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Some products involving the fourth Greek letter family element δ̃s

in the Adams spectral sequence∗

Xiugui Liu and He Wang

Abstract

Let p be an odd prime and A be the mod p Steenrod algebra. For computing the stable homotopy groups

of spheres with the classical Adams spectral sequence, we must compute the E2 -term of the Adams spectral

sequence, Ext∗,∗
A (�p,�p) . In this paper we prove that in the cohomology of A , the product k0hnδ̃s+4 ∈

Ext
s+7,t(s,n)+s
A (�p,�p) , is nontrivial for n ≥ 5, and trivial for n = 3, 4, where δ̃s+4 is actually α̃

(4)
s+4 described

by Wang and Zheng, p ≥ 11, 0 ≤ s < p−4 and t(s, n) = 2(p−1)[(s+2)+(s+4)p+(s+3)p2+(s+4)p3+pn] .
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1. Introduction and statement of results

Let S be the sphere spectrum localized at an odd prime p and A be the mod p Steenrod algebra. To
determine the stable homotopy of sphere π∗(S) is one of the central problems in homotopy theory. So far,
several methods have been found to determine the stable homotopy groups of spheres. For example we have
the classical Adams spectral sequence (ASS)

Es,t
2 = Exts,t

A (Zp, Zp) ⇒ πt−s(S)

(cf. [1]) based on the Eilenberg-MacLane spectrum KZp , where the differential is

dr : Es,t
r → Es+r,t+r−1

r .

We also have the Adams-Novikov spectral sequence (ANSS) (cf. [7]) based on the Brown-Peterson spectrum
BP .

Throughout this paper, we fix q = 2(p − 1). Consider the spectra V (k) given in [8] such that the
Zp -cohomology

H∗V (k) ∼= E(Q0, Q1, · · · , Qk),
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the exterior algebra generated by Milnor basis elements Q0 , Q1 , · · · , Qk in A . The existence of V (k) is

assured [8, Theorem 1.1] for k = 1, p ≥ 3, for k = 2, p ≥ 5 and for k = 3, p ≥ 7. Meanwhile, from [8] we also
have the following four cofibrations:

S
p→ S

i0→ V (0)
j0→ ΣS, p ≥ 2, (1.1)

ΣqV (0) α→ V (0) i1→ V (1)
j1→ Σq+1V (0), p ≥ 3, (1.2)

Σ(p+1)qV (1)
β→ V (1) i2→ V (2)

j2→ Σ(p+1)q+1V (1), p ≥ 5, (1.3)

Σ(p2+p+1)qV (2) γ→ V (2) i3→ V (3) j3→ Σ(p2+p+1)q+1V (2), p ≥ 7, (1.4)

where α , β , γ are so-called the Adams mapping, the v2 -mapping and the v3 -mapping respectively.

For computing the stable homotopy groups of spheres with the classical ASS, we must compute the E2 -

term of the ASS, Ext∗,∗
A (Zp, Zp). The known results on Ext∗,∗

A (Zp, Zp) are as follows. Ext0,∗
A (Zp, Zp) = Zp

by its definition. From [6], we have Ext1,∗
A (Zp, Zp) has Zp -basis consisting of a0 ∈ Ext1,1

A (Zp, Zp) and

hi ∈ Ext1,piq
A (Zp, Zp) for all i ≥ 0 and Ext2,∗

A (Zp, Zp) has Zp -basis consisting of α2 , a2
0 , a0hi(i > 0), gi(i ≥ 0),

ki(i ≥ 0), bi(i ≥ 0), and hihj(j ≥ i + 2, i ≥ 0) whose internal degrees are 2q + 1, 2, piq + 1, pi+1q + 2piq ,

2pi+1q + piq , pi+1q and piq + pjq respectively. In 1980, Aikawa [2] determined Ext3,∗
A (Zp, Zp) by λ-algebra.

In 1998, Wang and Zheng [9] proved the following theorem.

Theorem 1.1[9]. For p ≥ 11 and 0 ≤ s < p − 4 , there exists the fourth Greek letter family element

δ̃s+4 	= 0 ∈ Exts+4,t1(s)+s
A (Zp, Zp) , where t1(s) = 2(p − 1)[(s + 1) + (s + 2)p + (s + 3)p2 + (s + 4)p3] .

Note that we write δ̃s+4 for α̃
(4)
s+4 which is described in [9].

In this note, our main result can be stated as follows.

Theorem 1.2. Let p ≥ 11 and 0 ≤ s < p − 4 . Then in the cohomology of the mod p Steenrod algebra A in

Exts+7,t(s,n)+s
A (Zp, Zp) ,

(1) the product k0hnδ̃s+4 is nontrivial for n ≥ 5 .

(2) the product k0hnδ̃s+4 is trivial for n = 3, 4 .

Here, δ̃s+4 are given in [9] and t(s, n) = q[(s + 1) + (s + 3)p + (s + 3)p2 + (s + 4)p3 + pn].

The paper is arranged as follows: after recalling some knowledge on the May spectral sequence (MSS)

in Section 2, we introduce a method of detecting generators of the E1 -term E∗,∗,∗
1 of the MSS in Section 3.

Section 4 is devoted to showing Theorem 1.2.

2. Some knowledge on the May spectral sequence

As we know, the most successful method to compute Ext∗,∗
A (Zp, Zp) is the MSS. From [7], there is a May

spectral sequence(MSS) {Es,t,∗
r , dr} which converges to Exts,t

A (Zp, Zp) with E1 -term

E∗,∗,∗
1 = E(hm,i|m > 0, i ≥ 0) ⊗ P (bm,i|m > 0, i ≥ 0) ⊗ P (an|n ≥ 0), (2.1)
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where E( ) is the exterior algebra, P ( ) is the polynomial algebra, and

hm,i ∈ E
1,2(pm−1)pi,2m−1
1 , bm,i ∈ E

2,2(pm−1)pi+1,p(2m−1)
1 , an ∈ E1,2pn−1,2n+1

1 .

One has

dr : Es,t,u
r → Es+1,t,u−r

r (2.2)

and if x ∈ Es,t,∗
r and y ∈ Es′,t′,∗

r , then

dr(x · y) = dr(x) · y + (−1)sx · dr(y). (2.3)

In particular, the first May differential d1 is given by

d1(hi,j) =
∑

0<k<i

hi−k,k+jhk,j, d1(ai) =
∑

0≤k<i

hi−k,kak, d1(bi,j) = 0. (2.4)

There also exists a graded commutativity in the MSS: x · y = (−1)ss′+tt′y · x for x, y = hm,i, bm,i or an .

For each element x ∈ Es,t,u
1 , we define dim x = s, deg x = t , M(x)=u. Then we have that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dim hi,j = dim ai = 1, dim bi,j = 2,
deg hi,j = q(pi+j−1 + · · ·+ pj),
deg bi,j = q(pi+j + · · ·+ pj+1),
deg ai = q(pi−1 + · · ·+ 1) + 1, deg a0 = 1,
M(hi,j) = M(ai−1) = 2i − 1, M(bi,j) = (2i − 1)p,

(2.5)

where i ≥ 1, j ≥ 0.

Note that by the knowledge on the p-adic expression in number theory, for each integer m ≥ 0, it can
be expressed uniquely as

m = q(cnpn + cn−1p
n−1 + · · ·+ c1p + c0) + e,

where 0 ≤ ci < p (0 ≤ i < n), p > cn > 0, 0 ≤ e < q .

3. The method of determining generators of E∗,∗,∗
1 in the MSS

In this section, we give a method used to compute generators of the E1 -term of MSS. Our method here
originates from [3]. The method can also be found in [4].

We denote ai , hi,j and bi,j by x , y and z , respectively. By the graded commutativity of E∗,∗,∗
1 , we

can suppose a generator g = (x1 · · ·xu)(y1 · · ·yv)(z1 · · ·zl) ∈ Es,t+b,∗
1 , where t = (c̄0 + c̄1 + · · ·+ c̄npn)q with

0 ≤ c̄i < p (0 ≤ i < n), 0 < c̄n < p and 0 ≤ b < q .

Assertion u must equal b if s < b + q . Otherwise, by the characteristics of deg ai , deg bi,j , deg hi,j

and deg g, we would get u = b + wq for some integer w > 0. It follows that dim g ≥ b + wq > s = dim g ,
which is a contradiction. The assertion is proved.
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So we have g = (x1 · · ·xb)(y1 · · ·yv)(z1 · · · zl) ∈ Es,t+b,∗
1 . By (2.5), the degrees of xi , yi and zi can be

expressed uniquely as ⎧⎨
⎩

deg xi = (xi,0 + xi,1p + · · ·+ xi,npn)q + 1,
deg yi = (yi,0 + yi,1p + · · ·+ yi,npn)q,
deg zi = (0 + zi,1p + · · ·+ zi,npn)q,

and
(a) (xi,0, xi,1, · · · , xi,n) is of the form (1, · · · , 1, 0, · · · , 0);

(b) (yi,0, yi,1, · · · , yi,n) is of the form (0, · · · , 0, 1, · · · , 1, 0, · · · , 0);

(c) (0, zi,1, · · · , zi,n) is of the form (0, · · · , 0, 1, · · · , 1, 0, · · · , 0).

By the graded commutativity of E∗,∗,∗
1 , g = (x1 · · ·xb)(y1 · · · yv)(z1 · · ·zl) ∈ Es,t+b,∗

1 can be arranged in
the following way: ⎧⎪⎪⎨

⎪⎪⎩

(i) If i > j, we put ai on the left side of aj ,
(ii) If j < k, we put hi,j on the left side of hw,k,
(iii) If i > w, we put hi,j on the left side of hw,j,
(iv) Apply the rules (ii) and (iii) to bi,j.

Then from (a)–(c) and (i)–(iv), the factors xi,j , yi,j and zi,j in g must satisfy the following conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) x1,j ≥ x2,j ≥ · · · ≥ xb,j,
(2) xi,0 ≥ xi,1 ≥ · · · ≥ xi,n,
(3) If yi,j−1 = 0 and yi,j = 1, then for all k < j yi,k = 0,
(4) If yi,j = 1 and yi,j+1 = 0, then for all k > j yi,k = 0,
(5) y1,0 ≥ y2,0 ≥ · · · ≥ yv,0,
(6) If yi,0 = yi+1,0, yi,1 = yi+1,1, · · · , yi,j = yi+1,j , then yi,j+1 ≥ yi+1,j+1,
(7) Apply the similar rules (3) ∼ (6) to zi,j.

(3.1)

From deg g =
b∑

i=1

deg xi +
v∑

i=1

deg yi +
l∑

i=1

deg zi, by the properties of the p-adic number we get the

following group of equations:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1,0 + · · ·+ xb,0 + y1,0 + · · ·+ yv,0 + 0 + · · ·+ 0 = c̄0 + k0p,
x1,1 + · · ·+ xb,1 + y1,1 + · · ·+ yv,1 + z1,1 + · · ·+ zl,1 = c̄1 + k1p − k0,
· · ·
x1,n−1 + · · ·+ xb,n−1 + y1,n−1 + · · ·+ yv,n−1 + z1,n−1 + · · ·+ zl,n−1 = c̄n−1 + kn−1p − kn−2,
x1,n + · · ·+ xb,n + y1,n + · · ·+ yv,n + z1,n + · · ·+ zl,n = c̄n − kn−1,

(3.2)

where ki ≥ 0 for 0 ≤ i ≤ n − 1.

In the above group of equations, we get two integer sequences K = (k0, k1, · · · , kn−1) and S = (c̄0 +

k0p, c̄1 + k1p − k0, · · · , c̄n − kn−1) denoted by (c0, c1, · · · , cn) which are determined by (k0, k1, · · · , kn−1) and

(c̄0, c̄1, · · · , c̄n) . We want to get the solutions of the group of equations (3.2) which satisfy the conditions (3.1).

Remark Since the values of xi,j, yi,j and zi,j must be 0 or 1, to solve the group of equations (3.2) will be

mechanical. Since we want to get the solutions of the group of equations (3.2) which satisfy the conditions

(3.1), we can use the conditions (3.1) in solving the group of equations. For example, if x1,0 = 0 for x1 , using
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the conditions (1)–(2) of (3.1), we will get all xi,j = 0. By the method, to determine the solutions of the group

of equations (3.2) which satisfy the conditions (3.1) will not be too difficult.

Notice that the elements xi , yi and zi are uniquely determined by their degrees. A solution of (3.2)

which satisfies (3.1) determines a generator g by setting deg xi (respectively yi and zi ) to be (xi,0+xi,1p+· · ·+

xi,npn)q +1 (respectively (yi,0 +yi,1p+ · · ·+yi,npn)q and (0+zi,1p+ · · ·+zi,n)q). Thus for the Es,t+b,∗
1 -term,

where t = (c̄0 + c̄1p + · · ·+ c̄npn)q with 0 ≤ c̄i < p (0 ≤ i < n), 0 < c̄n < p , 0 ≤ b < q, the determination of

Es,t+b,∗
1 is reduced to the following three steps:

(1) List up all the possible (b, v, l) such that b + v + 2l = s .

(2) For each given (b, v, l), list all the sequences K = (k0, k1, · · · , kn−1) and S = (c0, c1, · · · , cn) such
that ci ≤ b + v + l for all 0 ≤ i ≤ n .

(3) For each given (b, v, l), K = (k0, k1, · · · , kn−1) and S = (c0, c1, · · · , cn), solve the group of equations

(3.2) by virtue of (3.1), then determine all the generators of Es,t+b,∗
1 by setting the corresponding second degrees.

4. The proof of Theorem 1.2

In this section we first give two lemmas which are needed in the proof of Theorem 1.2. Then we give the
proof of Theorem 1.2.

Lemma 4.1 [5, Lemma 3.1]. For p ≥ 11 and 0 ≤ s < p − 4 . Then the fourth Greek letter family element

δ̃s+4 ∈ Exts+4,t1(s)+s
A (Zp, Zp) is represented by

as
4h4,0h3,1h2,2h1,3 ∈ E

s+4,t1(s)+s,∗
1

in the E1 -term of the MSS, where δ̃s+4 is actually α̃
(4)
s+4 described in [9] and t1(s) = [(s + 1) + (s + 2)p + (s +

3)p2 + (s + 4)p3]q.

Proof. This lemma is essentially [5, Lemma 3.1]. The proof is omitted in [5]. Here, we give the proof for
completeness. We only need to prove that in the MSS

E
s+4,t1(s)+s,∗
1 = Zp{as

4h4,0h3,1h2,2h1,3}.

Consider g ∈ E
s+4,t1(s)+s,∗
1 with (c̄0, c̄1, c̄2, c̄3) = (s+1, s+2, s+3, s+4). Note that dim g = s+4 and deg g =

t1(s) + s . Since dim g < s + q , by the assertion in Section 3, the number of xi in g must be s . By the reason
of dimension, all the possibilities of g can be listed as x1x2 · · ·xsz1z2 , x1x2 · · ·xsy1y2z1 , x1x2 · · ·xsy1y2y3y4.

Case 1 g = x1x2 · · ·xsz1z2 or x1x2 · · ·xsy1y2z1 . Obviously, in the two cases, the sequence S =
(c0, c1, c2, c3) in the group of equations (3.2) is (s+1, s+2, s+3, s+4). The corresponding group of equations

(3.2) has no solution since the number of the factors in g is at most s + 3 which is less than c3 = s + 4. So, g

is impossible to exist in these two cases.

Case 2 g = x1x2 · · ·xsy1y2y3y4 . In this case, the sequence S = (c0, c1, c2, c3) as in Case 1. We can use

the method in Remark in Section 3 to solve the corresponding group of equations (3.2) by virtue of (3.1). In
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this case, the group of equations is

⎧⎪⎪⎨
⎪⎪⎩

x1,0 + · · ·+ xs,0 + y1,0 + y2,0 + y3,0 + y4,0 = s + 1,
x1,1 + · · ·+ xs,1 + y1,1 + y2,1 + y3,1 + y4,1 = s + 2,
x1,2 + · · ·+ xs,2 + y1,2 + y2,2 + y3,2 + y4,2 = s + 3,
x1,3 + · · ·+ xs,3 + y1,3 + y2,3 + y3,3 + y4,3 = s + 4.

From the fourth equation we get xi,3 = y1,3 = y2,3 = y3,3 = y4,3 = 1 for 1 ≤ i ≤ s , by the conditions (1)–(2)

of (3.1) we have xi,j = 1 for 1 ≤ i ≤ s and 0 ≤ j ≤ 3. From the first equation and the condition (5) of (3.1),

we get y1,0 = 1, y2,0 = y3,0 = y4,0 = 0. By the conditions (3)–(4) of (3.1) we have y1,1 = y1,2 = 1. Then from

the second equation we get y2,1 = 1, y3,1 = y4,1 = 0. By the conditions (3)–(4) of (3.1) we have y2,2 = 1. Then
from the third equation we get y3,2 = 1, y4,2 = 0. It follows that g = as

4h4,0h3,1h2,2h1,3 up to sign, showing

that E
s+4,t1(s)+s,∗
1 = Zp{as

4h4,0h3,1h2,2h1,3}. �

Lemma 4.2 Let p ≥ 11 , n ≥ 4 , 0 ≤ s < p − 4 . Then the May E1 -term satisfies

E
s+6,t(s,n)+s,∗
1 =

⎧⎨
⎩

M n = 4
0 n ≥ 5 and 0 ≤ s < p − 5
K n ≥ 5 and s = p − 5

for 0 < r ≤ s + 7 . Here, t(s, n) = [(s + 2) + (s + 4)p + (s + 3)p2 + (s + 4)p3 + pn]q , M is the Zp -module

generated by the following twenty elements:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1 = as
4h4,0h2,0h3,1h1,3b4,0, g2 = as

4h5,0h4,0h3,1h1,1b1,2,
g3 = as

4h5,0h4,0h3,1h1,3b1,0, g4 = as
4h4,0h2,0h4,1h3,1b1,2,

g5 = as
4h5,0h4,0h1,1h1,3b3,0, g6 = a5a

s−1
4 h4,0h2,0h3,1h1,3b3,0,

g7 = as
4h5,0h2,0h3,1h1,3b3,0, g8 = as

4h4,0h2,0h3,1h2,3b3,0,
g9 = as

4h4,0h2,0h4,1h1,3b3,0, g10 = as−1
4 a2h5,0h4,0h3,1h1,3b3,0,

g11 = as
4h4,0h2,0h3,1h2,1h2,3h1,3, g12 = a5a

s−1
4 h4,0h2,0h3,1h1,1h2,2h1,3,

g13 = as
4h5,0h2,0h3,1h1,1h2,2h1,3, g14 = as

4h4,0h2,0h4,1h1,1h2,2h1,3,
g15 = as

4h4,0h2,0h3,1h1,1h3,2h1,3, g16 = as
4h4,0h2,0h3,1h1,1h2,2h2,3,

g17 = as
4h4,0h1,0h4,1h3,1h1,1h1,3, g18 = as−1

4 a2h4,0h2,0h4,1h3,1h2,2h1,3,
g19 = as−1

4 a2h5,0h4,0h3,1h1,1h2,2b1,3, g20 = as
4h4,0h3,0h3,1h1,1h2,3h1,3,

where M(g1) = 9s + 7p + 16, M(gi) = 9s + p + 22 for 2 ≤ i ≤ 4 , M(gi) = 9s + 5p + 18 for 5 ≤
i ≤ 10 , M(gi) = 9s + 22 for 11 ≤ i ≤ 20, and K is the Zp -module generated by two elements g21 =

ap−5
n hn,0h5,0hn−1,1h1,1hn−3,3hn−4,4, g22 = ap−5

n hn,0h2,0hn−1,1h4,1hn−3,3hn−4,4, where M(g21) = M(g22) =

(2n + 1)(p − 5) + 8n − 10 .

Proof. Consider g ∈ E
s+6,t(s,n)+s,∗
1 , where t(s, n) = [(s + 2) + (s + 4)p + (s + 3)p2 + (s + 4)p3 + pn]q with

(c̄0, c̄1, · · · , c̄n) = (s + 2, s + 4, s + 3, s + 4, 0, · · · , 0, 1). Then dim g = s + 6 and deg g = t(s, n) + s .

Since s + 6 < s + q, according to the assertion in Section 3, the number of xi in g is s . By the reason
of dimension, all the possibilities of g can be listed as x1 · · ·xsz1z2z3 , x1 · · ·xsy1y2z1z2 , x1 · · ·xsy1y2y3y4z1 ,
x1 · · ·xsy1y2y3y4y5y6 .
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Case 1 g = x1x2 · · ·xsz1z2z3 . Note that s < p− 4. It follows that
s∑

i=1

xi,0 ≤ s < s + 2 = c̄0 ≤ c0 , which

is impossible. Thus the first equation of (3.2) has no solution, showing that such g is impossible to exist.

Case 2 g = x1x2 · · ·xsy1y2z1z2 . By s < p − 4, we have that
s∑

i=1

xi,j + y1,j + y2,j + z1,j + z2,j ≤

s + 4 < p for all 0 ≤ j ≤ n . Thus the integer sequence K = (k0, k1, · · · , kn−1) in the corresponding

group of equation (3.2) is (0, 0, · · · , 0) and S = (c0, c1, · · · , cn) = (s + 2, s + 4, s + 3, s + 4, 0, · · · , 0, 1).

Since
s∑

i=1

xi,1 + y1,1 + y2,1 + z1,1 + z2,1 = s + 4 and
s∑

i=1

xi,3 + y1,3 + y2,3 + z1,3 + z2,3 = s + 4, we get

xi,1 = y1,1 = y2,1 = z1,1 = z2,1 = 1 and xi,3 = y1,3 = y2,3 = z1,3 = z2,3 = 1 (1 ≤ i ≤ s). Then by the

conditions (2), (4) and (7) in (3.1), we get xi,2 = y1,2 = y2,2 = z1,2 = z2,2 = 1 (1 ≤ i ≤ s), which is impossible

because of
s∑

i=1
xi,2 + y1,2 + y2,2 + z1,2 + z2,2 = s + 3. So the corresponding group of equations (3.2) has no

solution. It follows that g is impossible to exist.

Case 3 g = x1x2 · · ·xsy1y2y3y4z1 .

Subcase 3.1 n = 4. Similar to Case 2, we get S = (c0, c1, c2, c3, c4) = (s + 2, s + 4, s + 3, s + 4, 1).

We solve the corresponding group of equations (3.2) by virtue of (3.1), and get the following ten nontrivial
generators

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g1 = as
4h4,0h2,0h3,1h1,3b4,0, g2 = as

4h5,0h4,0h3,1h1,1b1,2,
g3 = as

4h5,0h4,0h3,1h1,3b1,0, g4 = as
4h4,0h2,0h4,1h3,1b1,2,

g5 = as
4h5,0h4,0h1,1h1,3b3,0, g6 = a5a

s−1
4 h4,0h2,0h3,1h1,3b3,0,

g7 = as
4h5,0h2,0h3,1h1,3b3,0, g8 = as

4h4,0h2,0h3,1h2,3b3,0,
g9 = as

4h4,0h2,0h4,1h1,3b3,0, g10 = as−1
4 a2h5,0h4,0h3,1h1,3b3,0,

where M(g1) = 9s + 7p + 16, M(gi) = 9s + p + 22 for 2 ≤ i ≤ 4, M(gi) = 9s + 5p + 18 for 5 ≤ i ≤ 10.

Subcase 3.2 n ≥ 5. Since
s∑

i=1
xi,j + y1,j + y2,j + y3,j + y4,j + z1,j ≤ s + 5 ≤ p (0 ≤ j ≤ n and z1,0 = 0

), then all possibilities of the integer sequence K = (k0, k1, · · · , kn−1) in the corresponding group of equation

(3.2) are

K1 = (0, 0, · · · , 0),

Ki = (0, 0, 0, 0, 0, · · · , 0, 1(i), 1, · · · , 1) (5 ≤ i ≤ n and s = p − 5),

where 1(i) means that 1 is the i-th term of the sequence Ki . The corresponding sequence S = (c0, c1, · · · , cn)
are listed as

S1 = (s + 2, s + 4, s + 3, s + 4, 0, · · · , 0, 1),

Si = (p − 3, p− 1, p− 2, p− 1, 0, · · · , 0, p(i), p − 1, · · · , p − 1, 0) (5 ≤ i ≤ n and s = p − 5).

For S1 and Si(5 ≤ i ≤ n), we can easily show that the corresponding group of equations (3.2) has no
solution.

Case 4 g = x1x2 · · ·xsy1y2y3y4y5y6 .

Subcase 4.1 n = 4. Similar to Case 2, we get S = (c0, c1, c2, c3, c4) = (s + 2, s + 4, s + 3, s + 4, 1). One

can solve the corresponding group of equations (3.2) by virtue of (3.1), and get ten nontrivial generators as

317



LIU, WANG

follows: ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g11 = as
4h4,0h2,0h3,1h2,1h2,3h1,3, g12 = a5a

s−1
4 h4,0h2,0h3,1h1,1h2,2h1,3,

g13 = as
4h5,0h2,0h3,1h1,1h2,2h1,3, g14 = as

4h4,0h2,0h4,1h1,1h2,2h1,3,
g15 = as

4h4,0h2,0h3,1h1,1h3,2h1,3, g16 = as
4h4,0h2,0h3,1h1,1h2,2h2,3,

g17 = as
4h4,0h1,0h4,1h3,1h1,1h1,3, g18 = as−1

4 a2h4,0h2,0h4,1h3,1h2,2h1,3,
g19 = as−1

4 a2h5,0h4,0h3,1h1,1h2,2h1,3, g20 = as
4h4,0h3,0h3,1h1,1h2,3h1,3,

where M(gi) = 9s + 22 for 11 ≤ i ≤ 20.

Subcase 4.2 n ≥ 5 and 0 ≤ s < p − 6. Similar to Case 2, we get the integer sequence S =
(c0, c1, · · · , cn) = (s + 2, s + 4, s + 3, s + 4, 0, · · · , 0, 1). One can solve the corresponding group of equations

(3.2) by virtue of (3.1), and get the following three generators as
4h

2
4,0h3,1h1,1h1,3h1,n , as−1

4 a2h
2
4,0h

2
3,1h1,3h1,n

and as
4h4,0h2,0h

2
3,1h1,3h1,n which are all trivial by h2

4,0 = h2
3,1 = 0.

Subcase 4.3 n ≥ 5 and s = p − 6. Similar to Subcase 3.2, we get all the possibilities of S =
(c0, c1, · · · , cn):

S1 = (p − 4, p− 2, p− 3, p − 2, 0, · · · , 0, 1),

Si = (p − 4, p− 2, p− 3, p− 2, 0, · · · , 0, p(i), p − 1, · · · , p − 1, 0) (5 ≤ i ≤ n).

For S1 , we can solve the corresponding group of equations (3.2) by virtue of (3.1), and get three generators

ap−6
4 h2

4,0h3,1h1,1h1,3h1,n , ap−7
4 a2h

2
4,0h

2
3,1h1,3h1,n , ap−6

4 h4,0h2,0h
2
3,1h1,3h1,n which are all trivial by h2

4,0 = h2
3,1 =

0. For Si(5 ≤ i ≤ n), by (3.1) we can show that the corresponding group of equations (3.2) has no solution.

Subcase 4.4 n ≥ 5 and s = p − 5. Similar to Subcase 3.2, we get all the possibilities of S =
(c0, c1, · · · , cn):

S1 = (p − 3, p− 1, p− 2, p − 1, 0, · · · , 0, 1),

Si = (p − 3, p− 1, p− 2, p− 1, 0, · · · , 0, p(i), p − 1, · · · , p − 1, 0) (5 ≤ i ≤ n).

For S1 , one can solve the corresponding group of equations (3.2) by (3.1) and get three generators ap−5
4 h2

4,0h3,1

h1,1h1,3h1,n , ap−6
4 a2h

2
4,0h

2
3,1h1,3h1,n and ap−5

4 h4,0h2,0h
2
3,1h1,3h1,n which are all trivial by h2

4,0 = h2
3,1 = 0.

For S = S5 and n = 5, we solve the corresponding group of equations (3.2) by virtue of (3.1), and

get three generators ap−5
5 h2

5,0h4,1h1,1h2,3h1,4 , ap−6
5 a2h

2
5,0h

2
4,1h2,3h1,4 and ap−5

5 h5,0h2,0h
2
4,1h2,3h1,4 which are all

trivial by h2
5,0 = h2

4,1 = 0.

For S = S5 and n > 5, one can solve the corresponding group of equations (3.2) by virtue of (3.1), and

get two nontrivial generators g21 = ap−5
n hn,0h5,0hn−1,1h1,1hn−3,3hn−4,4 and g22 = ap−5

n hn,0h2,0hn−1,1h4,1hn−3,3

hn−4,4 with M(g21) = M(g22) = (2n + 1)(p − 5) + 8n − 10.

For Si(6 ≤ i ≤ n), by (3.1) one can show that the corresponding group of equations (3.2) has no solution.

This finishes the proof of Lemma 4.2. �

Now we give the proof of Theorem 1.2.

Proof of Theorem 1.2 (1) It is known that h2,0h1,1 ∈ E
2,q(2p+1),∗
1 and h1,n ∈ E1,qpn,∗

1 are permanent

cocycles in the MSS and represent k0 ∈ Ext2,2pq+q
A (Zp, Zp) and hn ∈ Ext1,pnq

A (Zp, Zp) respectively. By Lemma
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4.1, δ̃s+4 is represented by

as
4h4,0h3,1h2,2h1,3 ∈ Es+4,∗,∗

1

in the MSS. Then, we get that h2,0h1,1h1,nas
4h4,0h3,1h2,2h1,3 ∈ E

s+7,t(s,n)+s,9s+21
1 is a permanent cocycle and

represents k0hnδ̃s+4 ∈ Exts+7,t(s,n)+s
A (Zp, Zp) in the MSS.

Case 1 0 ≤ s < p − 5. From Lemma 4.2, the May E1 -term E
s+6,t(s,n)+s,∗
1 = 0, which implies that

Es+6,t(s,n)+s,∗
r = 0

for r ≥ 1. Consequently, the permanent cocycle h2,0h1,1h1,nas
4h4,0h3,1h2,2h1,3 cannot be hit by any May

differential in the MSS. Thus in this case, k0hnδ̃s+4 	= 0.

Case 2 s = p − 5. By Lemma 4.2, in this case

E
p+1,t(p−5,n)+p−5,∗
1 = Zp{g21, g22}

and M(g21) = M(g22) = (2n + 1)(p − 5) + 8n − 10. By the reason of May filtration, we see that

h2,0h1,1h1,nas
4h4,0h3,1h2,2h1,3 is not in d1(E

p+1,t(p−5,n)+p−5,(2n+1)(p−5)+8n−10
1 ). By (2.4), we have the May

differentials of the generators of E
p+1,t(p−5,n)+p−5,(2n+1)(p−5)+8n−10
1 as follows:

d1(g21) = d1(ap−5
n hn,0h5,0hn−1,1h1,1hn−3,3hn−4,4)

= −ap−5
n d1(hn,0)h5,0hn−1,1h1,1hn−3,3hn−4,4 + · · ·

= −ap−5
n hn−2,2h2,0h5,0hn−1,1h1,1hn−3,3hn−4,4 + · · · 	= 0,

d1(g22) = d1(ap−5
n hn,0h2,0hn−1,1h4,1hn−3,3hn−4,4)

= ap−5
n d1(hn,0)h2,0hn−1,1h4,1hn−3,3hn−4,4 + · · ·

= ap−5
n hn−5,5h5,0h2,0hn−1,1h4,1hn−3,3hn−4,4 + · · · 	= 0.

We can see that the first May differential of each generator contains at least a term which is not in the first
May differential of the other generator. It follows that the first May differential of the two generators is linearly
independent. This means that

Ep+1,t(p−5,n)+p−5,(2n+1)(p−5)+8n−10
r = 0

for r ≥ 2. Then h2,0h1,1h1,nap−5
4 h4,0h3,1h2,2h1,3 is not in dr(E

p+1,t(p−5,n)+p−5,(2n+1)(p−5)+8n−10
r ) for r ≥ 1,

which implies that the permanent cocycle h2,0h1,1h1,nap−5
4 h4,0h3,1h2,2h1,3 cannot be hit by any May differential.

Thus k0hnδ̃p−1 	= 0 ∈ Extp+2,t(p−5,n)+p−5
A (Zp, Zp).

This completes the proof of Theorem 1.2 (1).

(2) Since k0h3δ̃s+4 is represented in the MSS by h2,0h1,1h1,3a
s
4h4,0h3,1h2,2h1,3 which is trivial by h2

1,3 = 0,

it follows that k0h3δ̃s+4 = 0.

Now we will show k0h4δ̃s+4 = 0. It suffices to prove that h2,0h1,1h1,4a
s
4h4,0h3,1h2,2h1,3 ∈ E

s+6,t(s,4)+s,9s+21
1

which represents k0hnδ̃s+4 ∈ Exts+7,t(s,4)+s
A (Zp, Zp) is in d1(E

s+6,t(s,4)+s,9s+22
1 ). From Lemma 4.2,

E
s+6,t(s,4)+s,9s+22
1 = Zp{g11, · · · , g20}.

319



LIU, WANG

By (2.4) we compute the first May differential of gi (11 ≤ i ≤ 20) as follows (use the graded commutativity in

the MSS, we arrange d1(gi) for 11 ≤ i ≤ 20 in the way of (i), (ii) and (iii) in Section 3)

d1(g11) = (−1)s(sas−1
4 a2h4,0h2,0h3,1h2,1h2,2h2,3h1,3

1
+ as

4h4,0h1,0h3,1h2,1h1,1h2,3h1,3
2

− as
4h4,0h2,0h2,1h1,1h2,2h2,3h1,3

3
+ as

4h4,0h2,0h3,1h1,1h1,2h2,3h1,3
4
),

d1(g12) = (−1)s(as−1
4 a0h5,0h4,0h2,0h3,1h1,1h2,2h1,3

5
+ as−1

4 a1h4,0h2,0h4,1h3,1h1,1h2,2h1,3
6

+ as−1
4 a2h4,0h2,0h3,1h1,1h3,2h2,2h1,3

7
− as−1

4 a3h4,0h2,0h3,1h1,1h2,2h2,3h1,3
8

+ as
4h4,0h2,0h3,1h1,1h2,2h1,3h1,4

9
),

d1(g13) = (−1)s(−sas−1
4 a0h5,0h4,0h2,0h3,1h1,1h2,2h1,3

5
− as

4h2,0h1,0h4,1h3,1h1,1h2,2h1,3
10

− as
4h3,0h2,0h3,1h1,1h2,2h2,3h1,3

11
+ h4,0h2,0h3,1h1,1h2,2h1,3h1,4

9
),

d1(g14) = (−1)s(−sas−1
4 a1h4,0h2,0h4,1h3,1h1,1h2,2h1,3

6
+ as

4h2,0h1,0h4,1h3,1h1,1h2,2h1,3
10

− as
4h4,0h2,0h2,1h1,1h2,2h2,3h1,3

3
+ as

4h4,0h2,0h3,1h1,1h2,2h1,3h1,4
9
),

d1(g15) = (−1)s(−sas−1
4 a2h4,0h2,0h3,1h1,1h3,2h2,2h1,3

7
− as

4h4,0h2,0h3,1h1,1h1,2h2,3h1,3
4

+ as
4h4,0h2,0h3,1h1,1h2,2h1,3h1,4

9
),

d1(g16) = (−1)s(sas−1
4 a3h4,0h2,0h3,1h1,1h2,2h2,3h1,3

8
+ as

4h3,0h2,0h3,1h1,1h2,2h2,3h1,3
11

+ as+2
4 h4,0h2,0h2,1h1,1h2,2h2,3h1,3

3
+ as

4h4,0h2,0h3,1h1,1h1,2h2,3h1,3
4

+ as
4h4,0h2,0h3,1h1,1h2,2h1,3h1,4

9
),

d1(g17) = (−1)s(−sas−1
4 a2h4,0h1,0h4,1h3,1h1,1h2,2h1,3

12
− as

4h2,0h1,0h4,1h3,1h1,1h2,2h1,3
10

+ as
4h4,0h1,0h3,1h2,1h1,1h2,3h1,3

2
),

d1(g18) = (−1)sas−1
4 (a1h4,0h2,0h4,1h3,1h1,1h2,2h1,3

6
+ as−1

4 a2h4,0h1,0h4,1h3,1h1,1h2,2h1,3
12

− as−1
4 a2h4,0h2,0h3,1h1,1h3,2h2,2h1,3

7
+ as−1

4 a2h4,0h2,0h3,1h2,1h2,2h2,3h1,3
1
),

d1(g19) = (−1)s(as−1
4 a0h5,0h4,0h2,0h3,1h1,1h2,2h1,3

5
− as−1

4 a2h4,0h1,0h4,1h3,1h1,1h2,2h1,3
12

− as−1
4 a2h4,0h2,0h3,1h1,1h3,2h2,2h1,3

7
+ as−1

4 a2h4,0h3,0h3,1h1,1h2,2h2,3h1,3
13

),
d1(g20) = (−1)s(sas−1

4 a2h4,0h3,0h3,1h1,1h2,2h2,3h1,3
13

− as
4h3,0h2,0h3,1h1,1h2,2h2,3h1,3

11
− as

4h4,0h1,0h3,1h2,1h1,1h2,3h1,3
2

+ as
4h4,0h2,0h3,1h1,1h1,2h2,3h1,3

4
).

Without generality, we let s be even. Then we easily get

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1(g11)
d1(g12)
d1(g13)
d1(g14)
d1(g15)
d1(g16)
d1(g17)
d1(g18)
d1(g19)
d1(g20)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s 1 −1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 −1 1 0 0 0 0
0 0 0 0 −s 0 0 0 1 −1 −1 0 0
0 0 −1 0 0 −s 0 0 1 1 0 0 0
0 0 0 −1 0 0 −s 0 1 0 0 0 0
0 0 1 1 0 0 0 s 1 0 1 0 0
0 1 0 0 0 0 0 0 0 −1 0 −s 0
1 0 0 0 0 1 −1 0 0 0 0 1 0
0 0 0 0 1 0 −1 0 0 0 0 −1 1
0 −1 0 1 0 0 0 0 0 0 −1 0 s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

2

3

4

5

6

7

8

9

10

11

12

13

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By the knowledge of matrix, we can easily get that the rank of the middle matrix above is 8. To add a
row (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0) to the matrix, we get that the rank of the new matrix is also 8, which

implies that (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0) can be linearly represented by the other rows of the matrix and then
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as
4h4,0h2,0h3,1h1,1h2,2h1,3h1,4

9
can be linearly represented by d1(g11), · · · , d1(g20). So h2,0h1,1h1,4a

s
4h4,0h3,1

h2,2h1,3 is in d1(E
s+6,t(s,4)+s,9s+22
1 ), showing that k0h4δ̃s+4 = 0.

This finishes the proof of Theorem 1.2. �
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