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Hypersurfaces with constant mean curvature in a real space form

Shichang Shu and Sanyang Liu

Abstract

Let Mn be an n (n ≥ 3)-dimensional complete connected and oriented hypersurface in Mn+1(c)(c ≥ 0)

with constant mean curvature H and with two distinct principal curvatures, one of which is simple. We

show that (1) if c = 1 and the squared norm of the second fundamental form of Mn satisfies a rigidity

condition (1.3), then Mn is isometric to the Riemannian product S1(
√

1 − a2) × Sn−1(a) ; (2) if c = 0,

H �= 0 and the squared norm of the second fundamental form of Mn satisfies S ≥ n2H2/(n− 1), then Mn

is isometric to the Riemannian product Sn−1(a) × R or S1(a) ×Rn−1 .
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1. Introduction

Let Mn+1(c) be an (n+1)-dimensional connected Riemannian manifold with constant sectional curvature
c . According to c > 0 or c = 0, it is called sphere space or Euclidean space, respectively, and it is denoted by

Sn+1(c) , Rn+1 . Let Mn be an n-dimensional hypersurface in Sn+1(1) or Rn+1 . As it is well known there are

many rigidity results for hypersurfaces with constant mean curvature or constant scalar curvature n (n − 1)r

in Sn+1(1) or Rn+1 ; for example, see [1], [2], [4], [5], [7] and the author of [3] and [6]. In [7], Wei proved the
following theorem.

Theorem 1.1 ([7]) Let Mn be an n (n ≥ 3)-dimensional complete connected and oriented hypersurface in

Sn+1(1) with constant mean curvature H and with two distinct principal curvatures, one of which is simple. If

S ≥ n +
n3H2

2(n − 1)
+

n (n − 2)
2(n − 1)

√
n2H4 + 4(n − 1)H2, (1.1)

then Mn is isometric to the Riemannian product S1(a) × Sn−1(
√

1 − a2) , where a2 = 1
2n(1+H2) [2 + nH2 −

√
n2H4 + 4(n − 1)H2] , and S denotes the squared norm of the second fundamental form of Mn .
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Theorem 1.2 ([7]) Let Mn be an n (n ≥ 3)-dimensional complete connected and oriented hypersurface in

Sn+1(1) with constant mean curvature H and with two distinct principal curvatures, one of which is simple. If

S ≤ n +
n3H2

2(n − 1)
− n(n − 2)

2(n − 1)

√
n2H4 + 4(n − 1)H2, (1.2)

then Mn is isometric to the Riemannian product S1(a) × Sn−1(
√

1 − a2) , where a2 = 1
2n(1+H2) [2 + nH2 +

√
n2H4 + 4(n − 1)H2] , and S denotes the squared norm of the second fundamental form of Mn .

On the other hand, if Mn is an n-dimensional complete oriented hypersurface in Rn+1 with constant
scalar curvature n (n − 1)r , Cheng [2] proved the following.

Theorem 1.3 ([2]) Let Mn be an n (n ≥ 3)-dimensional complete connected and oriented hypersurface

in Rn+1 with constant scalar curvature n (n − 1)r and with two distinct principal curvatures, one of which is

simple. Then Mn is isometric to the Riemannian product Sn−1(a) × R or S1(a) × Rn−1 , if S ≥ n(n−1)r
n−2

.

In this paper, we shall also investigate n-dimensional hypersurfaces with constant mean curvature H in

Sn+1(c) or Rn+1 and obtain the following result:

Theorem 1.4 Let Mn be an n (n ≥ 3)-dimensional complete connected and oriented hypersurface in Sn+1(1)
with constant mean curvature H and with two distinct principal curvatures, one of which is simple. If

n +
n3H2

2(n − 1)
− n(n − 2)

2(n − 1)

√
n2H4 + 4(n − 1)H2 (1.3)

≤ S ≤ n +
n3H2

2(n − 1)
+

n(n − 2)
2(n − 1)

√
n2H4 + 4(n − 1)H2,

then Mn is isometric to the Riemannian product S1(a) × Sn−1(
√

1 − a2) , where a2 = 1
2n(1+H2)

[2 + nH2 ±
√

n2H4 + 4(n − 1)H2] .

Theorem 1.5 Let Mn be an n (n ≥ 3)-dimensional complete connected and oriented hypersurface in Rn+1

with non-zero constant mean curvature H and with two distinct principal curvatures, one of which is simple. If

S ≥ n2H2

n − 1
, (1.4)

then Mn is isometric to the Riemannian product Sn−1(a) ×R or S1(a) ×Rn−1 .

2. Preliminaries

Let Mn+1(c) be an (n+1)-dimensional connected Riemannian manifold with constant sectional curvature

c(≥ 0). Let Mn be an n-dimensional complete connected and oriented hypersurface in Mn+1(c). We choose a

local orthonormal frame e1, · · · , en+1 in Mn+1(c) such that e1, · · · , en are tangent to Mn . Let ω1, · · · , ωn+1

be the dual coframe. We use the following convention on the range of indices:

1 ≤ A, B, C, · · · ≤ n + 1; 1 ≤ i, j, k, · · · ≤ n.
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The structure equations of Mn+1(c) are given by

dωA =
∑
B

ωAB ∧ ωB, ωAB + ωBA = 0, (2.1)

dωAB =
∑
C

ωAC ∧ ωCB + ΩAB , (2.2)

where

ΩAB = −1
2

∑
C,D

KABCDωC ∧ ωD, (2.3)

KABCD = c(δACδBD − δADδBC ). (2.4)

Restricting to Mn such that
ωn+1 = 0, (2.5)

ωn+1i =
∑

j

hijωj, hij = hji, (2.6)

the structure equations of Mn are

dωi =
∑

j

ωij ∧ ωj, ωij + ωji = 0, (2.7)

dωij =
∑

k

ωik ∧ ωkj −
1
2

∑
k,l

Rijklωk ∧ ωl, (2.8)

Rijkl = c(δikδjl − δilδjk) + (hikhjl − hilhjk), (2.9)

Rij = (n − 1)cδij + nHhij −
∑

k

hikhkj, (2.10)

n(n − 1)(r − c) = n2H2 − S, (2.11)

where n (n − 1)r is the scalar curvature, H is the mean curvature and S is the squared norm of the second
fundamental form of Mn .

Let Mn be an n (n ≥ 3)-dimensional complete connected and oriented hypersurface in Mn+1(c) with
constant mean curvature and with two distinct principal curvatures, one of which is simple. Without loss of
generality, we may assume

λ1 = λ2 = · · · = λn−1 = λ, λn = μ, (2.12)

where λi for i = 1, 2, · · · , n are the principal curvatures of Mn . We have

(n − 1)λ + μ = nH, S = (n − 1)λ2 + μ2. (2.13)

From (2.13) and (2.11), we have, for c = 1, that

λμ = (n − 1)(r − 1) − (n − 2)H2 + (n − 2)H
√

H2 − (r − 1), (2.14)
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on Mn , or

λμ = (n − 1)(r − 1) − (n − 2)H2 − (n − 2)H
√

H2 − (r − 1), (2.15)

on Mn .
On the other hand, from (2.13) and (2.11), we have, for c = 0, that

λμ = (n − 1)r − (n − 2)H2 + (n − 2)H
√

H2 − r, (2.16)

on Mn , or

λμ = (n − 1)r − (n − 2)H2 − (n − 2)H
√

H2 − r, (2.17)

on Mn .

Example 2.1 Let M1,n−1 := S1(a) × Sn−1(
√

1 − a2). Then M1,n−1 has two distinct constant principal

curvatures − a√
1−a2 and

√
1−a2

a with multiplicities n − 1 and 1, respectively. It is easily seen that a2 =

1
2n(1+H2) [2 + nH2 ±

√
n2H4 + 4(n − 1)H2] and S = n + n3H2

2(n−1) ∓
n(n−2)
2(n−1)

√
n2H4 + 4(n − 1)H2 .

Example 2.2 Let Mk,n−k := Sn−k(a) × Rk . Then Mk,n−k has two distinct constant principal curvatures 0

and
√

a with multiplicities k and n−k , respectively. It is easily seen that S = n2H2

n−k . Therefore, we know that

for Sn−1(a) × R , S = n2H2

n−1
and for S1(a) × Rn−1 , S = n2H2 , where we denote R = R1 .

3. Proof of theorems

In order to prove Theorem 1.4, we need the following propositions due to [7].

Proposition 3.1 ([7]) Let Mn be an n (n ≥ 3)-dimensional connected hypersurface with constant mean

curvature H and with two distinct principal curvatures λ and μ with multiplicities (n−1) and 1 , respectively.

Then Mn is a locus of moving (n − 1)-dimensional submanifold Mn−1
1 (s) along which the principal curvature

λ of multiplicity n−1 is constant and which is locally isometric to an (n−1)-dimensional sphere Sn−1(a(s)) =

En(s) ∩ Sn+1(1) of constant curvature and � = |λ− H |− 1
n satisfies the ordinary differential equation of order

2
d2�

ds2
+ �[1 + H2 + (2 − n)H�−n + (1 − n)�−2n] = 0, (3.1)

for λ − H > 0 or

d2�

ds2
+ �[1 + H2 + (n − 2)H�−n + (1 − n)�−2n] = 0, (3.2)

for λ−H < 0 , where En(s) is an n-dimensional linear subspace in the Euclidean space Rn+2 which is parallel

to a fixed En(s0) .

Lemma 3.1 ([7]) Equation (3.1) or (3.2) is equivalent to its first order integral

(
d�

ds
)2 + (1 + H2)�2 + 2H�2−n + �2−2n = C, (3.3)
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for λ − H > 0 or

(
d�

ds
)2 + (1 + H2)�2 − 2H�2−n + �2−2n = C, (3.4)

for λ − H < 0 , where C is a constant. Moreover, the constant solution of (3.1) or (3.2) corresponds to the

Riemannian product S1(a) × Sn−1(
√

1 − a2) .

By the same method in [7], we can prove the following proposition.

Proposition 3.2 Let Mn be an n (n ≥ 3)-dimensional complete connected hypersurface in Sn+1(1) with

constant mean curvature H and with two distinct principal curvatures λ and μ with multiplicities (n− 1) and

1 , respectively. If λμ + 1 ≥ 0 , then Mn is isometric to the Riemannian product S1(a) × Sn−1(
√

1 − a2) .

Proof. Let λ and μ be the two distinct principal curvatures of Mn with multiplicities (n − 1) and 1,

respectively. Then, from nH = (n − 1)λ + μ , we have λμ = nHλ − (n − 1)λ2 . Let � = |λ − H |− 1
n . Then we

have λ = H + �−n for λ − H > 0 and λ = H − �−n for λ − H < 0. If λ − H > 0, we have

λμ + 1 = 1 + H2 + (2 − n)H�−n + (1 − n)�−2n,

and if λ − H < 0, we have

λμ + 1 = 1 + H2 + (n − 2)H�−n + (1 − n)�−2n.

Therefore, if λμ + 1 ≥ 0, we obtain

1 + H2 + (2 − n)H�−n + (1 − n)�−2n ≥ 0,

for λ − H > 0 and
1 + H2 + (n − 2)H�−n + (1 − n)�−2n ≥ 0,

for λ − H < 0. From (3.1) and (3.2), we have d2�
ds2 ≤ 0. Thus d�

ds is a monotonic function of s ∈ (−∞, +∞).

Therefore, �(s) must be monotonic when s tends to infinity. From (3.3) and (3.4), we know that the positive

function �(s) is bounded from above. Since �(s) is bounded and is monotonic when s tends infinity, we find

that both lims→−∞ �(s) and lims→+∞ �(s) exist and then we have

lim
s→−∞

d�(s)
ds

= lim
s→+∞

d�(s)
ds

= 0. (3.5)

By the monotonicity of d�
ds , we see that d�

ds ≡ 0 and �(s) is a constant. Then, by Lemma 3.1, it is easily

see that Mn is isometric to the Riemannian product S1(a) × Sn−1(
√

1 − a2). This completes the proof of
Proposition 3.2. �

On the other hand, if λμ + 1 ≤ 0, from above, we can obtain d2�
ds2 ≥ 0. Combining d2�

ds2 ≥ 0 with the

boundedness of �(s), similar to the proof of Proposition 3.2, we know that �(s) is constant. Then, by Lemma

3.1, it is easily see that Mn is isometric to the Riemannian product S1(a) × Sn−1(
√

1 − a2). Therefore, we
have the following proposition.
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Proposition 3.3 Let Mn be an n (n ≥ 3)-dimensional complete connected hypersurface in Sn+1(1) with

constant mean curvature H and with two distinct principal curvatures λ and μ with multiplicities (n− 1) and

1 , respectively. If λμ + 1 ≤ 0 , then Mn is isometric to the Riemannian product S1(a) × Sn−1(
√

1 − a2) .

Proof of theorem 1.4 Since Mn has two distinct principal curvatures λ and μ , if H = 0 on Mn , from

(1.3) we have S = n , then Mn is isometric to a Clifford torus S1(
√

1
n) × Sn−1(

√
n−1

n ). Therefore, we next

only consider H �= 0 on Mn . Since Mn is oriented and the mean curvature H is constant, we can choose an
orientation for Mn such that H > 0. From (2.11), we know that (1.3) is equivalent to

n(n − 2)
2(n − 1)

[nH2 −
√

n2H4 + 4(n − 1)H2 + 2(n − 1)]

≤ n(n − 1)r ≤ n(n − 2)
2(n − 1)

[nH2 +
√

n2H4 + 4(n − 1)H2 + 2(n − 1)],

that is

1
2(n − 1)2

[n2H2 − n
√

n2H4 + 4(n − 1)H2 + 2(n − 1)] (3.6)

≤ n(r − 1) + 2
n − 2

≤ 1
2(n − 1)2

[n2H2 + n
√

n2H4 + 4(n − 1)H2 + 2(n − 1)],

where n(n − 1)r is the scalar curvature of Mn .

We define the function

f(x) = (n − 1)2x2 − [n2H2 + 2(n − 1)]x + 1. (3.7)

Since f(0) = 1, we know that function (3.7) has two positive real roots

x1,2 =
1

2(n − 1)2
[n2H2 ± n

√
n2H4 + 4(n − 1)H2 + 2(n − 1)]. (3.8)

It can be easily checked that x1 ≤ x2 and if x1 ≤ x ≤ x2 , then f(x) ≤ 0.

Now we set x = n(r−1)+2
n−2 , from (3.6), we have

f(
n(r − 1) + 2

n − 2
) ≤ 0. (3.9)

If there exists a point p on Mn such that (2.14) and (2.15) hold at p , that is, we have H = 0 or

H2 = r − 1 at p . If H = 0 at p , we have a contradiction to H �= 0 on Mn . If H2 = r − 1 at p , from (2.11)

we have S = nH2 at p , that is, p is a umbilical point on Mn , this is a contradiction to Mn has no umbilical
points. Therefore, we only consider two cases:

Case (1) If (2.14) holds on Mn , next we shall prove that λμ + 1 ≥ 0 on Mn . We consider three subcases:

(i) If 1 + (n− 1)(r− 1)− (n− 2)H2 ≥ 0 on Mn , then from (2.14), it is obvious that λμ + 1 ≥ 0 on Mn .
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(ii) If 1 + (n − 1)(r − 1) − (n − 2)H2 < 0 on Mn , suppose λμ + 1 < 0 on Mn , from (2.14), we have

(n − 2)H
√

H2 − (r − 1) < −[1 + (n − 1)(r − 1) − (n − 2)H2].

Therefore, we have

(n − 2)2H2[H2 − (r − 1)] < [1 + (n − 1)(r − 1) − (n − 2)H2]2,

that is, f(n(r−1)+2
n−2

) > 0. This is a contradiction to (3.9); we deduce that λμ + 1 ≥ 0 on Mn .

(iii) If 1 + (n− 1)(r − 1)− (n− 2)H2 ≥ 0 at a point p of Mn and 1 + (n− 1)(r− 1)− (n− 2)H2 < 0 at

other points of Mn , in this case, from (i) and (ii), we have at point p , λμ + 1 ≥ 0 and at other points of Mn ,
also λμ + 1 ≥ 0. Therefore, we obtain λμ + 1 ≥ 0 on Mn .

Therefore, we know that if (2.14) holds on Mn , then λμ + 1 ≥ 0 on Mn . By Proposition 3.2, we

obtain that M is isometric to the Riemannian product S1(a) × Sn−1(
√

1 − a2). From Example 2.1, we have

a2 = 2+nH2±
√

n2H4+4(n−1)H2

2n(1+H2) .

Case (2) If (2.15) holds on Mn , we consider three subcases:

(i) If 1 + (n− 1)(r− 1)− (n− 2)H2 ≤ 0 on Mn , then from (2.15), it is obvious that λμ + 1 ≤ 0 on Mn .

(ii) If 1 + (n − 1)(r − 1) − (n − 2)H2 > 0 on Mn , suppose λμ + 1 > 0 on Mn , from (2.15), we have

1 + (n − 1)(r − 1) − (n − 2)H2 > (n − 2)H
√

H2 − (r − 1).

Therefore, we have

[1 + (n − 1)(r − 1) − (n − 2)H2]2 > (n − 2)2H2[H2 − (r − 1)],

that is f(n(r−1)+2
n−2 ) > 0. This is a contradiction to (3.9), we deduce that λμ + 1 ≤ 0 on Mn .

(iii) If 1 + (n − 1)(r − 1) − (n − 2)H2 ≤ 0 at a point p of Mn and 1 + (n − 1)(r − 1) − (n − 2)H2 > 0

at other points of Mn , in this case, from (i) and (ii), we have at point p , λμ + 1 ≤ 0 and at other points of
Mn , also λμ + 1 ≤ 0. Therefore, we obtain λμ + 1 ≤ 0 on Mn .

Therefore, we know that if (2.15) holds on Mn , then λμ + 1 ≤ 0 on Mn . By Proposition 3.3, we

obtain that M is isometric to the Riemannian product S1(a) × Sn−1(
√

1 − a2). From Example 2.1, we have

a2 = 2+nH2±
√

n2H4+4(n−1)H2

2n(1+H2) . This completes the proof of Theorem 1.4. �

In order to prove Theorem 1.5, we need the following Proposition 3.4, which can be proved by the same
method due to Otsuki [5], also see Cheng [2].

Proposition 3.4 Let Mn be an n (n ≥ 3)-dimensional complete oriented hypersurface in Rn+1 with constant
mean curvature H and with two distinct principal curvatures, one of which is simple. Then Mn is isometric
to one of the following hypersurfaces:

(1) S1(a) ×Rn−1 ,

(2) a complete non-compact hypersurface of revolution Sn−1(a(s))×M1 , where Sn−1(a(s)) is of constant

curvature { d{log |λ−H|
1
n }

ds }2 + λ2 and M1 is a plane curve and � = |λ − H |− 1
n satisfies the following ordinary
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differential equation of order 2

d2�

ds2
+ �[H2 + (2 − n)H�−n + (1 − n)�−2n] = 0, (3.10)

for λ − H > 0 or

d2�

ds2
+ �[H2 + (n − 2)H�−n + (1 − n)�−2n] = 0, (3.11)

for λ − H < 0 .

By a similar method in [7], we can prove the following lemma.

Lemma 3.2 Equation (3.10) or (3.11) is equivalent to its first order integral

(
d�

ds
)2 + H2�2 + 2H�2−n + �2−2n = C, (3.12)

for λ − H > 0 or

(
d�

ds
)2 + H2�2 − 2H�2−n + �2−2n = C, (3.13)

for λ − H < 0 , where C is a constant. Moreover, the constant solution of (3.10) or (3.11) corresponds to the

Riemannian product Sn−1(a) ×R or S1(a) ×Rn−1 .

By the similar method in the proof of Proposition 3.2 and Proposition 3.3, we can also prove the following:

Proposition 3.5 Let Mn be an n (n ≥ 3)-dimensional complete connected and oriented hypersurface in Rn+1

with constant mean curvature H and with two distinct principal curvatures, one of which is simple. If λμ ≥ 0 ,

then Mn is isometric to the Riemannian product Sn−1(a) ×R or S1(a) ×Rn−1 .

Proposition 3.6 Let Mn be an n (n ≥ 3)-dimensional complete connected and oriented hypersurface in Rn+1

with constant mean curvature H and with two distinct principal curvatures, one of which is simple. If λμ ≤ 0 ,

then Mn is isometric to the Riemannian product Sn−1(a) ×R or S1(a) ×Rn−1 .

Proof of theorem 1.5 From (2.11), we know that S ≥ n2H2

n−1
is equivalent to

n2H2 ≥ n(n − 1)2r
n − 2

. (3.14)

If there exists a point p on Mn such that (2.16) and (2.17) hold at p , that is, we have H = 0 or H2 = r

at p . If H = 0 at p , this is a contradiction because of the assumption H �= 0. If H2 = r at p , from (2.11)

we have S = nH2 at p , that is, p is a umbilical point on Mn , this is a contradiction to Mn has no umbilical
points. Therefore, we only consider two cases.

Case (1) If (2.16) holds on Mn , next we shall prove that λμ ≥ 0 on Mn . We consider three subcases:

(i) If (n − 1)r − (n − 2)H2 ≥ 0 on Mn , then from (2.16), it is obvious that λμ ≥ 0 on Mn .

(ii) If (n − 1)r − (n − 2)H2 < 0 on Mn , suppose λμ < 0 on Mn , from (2.16), we have

(n − 2)H
√

H2 − r < −[(n − 1)r − (n − 2)H2].
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Therefore, we have

(n − 2)2H2(H2 − r) < [(n − 1)r − (n − 2)H2]2,

that is, n2H2 < n(n−1)2r
n−2

. This is a contradiction to (3.14), we deduce that λμ ≥ 0 on Mn .

(iii) If (n−1)r− (n−2)H2 ≥ 0 at a point p of Mn and (n−1)r− (n−2)H2 < 0 at other points of Mn ,

in this case, from (i) and (ii), we have at point p , λμ ≥ 0 and at other points of Mn , also λμ ≥ 0. Therefore,
we obtain λμ ≥ 0 on Mn .

Therefore, we know that if (2.16) holds on Mn , then λμ ≥ 0 on Mn . By Proposition 3.5, we obtain

that Mn is isometric to the Riemannian product Sn−1(a) × R or S1(a) × Rn−1 .

Case (2) If (2.17) holds on Mn , we consider three subcases:

(i) If (n − 1)r − (n − 2)H2 ≤ 0 on Mn , then from (2.17), it is obvious that λμ ≤ 0 on Mn .

(ii) If (n − 1)r − (n − 2)H2 > 0 on Mn , suppose λμ > 0 on Mn , from (2.17), we have

(n − 1)r − (n − 2)H2 > (n − 2)H
√

H2 − r.

Therefore, we have

[(n − 1)r − (n − 2)H2]2 > (n − 2)2H2(H2 − r),

that is n2H2 < n(n−1)2r
n−2

. This is a contradiction to (3.14), we deduce that λμ ≤ 0 on Mn .

(iii) If (n−1)r− (n−2)H2 ≤ 0 at a point p of Mn and (n−1)r− (n−2)H2 > 0 at other points of Mn

, in this case, from (i) and (ii), we have at point p , λμ ≤ 0 and at other points of Mn , also λμ ≤ 0. Therefore,
we obtain λμ ≤ 0 on Mn .

Therefore, we know that if (2.17) holds on Mn , then λμ ≤ 0 on Mn . By Proposition 3.6, we obtain

that Mn is isometric to the Riemannian product Sn−1(a) × R or S1(a) × Rn−1 . This completes the proof of
Theorem 1.5. �
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