Some properties of Associate and Presimplifiable rings

Manal Ghanem

Abstract

In this paper we study some properties of associate and presimplifiable rings. We give a characterization of the associate (resp., domainlike) pullback P of $R_{1} \rightarrow R_{3} \leftarrow R_{2}$, where R_{1} and R_{2} are two presimplifiable (resp., domainlike) rings. We prove that R is presimplifiable ring if and only if the factor ring $R / \operatorname{nil}(R)$ is presimplifiable and the ideal $\operatorname{nil}(R)$ is presimplifiable. Then we investigate the associate and presimplifiable property of the dual rings $R[x] /\left\langle x^{2}\right\rangle$ and its modules through the base ring R and its modules.

Key Words: Associate ring, presimplifiable ring, domainlike, pullback and dual ring.

1. Introduction

Throughout this paper, all rings are assumed to be commutative with unity and all modules are unitary. If R is a ring, the Jacobson radical of R , the nilradical of R , the set of zero divisors of R and the set of units of R are denoted by $J(R), n i l(R), Z(R)$ and $U(R)$, respectively. And the annihilator of a subset X of a module over R is denoted by $\operatorname{ann}_{R}(X)$. Any unexplained terminology will be standard as in Hungerford [10].

Definition 1.1 A ring R is called presimplifiable if, whenever for any $a, b \in R$ with $a=a b$, we have that $a=0$ or $b \in U(R)$.

One can easily verify that a ring R is presimplifiable if and only if $Z(R) \subseteq J(R)$. And every presimplifiable ring is indecomposable while the converse of this statement need not necessarily be true. Domainlike rings (i.e., $Z(R) \subseteq \operatorname{nil}(R))$ and local rings are examples of presimplifiable rings.

Definition 1.2 A ring R is called an associate ring if whenever any two elements a and benerates the same principal ideal of R there is a unit u such that $a=u b$.

The class of associate rings contains a large class of rings such as presimplifiable rings, principal ideal rings, artinian rings, von Neumann regular rings and PP rings. This class of rings was originally studied by Kaplansky [12]. Then Bouvier studied presimplifiable rings in a series of papers [5]-[8]. Recently, the class of associate rings was studied more extensively by Anderson and Valdes Leon[1],[2], Spelman et al [13] and Anderson et al

[^0]
GHANEM

[3]. Our aim of this paper is to study some properties of presimplifiable and associate rings and to investigate the associate and presimplifiable properties of the dual ring $R[x] /\left\langle x^{2}\right\rangle$ and its modules.

2. Some properties of associate and presimplifiable rings

Definition 2.1 A ring R is said to be superpresimplifiable (resp., superassociate) if every subring of R is presimplifiable(resp., associate).

Remark 2.1 (Anderson et al [3]).
(1) Domainlike is superpresimplifiable.
(2) A subring of a presimplifiable (resp., associate) ring need not be presimplifiable (resp., associate).
(3) A superassociate ring need not be presimplifiable.
(4) A direct product of superassociate rings need not be superassociate.

Anderson et al in [3] gave $\mathbb{Z} \times \mathbb{Z}$ and $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ as an examples of superassociate rings. It is easy to generalize this result to a direct product of any two presimplifiable rings with the set of units $\{ \pm 1\}$.

Theorem 2.1 A direct product of any two presimplifiable rings with the set of units $\{ \pm 1\}$ is superassociate.

Proof.

Suppose that $R=R_{1} \times R_{2}$ where R_{1} and R_{2} are two presimplifiable rings. Let S be a subring of R. Let (a, b) and (c, d) be two nonzero elements of S that generate the same principal ideal of S . Then $(a, b)=(x, y)(c, d)$ and $(c, d)=(m, n)(a, b)$ for some $(x, y),(m, n) \in S$. Then if $a \neq 0$ and $b \neq 0$ we have $(x m, y n) \in U(R)$ because the rings R_{1} and R_{2} are presimplifiable and $(a, b)=(x m, y n)(a, b)$. So $(x, y) \in U(R)$ and $(x, y)^{2}=(1,1)$. Hence $(x, y) \in U(S)$. And if $a=0$ then $(y, y) \in U(S)$ and $(a, b)=(y, y)(c, d)$ because R_{2} is presimplifiable ring with the set of units $\{ \pm 1\}$ and $b=y n b$. If $b=0$ then, likewise, $(x, x) \in U(S)$ with $(a, b)=(x, x)(c, d)$.

However, the product of two presimplifiable rings with torsion units groups need not be superassociate. For example, $R=\left\{(n, f(x)) \in \mathbb{Z} \times \mathbb{Z}_{5}[x]: f(0) \equiv n \bmod 5\right\}$ is a subring of $\mathbb{Z} \times \mathbb{Z}_{5}[x]$. And $\mathbb{Z}, \mathbb{Z}_{5}[x]$ are presimplifiable rings with the torsion units groups $U(\mathbb{Z})=\{ \pm 1\}$ and $U\left(\mathbb{Z}_{5}[x]\right)=\{1,2,3,4\}$. But R is not associate because $(0, x)$ and $(0,2 x)$ generate the same principal ideal of R and there is no unit (a, b) satisfies $(0, x)=(a, b)(0,2 x)$ (see Anderson et al [3], page 1).

We consider now the pullback.

Definition 2.2 Let R_{1}, R_{2} and R_{3} be any three rings with homomorphisms $p_{i}: R_{i} \rightarrow R_{3}, i=1,2$, which preserve the unity. The subring $P=\left\{\left(r_{1}, r_{2}\right) \in R_{1} \times R_{2}: p_{1}\left(r_{1}\right)=p_{2}\left(r_{2}\right)\right\}$ of the ring $R_{1} \times R_{2}$ is called the pullback P of $R_{1} \rightarrow R_{3} \leftarrow R_{2}$ with the set of units $U(P)=\left\{\left(u_{1}, u_{2}\right) \in P: u_{1} \in U\left(R_{1}\right)\right.$ and $\left.u_{2} \in U\left(R_{2}\right)\right\}$.

Anderson et al in [3] determined when the pullback P of $R_{1} \rightarrow R_{3} \leftarrow R_{2}$, where R_{1} and R_{2} are integral domains, is presimplifiable or associate.

GHANEM

Theorem 2.2 Let R_{1}, R_{2} and R_{3} be any three rings with epimorphisms $p_{i}: R_{i} \rightarrow R_{3}, i=1,2$, which are not isomorphisms. Suppose that R_{1} and R_{2} are integral domains. Then the pullback P of $R_{1} \rightarrow R_{3} \leftarrow R_{2}$ is presimplifiable (resp., associate) if and only if $p_{i}^{-1}(1) \subseteq U\left(R_{i}\right), i=1,2$ (resp., $p_{1}\left(U\left(R_{1}\right)\right)=p_{2}\left(U\left(R_{2}\right)\right)$.

In the same manner we can prove that the pullback P of $R_{1} \rightarrow R_{3} \leftarrow R_{2}$ where R_{1} and R_{2} are presimplifiable rings.

Theorem 2.3 Let R_{1}, R_{2} and R_{3} be any three rings with epimorphisms $p_{i}: R_{i} \rightarrow R_{3}, i=1,2$, which are not isomorphisms. Suppose that R_{1} and R_{2} are presimplifiable rings. Then the pullback P of $R_{1} \rightarrow R_{3} \leftarrow R_{2}$ is presimplifiable if and only if $p_{i}^{-1}(1) \subseteq U\left(R_{i}\right), i=1,2$.
Proof. Let $a \in p_{1}^{-1}(1)$ and $x \in \operatorname{Ker}\left(p_{2}\right)-\{0\}$. Then $(a, 1),(0, x) \in P$ with $(0, x)(a, 1)=(0, x)$. Since P is presimplifiable we have $(a, 1) \in U(P)$. Thus $a \in U(P)$.

Conversely, let $(a, b)=(x, y)(a, b)$ where $(a, b),(x, y) \in P$. Assume that $(a, b) \neq(0,0)$, say $a \neq 0$. Since $a=x a$ we have $x \in U\left(R_{1}\right)$. So there exists $t \in R_{2}$ such that $p_{1}\left(x^{-1}\right)=p_{2}(t)$. Hence $\left(x^{-1}, t\right) \in P$. Therefore, $(x, y)\left(x^{-1}, t\right)=(1, t y) \in P$ and hence $t y \in p_{2}^{-1}(1)$. But $p_{2}^{-1}(1) \subseteq U\left(R_{2}\right)$. So $(x, y) \in U(P)$ and hence P is presimplifiable.

Theorem 2.4 Let R_{1}, R_{2} and R_{3} be any three rings with epimorphisms $p_{i}: R_{i} \rightarrow R_{3}, i=1,2$, which are not isomorphisms. Suppose that R_{1} and R_{2} are two presimplifiable rings. Then the following statements are equivalent:
(1) The pullback P of $R_{1} \rightarrow R_{3} \leftarrow R_{2}$ is associate; and
(2) $p_{1}\left(U\left(R_{1}\right)\right)=p_{2}\left(U\left(R_{2}\right)\right)$ or $p_{i}\left(U\left(R_{i}\right)\right) \nsubseteq p_{j}\left(U\left(R_{j}\right)\right)$ implies that $\operatorname{Ker}\left(p_{i}\right) \subsetneq Z\left(R_{i}\right)$ and for any $u_{i} \in U\left(R_{i}\right)$ with $p_{i}\left(u_{i}\right) \in p_{i}\left(U\left(R_{i}\right)\right)-p_{j}\left(U\left(R_{j}\right)\right)$ and $a \in \operatorname{Ker}\left(p_{i}\right)$ there exists $v_{i} \in U\left(R_{i}\right)$ with $p_{i}\left(v_{i}\right) \in$ $p_{1}\left(U\left(R_{1}\right)\right) \cap p_{2}\left(U\left(R_{2}\right)\right)$ and $u_{i}-v_{i} \in \operatorname{ann}_{R_{i}}(a)$.
Proof. $\quad(1) \Longrightarrow(2)$: Suppose that $p_{1}\left(U\left(R_{1}\right)\right) \neq p_{2}\left(U\left(R_{2}\right)\right)$. WLOG assume that $p_{1}\left(U\left(R_{1}\right)\right) \nsubseteq p_{2}\left(U\left(R_{2}\right)\right)$. Then by (Proposition 5, [3]), $\operatorname{Ker}\left(p_{1}\right) \nsubseteq Z\left(R_{1}\right)$ implies that P is not associate. So we must assume that $\operatorname{Ker}\left(p_{1}\right) \subseteq Z\left(R_{1}\right)$. Now let, $a \in \operatorname{Ker}\left(p_{1}\right)-\{0\}$ and $u \in U\left(R_{1}\right)$ with $p_{1}(u) \in p_{1}\left(U\left(R_{1}\right)\right)-p_{2}\left(U\left(R_{2}\right)\right)$. Let $t, r \in R_{2}$ with $p_{1}(u)=p_{2}(r)$ and $p_{1}\left(u^{-1}\right)=p_{2}(t)$. Therefore $(u, r),\left(u^{-1}, t\right) \in P-U(P)$. Consequently, $(a, 0)=\left(u^{-1}, t\right)(a u, 0)$ and $(a u, 0)=(u, r)(a, 0)$, so, $(a, 0)$ and $(a u, 0)$ generate the same ideal of P. Since P is associate, there exists a unit $(m, n) \in P$ with $(a u, 0)=(m, n)(a, 0)$, so, $a(u-m)=0$ and hence, $u-m \in \operatorname{ann}_{R_{1}}(a) \subseteq Z\left(R_{1}\right)$. Also, $u-m \in R_{1}-\operatorname{Ker}\left(p_{1}\right)$. Otherwise, $p_{1}(u)=p_{1}(m)=p_{2}(n)$, a contradiction. So $\operatorname{Ker}\left(p_{1}\right) \subsetneq Z\left(R_{1}\right)$.
$(2) \Longrightarrow(1)$: Let (a, b) and (c, d) be two nonzero elements of P with $(c, d)=(r, s)(a, b)$ and $(a, b)=$ $(m, n)(c, d)$ for some $(m, n),(r, s) \in P$. If $a \neq 0$ and $b \neq 0$ then $(r, s),(m, n) \in U(P)$ because R_{1} and R_{2} are presimplifiable. So WLOG assume that $b=0$ and $(r, s),(m, n) \in P-U(P)$. Then $r, m \in U\left(R_{1}\right)$ and $s, n \in R_{2}-U\left(R_{2}\right)$. If there exists $x \in U\left(R_{2}\right)$ such that $p_{1}(m)=p_{2}(x)$, then $(m, x) \in U(P)$ with $(a, b)=(m, x)(c, d)$. Otherwise, $p_{1}(m) \in p_{1}\left(U\left(R_{1}\right)\right)-p_{2}\left(U\left(R_{2}\right)\right)$. But $c \in \operatorname{Ker}\left(p_{1}\right)$ because $c(1-r m)=0$. So there exists $v \in U\left(R_{1}\right)$ such that $p_{1}(v) \in p_{1}\left(U\left(R_{1}\right)\right) \cap p_{2}\left(U\left(R_{2}\right)\right)$ and $m-v \in a n n_{R_{1}}(c)$. Then $p_{1}(v)=p_{2}(t)$ for some $t \in U\left(R_{2}\right)$. Hence $(a, b)=(v, t)(c, d),(v, t) \in U(P)$. Thus P is associate.

GHANEM

Example 2.1 The pullback P of $\mathbb{Z} \rightarrow \mathbb{Z}_{8} \leftarrow \mathbb{Z}_{16}$ with natural maps $p_{i}, i=1,2$, is associate eventhough $p_{1}(U(\mathbb{Z}))=\{1,7\} \neq\{1,3,5,7\}=p_{2}\left(U\left(\mathbb{Z}_{16}\right)\right)$ since $\operatorname{Ker}\left(p_{2}\right) \subsetneq Z\left(\mathbb{Z}_{16}\right)$ and $5-7,3-1 \in a n n_{R_{2}(8)}$.

Now, we determine when the pullback P of $R_{1} \rightarrow R_{3} \leftarrow R_{2}$ where R_{1} and R_{2} are domainlike is again domainlike.

Theorem 2.5 Let R_{1}, R_{2} and R_{3} be rings with epimorphisms $p_{i}: R_{i} \rightarrow R_{3}, i=1,2$, which are not isomorphisms. Suppose that R_{1} and R_{2} are domainlike. Then the pullback P of $R_{1} \rightarrow R_{3} \leftarrow R_{2}$ is domainlike if and only if $\operatorname{Ker}\left(p_{i}\right) \subseteq Z\left(R_{i}\right), i=1,2$.
Proof. Let $a \in \operatorname{Ker}\left(p_{1}\right)-\{0\}$. Then $(a, 0) \in Z(P)$ because $(a, 0)(0, b)=(0,0)$ for any $b \in \operatorname{Ker}\left(p_{2}\right)$. But P is domainlike so $(a, 0)^{n}=(0,0)$ and hence $a^{n}=0$. Thus $a \in Z\left(R_{1}\right)$.

Conversely, let $(a, b) \in Z(P)$. If $a \neq 0, b \neq 0$, then $a \in Z\left(R_{1}\right)$ and $b \in Z\left(R_{2}\right)$. But R_{1} and R_{2} are domainlike, so $a^{n}=0$ and $b^{m}=0$ for some $m, n \in \mathbb{Z}$. Therefore, $(a, b)^{m n}=(0,0)$ and hence $(a, b) \in \operatorname{nil}(P)$. Also, if $b=0$ then $a \in \operatorname{Ker}\left(p_{1}\right)$. But $\operatorname{Ker}\left(p_{1}\right) \subseteq Z\left(R_{1}\right)$ and R_{1} is domainlike. So, we have $a \in \operatorname{nil}\left(R_{1}\right)$. Thus $(a, b) \in \operatorname{nil}(P)$.

Example 2.2 The pullback P of $\mathbb{Z}_{p^{\alpha}} \rightarrow \mathbb{Z}_{p^{\beta}} \leftarrow \mathbb{Z}_{p^{\gamma}}$ where $\beta<\alpha$ and $\beta<\gamma$ and p is prime number is domainlike because $\mathbb{Z}_{p^{\alpha}}$ and $\mathbb{Z}_{p^{\gamma}}$ are domainlike and $\operatorname{Ker}\left(p_{i}\right) \subseteq Z\left(R_{i}\right), i=1,2$.

The following is a consequence of Theorem 2.6 and Theorem 2.7.

Corollary 2.1 If R_{1} and R_{2} are domainlike, then the pullback P of $R_{1} \rightarrow R_{3} \leftarrow R_{2}$ is associate but not domainlike if and only if $\operatorname{Ker}\left(p_{i}\right) \nsubseteq Z\left(R_{i}\right), i=1$ or 2 and $p_{1}\left(U\left(R_{1}\right)\right)=p_{2}\left(U\left(R_{2}\right)\right)$.

Example 2.3 Let P be the pullback of $\mathbb{Z}_{9} \rightarrow \mathbb{Z}_{3} \leftarrow \mathbb{Z}_{9}[x]$ with the epimorphisms mapping $p_{1}: \mathbb{Z}_{9} \rightarrow \mathbb{Z}_{3}$ defined by $p_{1}(x)=\bar{x}$ and $p_{2}: \mathbb{Z}_{9}[x] \rightarrow \mathbb{Z}_{3}$ defined by $p_{2}(f(x))=f(0)$. Note that, $p_{1}\left(U\left(\mathbb{Z}_{9}\right)\right)=p_{2}\left(U\left(\mathbb{Z}_{9}[x]\right)\right)=\{1,2\}$ and $\operatorname{Ker}\left(p_{2}\right) \nsubseteq Z\left(\mathbb{Z}_{9}[x]\right)$ since $3+x \in \operatorname{Ker}\left(p_{2}\right)-Z\left(\mathbb{Z}_{9}[x]\right)$. So P is associate but not domainlike. Moreover, P is not presimplifiable because $(3,0)=(1,1+x)(3,0)$ and $1+x \in \mathbb{Z}_{9}[x]-U\left(\mathbb{Z}_{9}[x]\right)$.

Next we give a new characterization of presimplifiable rings. But first we introduce the following definition.

Definition 2.3 Let R be a ring and I be an ideal of R. Then I is called a presimplifiable ideal if for every $a \in I-\{0\}$ and $b \in R$ with the property $a=b a$ implies that $b \in U(R)$.

Clearly, every ideal of a presimplifiable ring is presimplifiable.

Lemma 2.1 Let R be a ring and I be an ideal of R. Then I is a presimplifiable ideal if and only if ann $n_{R}(a) \subseteq$ $J(R)$ for every $a \in I-\{0\}$.

Proof. Let $a \in I-\{0\}$ and $x \in a n n_{R}(a)$. Then $x \cdot a=0$. Hence $a(t x+1)=a$ for any $t \in R$. Therefore $t x+1 \in U(R)$ and hence $x \in J(R)$.

Conversely, let $a=b a$ where $0 \neq a \in I$ and $b \in R$. Then $b-1 \in a n n_{R}(a), a n n_{R}(a) \subseteq J(R)$. Consequently, $b \in U(R)$.

Theorem 2.6 A ring R is presimplifiable if and only if the factor ring $R / \operatorname{nil}(R)$ is presimplifiable and the ideal $\operatorname{nil}(R)$ is presimplifiable.

Proof. Let $\bar{a} \in Z(R / \operatorname{nil}(R))-\{\overline{0}\}$. Then $\bar{a} \bar{b}=\overline{0}$ for some $\bar{b} \in Z(R / n i l(R))-\{\overline{0}\}$. So there exits $m \in \mathbb{N}$ such that $a^{m} b^{m}=0$ where $b^{m} \neq 0$. Therefore, $a \in Z(R)$. Since R is presimplifiable ring we have $a \in J(R)$. So $a x+1 \in U(R)$ for every $x \in R$. Consequently, $\bar{a} \bar{x}+\overline{1} \in U(R / n i l(R))$ for every $\bar{x} \in R / n i l(R)$ i.e. $\bar{a} \in J(R / \operatorname{nil}(R))$.

Conversely, let $a b=a$ where a and b are nonzeros belong to R . Then $a \in \operatorname{nil}(R)$ or $\overline{0} \neq \bar{a} \in R / \operatorname{nil}(R)$. Since $\operatorname{nil}(R)$ is presimplifiable ideal and $R / \operatorname{nil}(R)$ is presimplifiable ring, we have $b \in U(R)$.

Anderson and Valdes Leon [3] extended the presimplifiable and associate property to modules. Recall that a module M is presimplifiable if for every $m \in M$ and $u \in R, m=u m$ implies that $u \in U(R)$. While a module M is associate if for every $m, n \in M$ with $m R=n R$ implies that there exists $u \in U(R)$ such that $m=u n$. It is easy to verify that every presimplifiable module is associate. And a module M is presimplifiable if and only if $a n n_{R}(m) \subseteq J(R)$ for every $m \in M-\{0\}$. Recall that, a module M is torsion-free as an R-module if $a n n_{R}(m) \subseteq Z(R)$ for every $m \in M-\{0\}$. Clearly, for any presimplifiable ring, a torsion-free R-module is presimplifiable. However the converse need not be true as the following example shows.

Theorem 2.7 Let R be a ring and T be a maximal ideal of R with $T \nsubseteq Z(R)$. Let $M=R / T$ and $S=R-T$. Then M is presimplifiable module over a ring of fractions $S^{-1} R$ eventhough it is not torsion-free.
Proof. Note that, $S^{-1} R$ is local ring so it is presimplifiable. And M is $S^{-1} R$ module under the multiplication $\frac{a}{b} \cdot \bar{m}=\overline{a c m}$ where $\frac{a}{b} \in S^{-1} R, \bar{m} \in M$ and $\overline{b c}=\overline{1}$. Now, let $\bar{m}=\frac{a}{b} \cdot \bar{m}$ and $\frac{a}{b} \in S^{-1} R-U\left(S^{-1} R\right)$. Then $\bar{a}=\overline{0}$ since $a \in T$. Thus, $\bar{m}=\overline{0}$ and hence M is presimplifiable as an $S^{-1} R$ module. However, M is not torsion-free. To show this let $m \in T-Z(R)$. Therefore, $\frac{m}{1} \cdot \overline{1}=\overline{0}$. Consequently, $a n n_{S^{-1} R}(\overline{1}) \nsubseteq Z\left(S^{-1} R\right)$. So the result holds.

3. The ring of dual numbers

Let R be a commutative ring with unity. Then the ring $R_{0}=R[x] /\left(x^{2}\right)$ is called the ring of dual numbers. This section is devoted to study the associate and presimplifiable properties of the dual ring R_{0} and its modules via the basic ring R and its modules.

First, we need to prove the following important lemma.

Lemma 3.1 Let $R_{0}=R[x] /\left(x^{2}\right)$ be a ring of dual numbers. Then

GHANEM

1. $U\left(R_{0}\right)=\{a+b x: a, b \in R$ and $a \in U(R)\}$
2. $J\left(R_{0}\right)=\{a+b x: a, b \in R$ and $a \in J(R)\}$
3. $Z\left(R_{0}\right)=\{a+b x: a, b \in R$ and $a \in Z(R)\}$
4. $\operatorname{nil}\left(R_{0}\right)=\{a+b x: a, b \in R$ and $a \in \operatorname{nil}(R)\}$.

Proof.

(1) Note that, $a+b x \in R_{0}$ and $a \in U(R)$ implies that $(a+b x)\left(a^{-1}+\left(-a^{-2} b\right) x\right)=1$.
(2) $a+b x \in J\left(R_{0}\right) \Longleftrightarrow 1+(a+b x)(c+d x) \in U\left(R_{0}\right)$ for every $c+d x \in R_{0} \Longleftrightarrow 1+a c \in U(R)$ for every $c \in R \Longleftrightarrow a \in J(R)$.
(3) Let $a \in Z(R)$. Then $a=0$ gives $(a+b x)(a+b x)=0$ for any $b \in R$. And $a \neq 0$ implies that there exists $0 \neq c \in Z(R)$ with $(a+b x)(c x)=0$ for every $b \in R$. So, $a+b x \in Z\left(R_{0}\right)$.
(4) Let $a \in \operatorname{nil}(R)$. Then $a^{n}=0$ for some $n \in \mathbb{N}$. But $(a+b x)^{n+1}=a^{n+1}+(n+1) a^{n} b x$. Thus $a+b x \in \operatorname{nil}\left(R_{0}\right)$.

As a simple consequence of Lemma 3.1 we obtain the following results.

Theorem 3.1 If $R_{0}=R[x] /\left(x^{2}\right)$ is the ring of dual numbers then

1. R_{0} is presimplifiable if and only if R is presimplifiable.
2. R_{0} is domainlike if and only if R is domainlike.

Proof. Note that, $Z\left(R_{0}\right) \subseteq J\left(R_{0}\right)$ (resp., $Z\left(R_{0}\right) \subseteq \operatorname{nil}\left(R_{0}\right)$) if and only if $Z(R) \subseteq J(R)$ (resp., $Z(R) \subseteq \operatorname{nil}(R))$.

Theorem 3.2 Let $R_{0}=R[x] /\left(x^{2}\right)$ be the ring of dual numbers. Then R_{0} is associate implies that R is associate.
Proof. Suppose that a and b are two nonzero elements belonging to R with $a R=b R$. Then $a R_{0}=b R_{0}$ and hence $a=(c+d x) b$ for some $c+d x \in U\left(R_{0}\right)$. So, $a=c b, c \in U(R)$. Therefore, R is associate.

This raises the question: if the ring R is associate, is it true that the ring of the dual numbers R_{0} is also associate? However, next we will give some examples of associate rings R for which the rings of dual numbers R_{0} are also associate.

Recall that a ring R is a stable-range 1 if for any $a, x, b \in R$ satisfying $a x+b=1$, there exists $y \in R$ such that $a+b y \in U(R)$. This class of rings is studied extensively in the literature, see, for example, Bass [4], Mental [11] and Chen [9]. It is easy to prove that a ring of stable range1 is associate.

Theorem 3.3 Let $R_{0}=R[x] /\left(x^{2}\right)$ be a ring of satble-range1. If R is stable-range1, then so is R_{0}.
Proof. Let $a+b x, c+d x$ and $m+n x \in R_{0}$ satisfying $(a+b x)+(m+n x)(c+d x)=1$. Then $a+m c=1$. Since R is a stable-rangel ring, there exist $v \in R$ and $u \in U(R)$ with $a v+c=u$. So, $(a+b x) v+(c+d x)=u+(b v+d) x \in U\left(R_{0}\right)$.

GHANEM

Theorem 3.4 Let $\left\{R_{\lambda}: \lambda \in \Gamma\right\}$ be a nonempty family of rings then $\left(\prod R_{\lambda}\right)_{0} \cong \prod\left(R_{\lambda}\right)_{0}$
Proof. Define $\Psi:\left(\prod R_{\lambda}\right)_{0} \rightarrow \prod\left(R_{\lambda}\right)_{0}$ by the relation

$$
\Psi\left(\left(a_{\lambda}\right)+\left(b_{\lambda}\right) x\right)=\left(a_{\lambda}+b_{\lambda} x\right)
$$

Then it is easy to verify that Ψ is a ring homomorphism.
Since the direct product of associate rings is associate ([13], Theorem 6) using Theorems 3.1 and 3.3, we obtain the following results.

Corollary 3.1 Let $\left\{R_{\lambda}: \lambda \in \Gamma\right\}$ be a family of presimplifiable rings or stable-range1 rings then $\left(\prod R_{\lambda}\right)_{0}$ is associate ring.

Corollary 3.2 For any principal ideal ring R, the ring of the dual numbers R_{0} is associate.
Proof. Note that, a principal ideal ring R is a direct product of principal ideal domains and special principal ideal rings ([14], Theorem 33, page 245), and special principal ideal rings are presimplifiable since they are local. So, R_{0} is a direct product of presimplifiable rings. Hence R_{0} is associate ring.

Next, we investigate the relationship between presimplifiable (resp., associate) R_{0}-module and presimplifiable (resp., associate) R-module. In the following theorem a characterization of R_{0}-module is given.

Theorem 3.5 If $R_{0}=R[x] /\left(x^{2}\right)$ is the ring of dual numbers then M is an $R_{0}-$ module if and only if M is an R-module and there exists an R-homomorphism $\alpha: M \rightarrow M$ such that $\alpha^{2}=0$.
Proof. Define $\alpha: M \rightarrow M$ by $\alpha(m)=x . m$ then α is an R homomorphism with $\alpha^{2}=0$.
Conversely, let M be an R -module with R homomorphism $\alpha: M \rightarrow M$ with $\alpha^{2}=0$. Then M is an R_{0}-module under multiplication $(a+b x) \cdot m=a \cdot m+b \cdot \alpha(m), m \in M$.

Theorem 3.6 Let M be an R_{0}-module. Then M is presimplifiable R_{0}-module if and only if M is presimplifiable R-module.
Proof. Suppose that M is a presimplifiable R_{0} module. Let $m \in M-\{0\}$ and $a \in R$ with $a m=0$ then, $a \in a n n_{R_{0}}(m)$ and hence, $a \in J\left(R_{0}\right)$. Thus, $a \in J(R)$ and hence, $a n n_{R}(m) \subseteq J(R)$.

Conversely, let $m \in M-\{0\}$ and $a+b x \in R_{0}$ with $(a+b x) \cdot m=0$. Therefore, $a x \cdot m=0$. Now, if $x \cdot m \neq 0$ then $a \in a n n_{R}(x \cdot m) \subseteq J(R)$ and if $x \cdot m=0$ then $a \cdot m=0$ and hence $a \in a n n_{R}(m) \subseteq J(R)$. So, $a+b x \in J\left(R_{0}\right)$.

Theorem 3.7 Let M be an R_{0}-module. Then M is a torsion-free R-module if and only if M is a torsion-free R_{0}-module.
Proof. Suppose that M is torsion-free R-module. Let $a+b x \in R_{0}$ and $m \in M-\{0\}$ with $(a+b x) m=0$. Then $a \cdot m=0$ or $a x \cdot m=0$. Hence $a \in a n n_{R}(m)$ or $a \in a n n_{R}(x \cdot m)$ and thus $a \in Z(R)$. Therefore, $a+b x \in Z\left(R_{0}\right)$.

Anderson et al. [3] proved that for $R=\mathbb{Z}, \mathrm{M}$ is presimplifiable R -module if and only if M is torsion-free. So we can conclude the following.

GHANEM

Corollary 3.3 Let $R=\mathbb{Z}$ and M be an R_{0} module. Then M is presimplifiable if and only if M is torsion-free. However, if M is associate as R_{0} module, it need not be the case that M is associate as R module.

Example 3.1 Let $R=\mathbb{Z}$ and $M=\mathbb{Z}_{9}$ with $x \cdot \overline{1}=\overline{3}$. Then it is easy to see that M is associate R_{0} module. However, M is nonassociate R-module otherwise $M=T \bigoplus F$ where $4 T=0$ or $6 T=0$ and F is torsion-free ([3], Theorem 12).

References

[1] Anderson, D.D. and Valddes-Leon, S.: Factorization in commutative rings with with zero divisors. Rocky Mountain J. Math, 26, 439-480 (1996)
[2] Anderson,D.D. and Valdes-Leon, S.: Factorization in commutative rings with zero divisors, II, Factorization in integral domains. Lecture Notes in Pure and Appl. Math. New York: Marcel Dekker. 189, 197-219 (1997).
[3] Anderson, D.D., Axtell, M., Forman, S.J., and Stickles, J.: When are associates unit multiples?. Rocky Mountain J. Math. 34 , 811-828 (2004).
[4] Bass, H.: Algebraic K-Theory. New York. Benjamin (1968).
[5] Bouvier, A.: Sur les anneaux de functions des anneaux atomiques presimplifiables. Bull. Sci.Math. 95, 371-377 (1971).
[6] Bouvier, A.: Anneaux presimplifiables. C . R.Acad . Sci. Paris Ser. A -B 274, 1605 -1607 (1972).
[7] Bouvier, A.: Resultats nouveaux sur les anneaux presimplifiables, C . R.Acad . Sci..Paris Ser. A -B 275, 955-957 (1972).
[8] Bouvier, A.: Anneaux presimplifiables. Rev.Routtmaine math.Pures Appl. 19, 713-724 (1974).
[9] Chen, H.: Units and idempotants and stable range 1 conditions. Comm. Algebra. 29, 703-717(2001).
[10] Hungerford, T.W.: Algebra. New York: Holt Rinehart and Winston, INC (1974).
[11] Menal, P. and Moncasi, J.: K1 of von Neumann regular rings. J. Pure Appl. Algebra. 33, 295-312(1984).
[12] Kaplansky, I.: Elementary divisors and modules. Tranc. Amer. Math. Soc. 66, 464-491 (1949).
[13] Spellman, D., Benkart, G.M., Gaglione, A.M., Kidwell, M.E., Meyerson, M.D. and Wardlaw, W.P.: Principal ideals and associate rings. JP. Journal of Algebra, Number Theory and Applications. 2, 181-193(2002).
[14] Zariski, O. and Samuel, P.: Commutative algebra,(I). New York. Van Nastrand Reinhold Company (1958).

[^0]: 2000 AMS Mathematics Subject Classification: .

