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A fixed point theorem for a compact and connected set in
Hilbert space
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Abstract

Let (H,<>) be a real Hilbert space and let K be a compact and connected subset of H. We show that

every continuous mapping T : K → K satisfying a mild condition has a fixed point.
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1. Introduction

Let K be a nonempty,close,convex and bounded subset of a real Hilbert space H . Let T : K → K be a
continuous mapping.

If K is compact, then by The Schauder Fixed Point Theorem[8] (a generalization of [1] ), T has a fixed
point. If K = B is the closed unit ball of H and the dimension of H is finite, then by The Brouwer Fixed
Point Theorem[1], T has a fixed point. In the case where the dimension of H is infinite this is no longer the

case[4, p.198 and 207].In this case, it is necessary to impose some extra conditions to assure the existence of
a fixed point of T. The conditions imposed are usually compactness or monotonicity or nonexpansiveness of
T [6] . For instance, Browder[2], Browder[3]−Göhde[5] and Kirk[7] discovered in 1965 independently that the
nonexpansiveness of T is a guarantee the existence of a fixed point of T .

In the present paper, we impose an extra condition on T to obtain the same result. The extra condition
imposed is this: For a certain number r > 0, the inclusion T (∂Br) ⊆ Br holds. Here, Br denotes the closed

ball, Br = {x ∈ H : ||x|| ≤ r} and ∂Br is the boundary of the ball Br .

Moreover we impose some new conditions for The Schauder Fixed Point Theorem [8], and for Theorem

1 in [2]. In addition, we obtain some results related to the imposed conditions. To explain these conditions let

us define a subset AT (x0) of K, for x0 ∈ K, as

AT (x0) = {x ∈ K : ||x− x0|| ≤| ||T (x)|| − ||x0|| |}.

The main theorem of this paper obtains The Schauder Fixed Point Theorem, which states that every
continuous mapping on a compact and convex subset of a Banach space has a fixed point, for compact and

2000 AMS Mathematics Subject Classification: 47H09, 47H10.

293



DURU

connected subset K of H . To get this we replace the convexity of K in this theorem with the condition K =

AT (x0) for some x0 �= 0. To obtain Theorem 1 in [2] for continuous mapping T, we replace the nonexpansiveness
of T with the following conditions:

(a) The existence of a point a in K satisfying ||a || = ||T (a) || ;
and

(b)((f ◦ P )(∂Br)) ∩ ∂Br �= ∅,
where f is the mapping defined by, f(x) = (x + T (x)) / 2 , r = sup{||x|| : x ∈ K} and P : Br → K is the
nearest point projection, that is, for x ∈ Br ,

||x− P (x)|| = inf{||x− u||̇ : u ∈ K}.

We remark that the mapping f also applies K into itself.

Proposition 1 Let K be a nonempty and convex subset of H. Let T : K → K be a continuous mapping.
Suppose that there exists a point a ∈ K such that

||a|| = ||T (a)|| = ||f(a)||.

Then a is a fixed point of T.

Proof. Let ||a|| = ||T (a)|| = ||f(a)||. The equality ||a|| = ||f(a)|| is equivalent to

< a, a >=
1
4

< a + T (a), a + T (a) > .

Developing this product, and taking into account the condition ||T (a)|| = ||a|| , we obtain the equality

||a||2 =< a, T (a) > .

This equality in turn implies that ||a− T (a)||2 =< a − T (a), a − T (a) >= 0 so that T (a) = a . �

The following corollary is now obvious. Since the inequality ||a|| ≤ ||f(a)|| in turn implies that

||a|| ≤ ||T (a)||.

Corollary 2 Let K be a nonempty and convex subset of H and let T : K → K be a continuous mapping. If
there exists a point a ∈ K such that ||T (a)|| ≤ ||a || ≤ ||f(a)||, then a is a fixed point of T .

Proposition 3 Let K be a nonempty and convex subset of H and let T : K → K be a continuous mapping.

If there exists a point x0 ∈ K such that both sets AT (x0) and Af(x0) are at most countable then x0 is a fixed
point of the mapping T.

Proof. Remark that Af(x0) = {x ∈ K : � x − x0 �≤ |� f(x) � − � x0 �|} . Let both AT (x0) and Af (x0) be

at most countable. We shall show that � x0 �=� T (x0) � and � x0 �=� f(x0) � . Let show that � x0 �=� T (x0) � .

On the contrary, assume that � x0 ��=� T (x0) � . Let ε = (|� x0 � − � T (x0) �|) / 2. Since T is continuous,

there exists δ > 0 such that if x ∈ K and � x − x0 �< δ then | � T (x) � − � T (x0) �|< ε. Let δ0 = min{ε, δ}.
We claim that Bδ0(x0) ∩ K ⊂ AT (x0). Indeed, let x ∈ K and � x − x0 �< δ0 . Then ,
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� x − x0 �< 2ε − ε ≤|� x0 � − � T (x0) �| − |� T (x) � − � T (x0) �| .

From here we conclude that
� x − x0 �≤|� T (x) � − � x0 �| .

That means x ∈ AT (x0). This implies that Bδ0 (x0) ∩ K ⊂ AT (x0). But this is impossible, since K is convex

and AT (x0) is at most countable. To prove that � x0 �=� f(x0) � , it is enough to replace T with f and repeat
the proof. By Proposition 1, x0 is a fixed point of T. �

Next is the main theorem of this paper.

Theorem 4 Let K be a nonempty, compact and connected subset of H and let T : K → K be a continuous

mapping. Assume that there exists a point x0 ∈ K, x0 �= 0,such that AT (x0) = K . Then T has a fixed point.

Proof. Let a ∈ K be fixed . Now we define the sequences αn =� Tn(a) − x0 � and βn =|� Tn(a) � − � x0 �|
.Since AT (x0) = K for some x0 ∈ K ,x0 �= 0, the sequence (Tn(a))n∈N is in the set AT (x0). Hence we have

� a − x0 �≤|� T (a) � − � x0 �|≤� T (a) − x0 �

� T (a) − x0 �≤|� T 2(a) � − � x0 �|≤� T 2(a) − x0 � ...,

and so on. In this way we get,

� Tn(a) − x0 �≤|� Tn+1(a) � − � x0 �|≤� Tn+1(a) − x0 �,

for all n = 0, 1, 2... . (Here Tn = T ◦ T ◦ T ◦ ...n− times and a = T 0(a))

Hence, for all n, we get

αn ≤ βn+1 ≤ αn+1.

The last inequalities show that (αn)n∈N and (βn)n∈N are increasing sequences. Moreover, since K is bounded,

they converge and approach the same limit. On the other hand, since K is compact, the sequence (Tn(a))n∈N

has a convergent subsequence. We show this subsequence (Tnk(a))k∈N . Let limn→∞ Tnk(a) = b ∈ K . Since
T is continuous, we get

lim
n→∞

� Tnk+p(a) �=� T p(b) �,

for all p = 0, 1, 2... Now αnk+p =� Tnk+p(a) − x0 � and βnk+p =|� Tnk+p(a) � − � x0 �| are all subsequences of

(αn)n∈N and (βn)n∈N . Since they have the same limit, we get

� b − x0 �=|� b � − � x0 �|=� T (b) − x0 �=|� T (b) � − � x0 �|= · · · . (1)

That is,

� Tn(b) − x0 �=|� Tn(b) � − � x0 �|=� Tn+1(b) − x0 � .

From here we conclude that, for all n ∈ N ,
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< x0, T
n(b) >=� x0 �� Tn(b) � .

The last equality implies that there exist positive real numbers tn such that all equalities below,

x0 = t0b = t1T (b) = t2T
2(b) = · · · = tnTn(b) = · · · (2)

hold. Now there exist two cases:
Case 1. Assume that the equality � Tn(b) �=� Tn+1(b) � holds for some n. Then the point Tn(b) is a

fixed point of T. Indeed by (2),

� x0 �= tn � Tn(b) �= tn+1 � Tn+1(b) � .

Hence tn = tn+1. Again by (2), we get Tn(b) = Tn+1(b) = T (Tn(b)).

Case 2. Suppose that � Tn(b) ��=� Tn+1(b) � for all n. In this case x0 is a fixed point of T. Indeed, by

taking square of the equalities in (1), we obtain,

� x0 �= (� b � + � T (b) �)/2 = (� T (b) � + � T 2(b) �)/2 = · · · . (3)

From here, we get for all n

� b �=� T 2(b) �=� T 2n(b) � and � T (b) �=� T 3(b) �=� T 2n+1(b) � . (4)

Together with (2), the equalities in (4) imply that both

� x0 �= t0 � b �= t2 � T 2(b) �= t2n � T 2n(b) � (5)

and

� x0 �= t1 � T (b) �= t3 � T 3(b) �= t2n+1 � T 2n+1(b) � . (6)

Hence relations (4), (5) and (6) give us for all n

t0 = t2 = t2n and t1 = t3 = t2n+1.

By (2), b = T 2(b) = T 2n(b). Let g : K → R be a function defined by

g(x) =|� b � − � T 2(x) �| − |� T (b) � − � T 2(x)) �| .

Clearly g is continuous and g(b) < 0 and 0 < g(T (b)) hold. Since K is connected, by The Intermediate Value
Theorem, there exists a point c in K such that

g(c) =|� b � − � T 2(c) �| − |� T (b) � − � T 2(c)) �|= 0.

That is, � T 2(c) � = (� b � + � T (b) �) / 2. By (3), � x0 �=� T 2(c) � . On the other hand since T (c) ∈ AT (x0) =

K , we get � x0 − T (c) �≤|� x0 � − � T 2(c) �|= 0. Hence x = T (c). Similarly since c ∈ AT (x0),we get

� x0 − c �≤|� x0 � − � T (c) �|= 0. Hence x0 = c. From here we conclude that x0 is a fixed point of T. �

We use the symbol A to denote the closure of a set A.
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Corollary 5 Let K and T be as in Theorem 4. If T has no fixed point then

AT (x) ∩ K/AT (x) �= ∅

for all x ∈ K, x �= 0. That is, for all x ∈ K , there exists a point y in K such that

||x− y|| =| ||x|| − ||T (y)|| | .

Proof. On the contrary, suppose that AT (x) ∩ K/AT (x) = ∅ for some x ∈ K. Then the set AT (x) is both

open and closed in K. Since K is connected and x ∈ AT (x) �= ∅ we must have AT (x) = K . By Theorem 4, T

has a fixed point, which is not the case. �

Lemma 6 Let K be a nonempty, closed, convex and bounded subset of H and 0 ∈ K. Let Ṫ : K → K be a
continuous mapping. Assume that there exists at least one point a ∈ K such that the equality ||T (a)|| = ||a||
holds . Then,

(a) The set F = {x ∈ K : ||x|| = ||f(x)|| } = Af(0) ∩ K/Af(0) is nonempty.

(b) The quantity δ(f) = inf{||x|| : x ∈ F } is zero iff T (0) = 0.

Proof. (a) If f(0) = 0, then there is nothing to prove. If

a ∈ Af (0) = F ∪ {x ∈ K : ||x|| < ||f(x)||}

then, ||a|| ≤ ||f(a)||. By Corollary 2, a is a fixed point of both T and f . Hence a ∈ F �= ∅. Hence we suppose

that 0 < ||f(0)|| and a /∈ Af (0). Let g : K → R be a continuous function defined by, g(x) = ||x|| − ||f(x)||.
Since g(0) < 0 and g(a) > 0 and since K is connected, by the intermediate value theorem, there is a point b

∈ K such that g(b) = 0. Hence b ∈ F �= ∅.
b) Since F �= ∅, the quantity δ(f) = inf{||x|| : x ∈ F } exists. This quantity is zero iff T (0) = 0. Indeed,

if T (0) = 0 then 0 ∈ F so that δ(f) = 0. Conversely, if δ(f) = 0 then there is a sequence (xn)n∈N in F such

that ||xn|| → 0, as n → ∞ . Since f is continuous on K and since ||xn|| = ||f(xn)|| , we see that f(0) = 0.

This implies that T (0) = 0, too �

Let K be a nonempty, closed , convex and bounded subset of H . In this case the quantity sup{||x|| :

x ∈ K} = r exists and K ⊂ Br . Let P : Br → K be the nearest point projection, that is, for x ∈ Br ,

||x− P (x)|| = inf{||x− u||̇ : u ∈ K}. Now we give the next corollary below.

Corollary 7 Let K , T and a be as in lemma 6. Suppose that

((f ◦ P )(∂Br)) ∩ ∂Br �= ∅.

Then T has a fixed point.

Proof. Let ((f ◦ P )(∂Br)) ∩ ∂Br �= ∅ . In this case, there is a x ∈ ∂Br such that ||((f ◦ P )(x)|| = ||x|| = r.

The equality ||((f ◦ P )(x)|| = r implies that both
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||P (x)|| ≤ ||((f ◦ P )(x)|| and ||T (P (x))|| ≤ ||((f ◦ P )(x)||.

As (f ◦P )(x) = (P (x)+T (P (x)) / 2, we have ||P (x)|| = ||T (P (x))|| = ||((f ◦P )(x)|| . By Proposition 1, P (x)

is a fixed point of Ṫ . �

In the previous corollary the nearest point projection can be replaced with the radial retraction, which
uniquely defined for a ball in any strictly convex normed space.

Theorem 8 Let K = B be the closed unit ball of H and let T : K → K be a continuous mapping. Suppose
that for each r ≥ δ(f) , the inclusion T (∂Br) ⊆ Br holds. Then T has a fixed point in B .

Proof. If we take a ∈ K with ||a|| = 1 and repeat the proof of Lemma 6(a), we see that the set F �= ∅. By

Lemma 6(b), If δ(f) = 0 then zero is a fixed point of T so that there is nothing to prove in this case. Hence

we suppose that δ(f) > 0.

Case 1. f(∂B) ∩ ∂B �= ∅ . In this case, there is a point x ∈ ∂B such that ||f(x)|| = 1 = ||x|| . As

f(x) = (x +T (x)) / 2, the equality ||f(x)|| = ||x|| implies that ||T (x)|| ≥ ||x|| . Since ||x|| = 1, this is possible

only if ||T (x)|| = ||x|| . By Proposition 1, T (x) = x.

Case 2. f(∂B) ∩ ∂B = ∅ . In this case, for all x ∈ ∂B , ||f(x)|| < 1 so that ||f(x)|| < ||x||. We fix a

y ∈ ∂B . Since ||f(y)|| < ||y|| and ||f(0)|| > 0, as in the proof of Lemma 6(a), the function g(x) = ||x||−||f(x)||
vanishes at some point a ∈ B . That is, ||a|| = ||f(a)|| . This point a belongs to F so that ||a|| ≥ δ(f). As

a ∈ ∂Br , where r = ||a|| and since T (∂Br) ⊆ Br , we have ||T (a)|| ≤ ||a|| . On the other hand, since

||a|| = ||f(a)|| , we also have ||T (a)|| ≥ ||a|| . Hence ||T (a)|| = ||a||. By Proposition 1, T (a) = a. Hence T has
a fixed point in B . �

The next corollaries are now obvious.

Corollary 9 Suppose that for each x ∈ B with ||x|| ≥ δ(f) , we have ||T (x)|| ≤ ||x|| . Then T has a fixed point
in B . �

Corollary 10 Let K be a closed, convex and bounded subset of H with 0 ∈ K, and let T : K → K be a
continuous mapping. Suppose that the inclusion T (∂C) ⊆ C holds for all convex and closed subsets of K.Then
T has a fixed point in K .

Theorem 11 Let H be infinite dimensional and let K = B be the closed unit ball of H.Let T : K → K be a
continuous mapping. Set

Mi = {x ∈ B : x = xiei},

where ei = (0, 0, ..., yi, 0, ..), yi = 1. Then F ∩ Mi �= ∅, for all i.

Proof. Let H = �2. We give the proofs without loss of generality for M = M1.

(a) If f(0) = 0 then 0 ∈ F ∩M. If a = (x1, 0, 0, ...) ∈ F where | x1 |= 1 then a ∈ F ∩M. So we suppose

that {0, e1,−e1} ∩ F = ∅. Now define the function g : M → R, g(x) =‖ x ‖ − ‖ f(x) ‖ .Then since g(0) < 0

and g(e1) > 0 and since M is convex, by the intermediate value theorem, there is a point b ∈ M such that
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g(b) = 0. That is b ∈ F ∩ M �= ∅. �

For the next corollary we put sup{‖ x ‖: x ∈ F ∩ Mi } =‖ xi ‖= ri for some xi ∈ F ∩ Mi. If ri = 1 for

some i, then ‖ xi ‖=‖ f(xi) ‖= 1 ≥‖ T (xi) ‖ . By Proposition 1, xi is a fixed point of T.

Corollary 12 Let B be the closed unit ball of H and T : B → B be a continuous mapping. If the inclusion
T (∂Bri ) ⊆ Bri for some i, then T has a fixed point .

Proof. We remark that ri =‖ xi ‖ for some xi ∈ F ∩ Mi, for all i. If ri = 1 for some i, then

‖ xi ‖=‖ f(xi) ‖= 1 ≥‖ T (xi) ‖ .

By Proposition 1, xi is a fixed point of T . Let 0 < ri < 1 for all i. Then since T (∂Bri ) ⊆ Bri and xi ∈ ∂Bri ,

‖ T (xi) ‖≤ ri =‖ xi ‖=‖ f(xi) ‖ . By Proposition 1, xi is a fixed point of T. �

Example 13 Let H = �2 and B its closed unit ball.

1- For x = (x1, x2, ..) ∈ B, let T (x) = (1− ‖ x ‖, ‖ x ‖, x3, x4, ...). Then clearly T takes B into itself.

By a simple calculation, we have r1 = 1
√

3, r2 = 1 and ri =
√

2 − 1, for all i = 3, 4, ....It is clear that
T (∂Br2 ) ⊆ Br2 . By Corollary 12, T has a fixed point. Moreover, T is not a nonexpansive mapping.

2- For x = (x1, x2, ..) ∈ B, let T (x) = (1− ‖ x ‖, x2, x3, x4, ...). Then we have, r1 = 1 / 2 and ri = 1

for all i ≥ 2. It is clear that T (∂Br1 ) ⊆ Br1 . By Corollary 12, T has a fixed point.
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Hülya DURU

İstanbul University, Faculty of Science
Mathematics Department

34134, Vezneciler, İstanbul-TURKEY
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