,. By Corollary 12, T has a fized point. Moreover, T is nol a nonexpansive mapping.

2- For © = (x1,%2,..) € B, let T(x) = (1— || = ||, x2, 3, 4, ...). Then we have, 1 =1 / 2 and r; =1
for all i > 2. It is clear that T(0B,) C B, . By Corollary 12, T has a fized point.
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