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Some products involving the fourth Greek letter family element o,
in the Adams spectral sequence*

Xiugui Liu and He Wang

Abstract
Let p be an odd prime and A be the mod p Steenrod algebra. For computing the stable homotopy groups

of spheres with the classical Adams spectral sequence, we must compute the FE2-term of the Adams spectral

sequence, Exty*(Zp,Zp). In this paper we prove that in the cohomology of A, the product kohn55+4 S
Extf4+7’t(5’")+5 (Zp, Zp) , is nontrivial for n > 5, and trivial for n = 3,4, where .4 is actually dgil described

by Wang and Zheng, p > 11, 0 < s < p—4 and t(s,n) = 2(p—1)[(s+2)+ (s +4)p+ (s +3)p> + (s +4)p* +p"].
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1. Introduction and statement of results

Let S be the sphere spectrum localized at an odd prime p and A be the mod p Steenrod algebra. To
determine the stable homotopy of sphere 7,(S) is one of the central problems in homotopy theory. So far,
several methods have been found to determine the stable homotopy groups of spheres. For example we have

the classical Adams spectral sequence (ASS)
Eyt = Ext}(Zy, Zp) = m—s(S)
(cf. [1]) based on the Eilenberg-MacLane spectrum KZ,, where the differential is
d, : ESt — Estrttr=1,

We also have the Adams-Novikov spectral sequence (ANSS) (cf. [7]) based on the Brown-Peterson spectrum

BP.
Throughout this paper, we fix ¢ = 2(p — 1). Consider the spectra V (k) given in [8] such that the

Zp-cohomology
H*V(k) = E(QO; Qla e an)a
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the exterior algebra generated by Milnor basis elements Qg, @1, -+, Qr in A. The existence of V (k) is
assured [8, Theorem 1.1] for k=1, p > 3, for k=2, p>5 and for k=3, p > 7. Meanwhile, from [8] we also

have the following four cofibrations:

SELSEyo) LS, p>e2 (1.1)

SV (0) % V(0) B V(1) B sy (), p>3, (1.2)
eay 1) Ly ) B ve) B sehey 1) p> s, (1.3)
@Dy (2) 2 y(2) 1 v (3) B n@ ety () p > 7, (1.4)

where «, 3, v are so-called the Adams mapping, the vo-mapping and the vs3-mapping respectively.

For computing the stable homotopy groups of spheres with the classical ASS, we must compute the Fs-
term of the ASS, Ext’*(Z,,Z,). The known results on Ext’*(Z,,Z,) are as follows. Ext}*(Z,,Z,) = Z,
by its definition. From [6], we have Exty*(Z,,Z,) has Z,-basis consisting of ag € Extl'(Z,,Z,) and
h; € Extz’piq(Zp, Zyp) for all i >0 and Ext%*(Z,, Z,) has Z,-basis consisting of az, a2, agh;(i > 0), gi(i > 0),
ki(i > 0), b;(i > 0), and h;h;(j > i+ 2,i > 0) whose internal degrees are 2¢ + 1, 2, p'q + 1,p"*1q + 2p'q,
2 g + piq, p'tlq and piq + p’q respectively. In 1980, Aikawa [2] determined Ext®*(Z,,Z,) by A-algebra.
In 1998, Wang and Zheng [9] proved the following theorem.

Theorem 1.1[9]. For p > 11 and 0 < s < p — 4, there exists the fourth Greek letter family element
Soys # 0 € Ext’TH0 (7, 7)), where t1(s) = 2(p— 1)[(s+1) + (s + 2)p+ (s + 3)p? + (s + 4)p?].
Note that we write d,44 for o?gill which is described in [9)].

In this note, our main result can be stated as follows.

Theorem 1.2. Let p > 11 and 0 < s < p—4. Then in the cohomology of the mod p Steenrod algebra A in
Exty "2, 2,),

(1) the product kohn55+4 is nontrivial for n > 5.

(2) the product kohn55+4 is trivial for n = 3,4.
Here, ds14 are given in [9] and t(s,n) = q[(s + 1) + (s + 3)p + (5 + 3)p* + (s + 4)p* + p"].

The paper is arranged as follows: after recalling some knowledge on the May spectral sequence (MSS)

in Section 2, we introduce a method of detecting generators of the Ej-term E}™" of the MSS in Section 3.

Section 4 is devoted to showing Theorem 1.2.

2. Some knowledge on the May spectral sequence

As we know, the most successful method to compute Ext’y"(Z,, Z,) is the MSS. From [7], there is a May
spectral sequence(MSS) {E$*, d,} which converges to Ext%'(Z,,Z,) with E;-term

B2 = E(hmglm > 0,i > 0) @ P(bpailm > 0,i > 0)® P(an|n > 0), (2.1)
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where E( ) is the exterior algebra, P( ) is the polynomial algebra, and

1,2(p™—1)pt,2m—1 2,2(p™—1)p*t p(2m—1) 1,2p"—1,2n+1
hm,i S El ;bm,i S El ,Qp € El .

One has
d, : Bt — psthtu-r (2.2)

and if z € E$* and y € ES>!"* | then

dr(z-y) =dr(2) -y + (=1)°z - dr-(y). (2.3)

In particular, the first May differential d; is given by

dl(hi’j) = Z hi,k’kJrjhk’j, dl((li) = Z hifk,kak; dl(bi’j) =0. (24)
0<k<t 0<k<1i

There also exists a graded commutativity in the MSS: z -y = (=1)* Ty . & for &,y = hp.s, bm.i OF .

For each element z € Ef’t’u, we define dim x = s, deg x =t, M(z)=u. Then we have that

dim hi,j = dim a; = ]., dim bi,j = 2,

deg hij = q(p"™7 ="+ +pl),

deg bi,j — (piJrJ' 4 erjJrl)’ (2.5)
deg a; = q(p*~t+---+1)+1,deg ap = 1,

M(hi ;) = M(ai—1) = 2i — 1, M(b; ;) = (2i — 1)p,

where ¢ > 1, j > 0.

Note that by the knowledge on the p-adic expression in number theory, for each integer m > 0, it can

be expressed uniquely as

m = q(eap" + cro1p™ 4 cap+co) +e,

where 0 <¢; <p (0<i<n),p>c,>0,0<e<q.

3. The method of determining generators of E]""" in the MSS

In this section, we give a method used to compute generators of the Fj-term of MSS. Our method here

originates from [3]. The method can also be found in [4].

* K,k

We denote a;, h;; and b;; by x, y and z, respectively. By the graded commutativity of £, we
can suppose a generator g = (1 %y ) (Y1 Yo)(z1 - 21) € Ef’”b’*, where t = (¢o +¢1 + -+ &,p")q with
0<¢<p (0<i<n),0<é,<pand 0<b<gq.

Assertion u must equal b if s < b+ ¢. Otherwise, by the characteristics of deg a;, deg b; ;, deg h; ;
and deg g, we would get u = b+ wq for some integer w > 0. It follows that dim g > b+ wg > s = dim g,

which is a contradiction. The assertion is proved.
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So we have g = (x1---2p)(y1- - Yo) (21 21) € Ef’”b’*. By (2.5), the degrees of z;, y; and z can be
expressed uniquely as
deg x; = (w0 +wi1p + -+ 2 0p")g + 1,
deg yi = (yi,o + Yiip + -+ Yind" )4,
deg z; = (04 zi1p + - - - + 2imd™)q,

and
(a) (@i0,%i1, -+, %in) is of the form (1,---,1,0,---,0);
(b) (yi,O;yi,la T ayi,n) is of the form (0; T aOa ]-a T a]-aoa e ao)a
(¢) (0,251, "+ ,2in) is of the form (0,---,0,1,---,1,0,---,0).

* k%

By the graded commutativity of E;"™", g = (x1---xp)(y1---yo)(21---21) € Ef’”b’* can be arranged in
the following way:
(i) If ¢ > j, we put a; on the left side of aj,
(ii) If j < k, we put h; ; on the left side of hy, k,
(iii) If ¢ > w, we put h;; on the left side of h,, j,
(iv) Apply the rules (ii) and (iii) to b; ;.

Then from (a)—(c) and (i)-(iv), the factors x; ;, v;; and z;; in g must satisfy the following conditions:

(1) z1j>29;>> p,

(2) @io>wi1 > > Xin,

(3) Ify ,;—1=0andy;=1,then forallk < j y; r =0,

(4) Ify,;=1andy ;11 =0, then forall k> j y; r =0, (3.1)
(5) Y10 > Y20> > Yu0s

(6) If io = Yivy1,00 ¥l = Yit1,1," - yYi,j = Yi+1,5, then Yij+1 = Yit1,+1s

(7) Apply the similar rules (3) ~ (6) to z ;.

b v l
From deg g = > deg x; + > deg y; + >_ deg z;, by the properties of the p-adic number we get the
i=1 i=1 i=1

following group of equations:

1o+ ot yrot Yoo+ 0+ +0=2o+ kop,
i+t Tyt Yer F 21+ 21 =+ kip — ko,

(3.2)
T1,n—1 + -+ Thn—1 + Yin—1 +--+ Yv,n—1 + Z1,n—1 +-- 4+ Zln—1 = Cn—1+ knflp - kn72a
xl,n+"'+xb,n+y1,n+ "'+yv,n+zl,n+"'+zl,n = Cp *k‘nfla
where k; >0 for 0<i<n-—1.
In the above group of equations, we get two integer sequences K = (ko, k1, - ,kn—1) and S = (o +

kop,¢1 + kip — ko, - -+ ,&n — kn—1) denoted by (cg,c1,- -, ¢,) which are determined by (ko, k1, -+, kn—1) and
(Co, €1, ,Cn) . We want to get the solutions of the group of equations (3.2) which satisfy the conditions (3.1).

Remark Since the values of z; j, v;; and z ; must be 0 or 1, to solve the group of equations (3.2) will be
mechanical. Since we want to get the solutions of the group of equations (3.2) which satisfy the conditions

(3.1), we can use the conditions (3.1) in solving the group of equations. For example, if 1 9= 0 for z;, using
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the conditions (1)—(2) of (3.1), we will get all x; ; = 0. By the method, to determine the solutions of the group
of equations (3.2) which satisfy the conditions (3.1) will not be too difficult.
Notice that the elements x;, y; and z; are uniquely determined by their degrees. A solution of (3.2)

which satisfies (3.1) determines a generator g by setting deg x; (respectively y; and z;) to be (z;o+x;1p+-- -+

i np™)q+1 (vespectively (yio+yiip+-- +yinp")q and (042 1p+- -+ 2in)q). Thus for the Ef’”b’*—term,
where t = (Go +cip+ -+ Cup™)g with 0< ¢ <p (0<i<n), 0<¢, <p, 0<b< g, the determination of
Ef’”b’* is reduced to the following three steps:

(1) List up all the possible (b,v,1) such that b+ v+ 2] = s.

(2) For each given (b,v,1), list all the sequences K = (ko, k1, ,kn—1) and S = (co,c1," -+, ¢pn) such
that ¢; <b+wv+1 forall 0 <i<n.

(3) For each given (b,v,l), K = (ko, k1, ,kn—1) and S = (¢, 1, ,cpn), solve the group of equations

(3.2) by virtue of (3.1), then determine all the generators of E7 Sl by setting the corresponding second degrees.

4. The proof of Theorem 1.2

In this section we first give two lemmas which are needed in the proof of Theorem 1.2. Then we give the

proof of Theorem 1.2.

Lemma 4.1 [5, Lemma 3.1]. For p > 11 and 0 < s < p—4. Then the fourth Greek letter family element

Osta € Extf4+4’t1(5)+s(Zp, Z,) is represented by

s+4,t1(s)+s,*
ajhaohshe ohy 3 € Ef 1)

in the B\ -term of the MSS, where 414 is actually 07&24 described in [9] and t1(s) =[(s+ 1)+ (s+2)p+ (s +
3)p® + (s +4)p°lq.
Proof. This lemma is essentially [5, Lemma 3.1]. The proof is omitted in [5]. Here, we give the proof for

completeness. We only need to prove that in the MSS

AT _ 7 108 hy ohs 1ha ol 3}

Consider g € Ef+4’t1(5)+5’* with (¢, ¢1,¢2,¢3) = (s+1,5+2,5+3,s+4). Note that dim g = s+4 and deg g =
t1(s) +s. Since dim g < s + ¢, by the assertion in Section 3, the number of z; in g must be s. By the reason
of dimension, all the possibilities of g can be listed as x1x2 - Ts2122, T1To:  TsY1Y221, T1T2 - TsY1Y2Y3Y4.

Case 1 g = 129 Ts2122 OF T X - Tsy1y2z1. Obviously, in the two cases, the sequence S =
(co, €1, €2, c3) in the group of equations (3.2) is (s+1,s+2,s+3,s+4). The corresponding group of equations
(3.2) has no solution since the number of the factors in ¢ is at most s + 3 which is less than ¢c3 =s+4. So, g
is impossible to exist in these two cases.

Case 2 g = x122 - Tsy1Y2ysys - In this case, the sequence S = (cp, c1, 2, c3) as in Case 1. We can use

the method in Remark in Section 3 to solve the corresponding group of equations (3.2) by virtue of (3.1). In
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this case, the group of equations is

T10+ -+ Ts0+Y1,0 +Y2,0 +Y3,0 +Ya0=5+1,
11+ +Ts1+ Y11 Y21 H Y31 Fya =S+ 2,
Tiog+ -+ Tso+ Y12+ Y22+ Y32+ Ys2=5+3,
r13+-FTs3tyistyestysz s =s+4

From the fourth equation we get x;3 = y1.3 = y2.3 = y3,3 = ya3 = 1 for 1 <4 <'s, by the conditions (1)-(2)
of (3.1) we have z; ; =1 for 1 <i<s and 0 < j < 3. From the first equation and the condition (5) of (3.1),
we get Y10 = 1,920 =¥y3,0 = Ya,0 = 0. By the conditions (3)—(4) of (3.1) we have y11 = y1,2 = 1. Then from
the second equation we get y21 = 1,y31 = ya,1 = 0. By the conditions (3)—(4) of (3.1) we have ys 2 = 1. Then
from the third equation we get y3 2 = 1,y42 = 0. It follows that g = ajhaohs 1h22h13 up to sign, showing

that B; T4 = 7 Lashy ohs 1o 2ha 5} 0

Lemma 4.2 Let p>11, n>4, 0<s<p—4. Then the May F1 -term satisfies

M n=14
Eitotlemtsr 0 0 pn>5and0<s<p—5
K n>5ands=p—5

for 0 < r < s+7. Here, t(s,n) = [(s+2)+ (s+4)p+ (s +3)p? + (s + 4)p* + p"|q, M is the Z,-module

generated by the following twenty elements:

gl = ajha oha ohs,1h1,304 0, g2 = ajhs ohaohs 1h1,101 2,

g3 = ajhs ohaohs1h1,301 0, g4 = ajhsohaoha1h3 101 2,

g5 = ajhs ohaohi,1h1,3030, g6 = asal 'haohaohs1hi 3bs.0,

g7 = ajhs oh2ohs,1h1,303 0, g8 = ajhaoha ohs 1ho 303 0,

g9 = ajhsohz oha 1h1 3030, g10 = a5 'ashs ohaohs,1h1,3b3.0,
gll = ajhsohaohs 1ho,1h2 3k 3, g12 = asai 'hyohaohs 1hi 1ha2hy 3,
gl3 = ajhs ohaohs,1h1,1h2 2k 3, gld = ajhsohgoha1hy,1h2 2k 3,

gl5 = ajhsohaohs 1h1,1h3,2h1 3, gl6 = ajhsohaohs 1h1,1h2 2h2 3,

gl7 = ajhaohioha1hs1h1,1h 3, g18 = a§ ashy ohooha 1hs 1ha 2hy 3,
g19 = a§ 'ashs ohaohs1h11ho2b1 s, 820 = ajhaohs ohs 1hi 1he shi s,

IN

where M(gl) = 9s+ Tp+ 16, M(gi) = 9s +p + 22 for 2 < i < 4, M(gi) = 9s+ 5p + 18 for 5
1 < 10, M(gi) = 9s + 22 for 11 i

al™hy ohs . 0hn—11h1,1hn—330hn—1.4,822 = a? 5hy, ohaohn—1,1h4 1003 3hn—4.4, where M(g21) = M(g22) =
(2n+1)(p —5) +8n — 10.

< 20, and K s the Zy-module generated by two elements g21

Proof. Consider g € E;TO/SMT* "where t(s,n) = [(s+2) + (s + 4)p + (s + 3)p® + (s + 4)p® + p"]q with

(CoyC1,++ yCn) =(s+2,5+4,5+3,5s+4,0,---,0,1). Then dim g = s+ 6 and deg g = t(s,n) + s.
Since s+ 6 < s+ ¢, according to the assertion in Section 3, the number of z; in g is s. By the reason

of dimension, all the possibilities of g can be listed as z1---xs212023, T1 " TsY1Y22122, L1 TsY1Y2Y3Ya21,
L1 TsY1Y2Y3YaYsye -
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S
Case 1 g =x122- - T5212223. Note that s < p—4. It follows that > 2,0 < s < s+2= ¢ < ¢y, which
i=1

is impossible. Thus the first equation of (3.2) has no solution, showing that such ¢ is impossible to exist.
S
Case 2 g = 122 Zsy1y22122. By s < p—4, we have that Y z;; +vyi; +vy2; + 21, + 225 <
i=1

s+4 < pforall 0 < j < n. Thus the integer sequence K = (ko, k1, -+ ,kn—1) in the corresponding
group of equation (3.2) is (0,0,---,0) and S = (co,c1, " ,¢n) = (s + 2,5 +4,s+ 3,5 +4,0,---,0,1).
S S
Since > w1 + Y11+ Y21 + 211+ 221 = s+4 and > wis 4+ Y13+ Y23 + 213+ 223 = s+ 4, we get
i=1 i=1
Ti1l = Y11 =Y2,1 = 211 = 221 =1 and ;3 = Y13 = Y23 = 213 = 223 = 1 (1 < i < s5). Then by the
conditions (2), (4) and (7) in (3.1), we get ;0 =Y12 =Y2,2 =212 =222 =1 (1 <i <), which is impossible
S
because of Y @2+ Y12+ Y22+ 212 + 222 = s + 3. So the corresponding group of equations (3.2) has no
i=1
solution. It follows that ¢ is impossible to exist.
Case 3 g = 1172 Tsy1Y2Y3Y421 -
Subcase 3.1 n = 4. Similar to Case 2, we get S = (co,c1,¢2,¢3,¢4) = (s +2,s+4,s+3,s+4,1).
We solve the corresponding group of equations (3.2) by virtue of (3.1), and get the following ten nontrivial
generators

gl = ajhaohaohz1h3bso, 82 =ajhsohsohs,1hi,1b12,

g3 = azhs.ohaohz1h3bio, g4 =ajhiohooha1hs 1b1 2,

g5 = ajhsohaohi,1h1 3bs0, 86 = asai 'haohaohsihi 3bs0,
g7 = azhsohaoh31hi 3b30, g8 = ajhiohoohs1ho 3bs3 0,

89 = ajhuohooha,1hi 3bs0, 810 = aj ‘ashsohaohs b1 sbs o,

where M(gl)=9s+Tp+ 16, M(gi) =9s+p+ 22 for 2 <i <4, M(gi)=9s+ 5p+ 18 for 5 < < 10.
Subcase 3.2 n>5. Since > @i+ Y1+ Y2, FYs; T Va;+21; <s+5<p (0<j<nand z10=0
i=1

), then all possibilities of the integer sequence K = (ko, k1, - ,kn—1) in the corresponding group of equation
(3.2) are

K, =(0,0,---,0),

K;=(0,0,0,0,0,---,0,10,1,.-- /1) (5<i<mand s=p—5),
where 1(Y) means that 1 is the i-th term of the sequence K;. The corresponding sequence S = (co,c1,7 0 yCn)

are listed as

S1=(s+2,s+4,s+3,s+4,0,---,0,1),

Si=(p-3p—1,p—2,p—1,0,---,0,pD p—1,--- . p—1,0) (5<i<nand s=p—25).

For S and S;(5 < i < n), we can easily show that the corresponding group of equations (3.2) has no
solution.

Case 4 g = 2122+ TsY1Y2Y3Y4Y5Ys -

Subcase 4.1 n = 4. Similar to Case 2, we get S = (co,c1,¢2,¢3,¢4) = (s+2,5+4,s+3,5+4,1). One

can solve the corresponding group of equations (3.2) by virtue of (3.1), and get ten nontrivial generators as

317



LIU, WANG

follows:
gll = ajhsohaohs 1ho,1h2 3k 3, g12 = asai 'hyohaohs 1hi1ha2hy 3,
gl3 = ajhs ohaohs,1h1,1h2 2k 3, gld = ajhsohaoha1hy,1h2 201 3,
gld = ajhsohaohs 1h1,1h32h1 3, gl6 = ajhsohaohs,1h1,1h2 202 3,
g17 = ajhaohi oha1hs,1hy,1ha s, g18 = aj 'ashaoh2ohahs 1ho 2l s,

g19 = ai 'ashs ohaohs1hi1haohi 3, 820 = ajhaohsohs1hi1ha 3k s,

where M (gi) = 9s + 22 for 11 <4 < 20.

Subcase 4.2 n > 5 and 0 < s < p — 6. Similar to Case 2, we get the integer sequence S =
(co,c1,-+ycn) = (s+2,s+4,s+3,s+4,0,---,0,1). One can solve the corresponding group of equations
(3.2) by virtue of (3.1), and get the following three generators aihith,lhl,lhl,Shl,n; aiflaghioh%’lhl,ghl’n
and aih470h270h§71h1’3h1’n which are all trivial by hio = h%ﬁl =0.

Subcase 4.3 n > 5 and s = p — 6. Similar to Subcase 3.2, we get all the possibilities of § =
(coyc1, -+, Cn):

Si=p-4,p—2,p—3,p—2,0,---,0,1),

Si=(p-4,p-2,p—3,p—2,0,---,0,p)p—1,--- . p—1,0) (5<i<n).

For S7, we can solve the corresponding group of equations (3.2) by virtue of (3.1), and get three generators
ai”°h3 ghs,ihiihy shn, af Taxh3 oh3 by sha o, @i ®haoha,oh3 1hi shy,, which are all trivial by h%, = h3 | =
0. For S;(5 <i<mn), by (3.1) we can show that the corresponding group of equations (3.2) has no solution.

Subcase 4.4 n > 5 and s = p — 5. Similar to Subcase 3.2, we get all the possibilities of § =
(coyc1, -+, Cn):

Si=pP-3,p—1,p—2,p—1,0,---,0,1),

Si=p-3,p—1Lp—2,p—1,0,---,0,p@,p—1,--- ,p—1,0) (5<i<n).

For 57, one can solve the corresponding group of equations (3.2) by (3.1) and get three generators aif‘r’hioh&l
hi,1h1 3ha aiwaghioh%’lhl’ghl,n and ai °haoh2,0h3 h1shi, which are all trivial by h2, = h3 | = 0.

For S = S5 and n = 5, we solve the corresponding group of equations (3.2) by virtue of (3.1), and
get three generators a§75h§70h471h1,1h2,3h1,4, a§76a2h§’0hi1h2,3h1,4 and a§75h570h2,0hi1h2,3h1,4 which are all
trivial by h%ﬁo = hil =0.

For S = S5 and n > 5, one can solve the corresponding group of equations (3.2) by virtue of (3.1), and
get two nontrivial generators g21 = af~°hy, ohs 0hn—1.1h01,1hn—3 3hn—4.4 and g22 = aP~>hy, oh2 ohn—1,1ha1hn—33
P44 with M(g21) = M(g22) = (2n +1)(p — 5) + 8n — 10.

For S;(6 <14 <n), by (3.1) one can show that the corresponding group of equations (3.2) has no solution.

This finishes the proof of Lemma 4.2. a

Now we give the proof of Theorem 1.2.

Proof of Theorem 1.2 (1) It is known that hsohi1 € Ef’q@pﬂ)’* and hy, € E%’qp”’* are permanent

cocycles in the MSS and represent kg € Exti’Qp 4z, 7,) and h,, € Exty? ”q(Zp, Z,) respectively. By Lemma
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4.1, 55+4 is represented by

S+4, %, %
ajhaohsihe ohy 3 € E]

in the MSS. Then, we get that hoghi 1h1 naihsohs 1haohis € EotTt ) s 9542 4 permanent cocycle and
01,171 n@ Ny 03,102 201 1
represents kohn55+4 € Extf4+7’t(s’n)+s(Zp, Z,) in the MSS.

Case 1 0 < s <p—5. From Lemma 4.2, the May F;-term Ef+6’t(5’")+5’* = 0, which implies that

Ei+6,t(s,n)+s,* =0

for r > 1. Consequently, the permanent cocycle hsohi 1h1 najhaohs 1he2h1 3 cannot be hit by any May
differential in the MSS. Thus in this case, kohn55+4 #0.
Case 2 s =p—>5. By Lemma 4.2, in this case

E;{;Jrl,t(pf&n)*i”*s’* = Zp{g21, g22}

and M(g2l) = M(g22) = (2n + 1)(p — 5) + 8 — 10. By the reason of May filtration, we see that
ha.oh1 by nashaohsahoohy s is not in dy(EP L@ TP=sGril)(p=5)+8n=10) “po (9 4) we have the May

differentials of the generators of Ef+1’t(p75’n)+p75’(2"+1)(p75)+8"710 as follows:

di(g21) = di(alhy,0hs 0hn—1,1h1 1hn—33Rn—14)

—aP™5dy (hpo)hs.ohn—1.1h1 1hn—33hn_a4+ -

= —aP P hy_92haohs ohn—11h11hn—33hn—a4+ -+ #0,
d1(aP=5hy oho,ohn—1.1ha1hn—33hn—4.4)

al=3dy (hn,0)h2.0hn—11ha1hn—33hn—a4+ -

= aP Shy_55h50h20hn—11ha1hn_33hn—a4+ - #0.

d1(g22)

We can see that the first May differential of each generator contains at least a term which is not in the first
May differential of the other generator. It follows that the first May differential of the two generators is linearly
independent. This means that

EPHLHP=5m)+p=5,@nt 1) (p=5)+8n-10 _ )

for » > 2. Then h2,0h1,1h1,na275h4,0h3,1h272h173 is not in d,,(Ef“’t(pfs’")ﬂ’*s’(2"“)(1)75”8"710) for r > 1,
which implies that the permanent cocycle h2,0h1,1h1,na275h4,0h3,1h272h173 cannot be hit by any May differential.
Thus kohndy_1 # 0 € ExtB 2! @=5mte=57 7 5.

This completes the proof of Theorem 1.2 (1).

(2) Since k‘oh355+4 is represented in the MSS by hg ohi 1h1 303k 0hs3,1h2 2h1 3 which is trivial by h%d =0,

it follows that kghsdsys = 0.

Now we will show kohsdssa = 0. It suffices to prove that ho ohi 1h1 4ahaohsha2hi 3 € Ef+6’t(s’4)+s’95+21

which represents kohn55+4 € Extf4+7’t(5’4)+s(Zp, Z,) is in dl(Ef+6’t(5’4)+s’95+22). From Lemma 4.2,
Ef+6,t(s,4)+s,95+22 _ Zp{g].]., L ’g20}
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By (2.4) we compute the first May differential of gi (11 < ¢ < 20) as follows (use the graded commutativity in
the MSS, we arrange d;(gi) for 11 < ¢ <20 in the way of (i), (ii) and (iii) in Section 3)

di(gll) = (*1)5(Saff1(12h4,0h2,0h3,1h2,1h2,2h2,3h1,31 + ajhaohiohsihohiihe shas,
— aih4,oh2,oh2,1h1,1h2,2h2,3h1,33 +ajhaoh20hs 1h1 11 2k 3R 3 ),
di(gl2) = (*1)8(aff1a0h5,0h4,0h2,0h3,1h1,1h2,2h1,35 + (lffl(11h4,0h2,0h4,1h3,1h1,1h2,2h1,36
af[la2h4’0h2’0h3’1h171h3’2h2’2h1’37 - af[la3h4’0h2’0h3’1h1’1h272h2’3h1’38
aih4,oh2,oh3,1h1,1h2,2h1,3h1,49),
dy(gl3) = (*1)5(*Saffl(lohs,oh4,0h2,0h3,1h1,1h2,2h1,35 — aih2,0h1,0h4,1h3,1h1,1h2,2h1,310
— aih:s,ohz,oh:s,1h1,1h2,2h2,3h1,311 + h4,0h2,0h3,1h1,1h2,2h1,3h1,49),
di(gld) = (*1)5(*Saffl(11h4,0h2,0h4,1h3,1h1,1h2,2h1,36 + ajho ohi oha,1hs 1h1,1h2 2R 3
— aih4,oh2,oh2,1h1,1h2,2h2,3h1,33 + aih4,0h2,0h3,1h1,1h2,2h1,3h1,49),
dy(glh) = (*1)5(*Saffl(12h4,0h2,0h3,1h1,1h3,2h2,2h1,37 — ajhq oh2ohs1hi1h1 2hs 3h 3,
aih4,oh2,oh3,1h1,1h2,2h1,3h1,49),
dy(gl6) = (*1)8(Saff1(13h4,0h2,0h3,1h1,1h2,2h2,3h1,38 + aih:s,ohz,oh:s,1h1,1h2,2h2,3h1,311
ai+2h4,oh2,oh2,1h1,1h2,2h2,3h1,33 +aihaohoohs1hi1hi 2he 3ha s,
aih4,oh2,oh3,1h1,1h2,2h1,3h1,49),
di(gl?) = (—1)%(—sai ‘aghsohioha 1hs 1hi 1ha2ht 3
azhaohiohs1he1hihoshis,),
dy(gl8) = (*1)8(1271((11h4,0h2,0h4,1h3,1h1,1h2,2h1,36 + affla2h4,0h1,0h4,1h3,1h1,1h2,2h1,312
— (lffl(12h4,0h2,0h3,1h1,1h3,2h2,2h1,37 + aff1a2h4,0h2,0h3,1h2,1h2,2h2,3h1,31),
dy(gl9) = (*1)8(aff1a0h5,0h4,0h2,0h3,1h1,1h2,2h1,35 — affla2h4,0h1,0h4,1h3,1h1,1h2,2h1,312
- ai’la2h4’0h2’0h3’1h171h3’2h2’2h1’37 + aifla2h4,oh3,oh3,1h1,1h2,2h2,3h1,313),
dy(g20) = (*1)8(Saffl(12h4,0h3,0h3,1h1,1h2,2h2,3h1,313 — aih3,0h2,0h3,1h1,1h2,2h2,3h1,311
— ajhaohiohsihoihiihe shis +ajhaohoohsihiihighoshi s ).

- -

10

+

+

+

o aih2,0h1,0h4,1h3,1h1,1h2,2h1,310

+

Without generality, we let s be even. Then we easily get

di(gl1) s 1 -1 1 0 0 0 0 0 0O 0 0 0 —2
di(g12) o0 0 0O 1 1 1 -11 0 0 0 0 —s3
d1(g13) 00 0 0 -s 0 0 0 1 -1 -1 0 0 —4
di(g14) 00 -1 0 0 -s 0 0 1 1 0 0 0 —5
digl5) | o o 0o -1 0 0 —-s 0 1 0 0 0 0 —6
di(glé) [Tl 0o o 1 1 0 0 0 s 1 0 1 0 0 —7
d1(g17) 0O 1 0 0 0 0 0 0 0 -1 0 —s 0 —s
d1(g18) 1 0 0 0 0 1 -1 0 0 0 0 1 0 —o
dy(g19) o0 0 0 1 0 -1 0 0 0 0 -11 —10
d1(g20) 0 -1 0 1 0 0 0 0 0 0 -1 0 s —E

—13

By the knowledge of matrix, we can easily get that the rank of the middle matrix above is 8. To add a
row (0,0,0,0,0,0,0,0,1,0,0,0,0) to the matrix, we get that the rank of the new matrix is also 8, which
implies that (0,0,0,0,0,0,0,0,1,0,0,0,0) can be linearly represented by the other rows of the matrix and then
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(lih470h270h3’1h1’1h272h173h1749 can be linearly represented by dq(gll), ---, d1(g20). So haohi 1h1,4a5ha0hs31
hg ohy 3 is in dl(EerG’t(SAHS’QHQQ), showing that k'oh455+4 =0.
This finishes the proof of Theorem 1.2. d
References

[1] Adams, J.F.: Stable homotopy and generalised homology, Chicago, Univ. Chicago Press 1974.
[2] Aikawa, T.: 3-dimensional cohomology of the mod p Steenrod algebra, Math. Scand. 47, no. 1, 91-115 (1980).

[3] Liu, X.G.: A nontrivial product in the stable homotopy groups of spheres, Sci. China Ser. A 47, no. 6, 831-841
(2004).

[4] Liu, X.G. and Wang, H.: On the cohomology of the mod p Steenrod algebra, Proc. Japan Acad. Ser. A Math. Sci.
85, no. 9, 143-148 (2009).

[5] Liu, X.G. and Zhao, H.: On a product in the classical Adams spectral sequence, Proc. Amer. Math. Soc. 137, no.
7, 2489-2496 (2009).

[6] Liulevicius, A.: The factorizations of cyclic reduced powers by secondary cohomology operations, Memo. Amer.

Math. Soc. 42, 1-112 (1962).
[7] Ravenel, D.C.: Complex cobordism and stable homotopy groups of spheres, Orlando, Academic Press 1986.

[8] Toda, H.: On spectra realizing exterior parts of Steenord algebra, Topology 10, 55-65 (1971).

[9] Wang X.J. and Zheng, Q.B.: The convergence of dg:ﬂhohk, Sci. China Ser. A 41, no. 6, 622-628 (1998).

Xiugui LIU Received: 27.02.2009
School of Mathematical Sciences and LPMC

Nankai University

Tianjin 300071, P. R. China

e-mail: xgliu@nankai.edu.cn

He WANG

School of Mathematical Sciences
Nankai University

Tianjin 300071, P. R. China
e-mail: wanghe85@yahoo.com.cn

321



