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Some properties of Associate and Presimplifiable rings

Manal Ghanem

Abstract

In this paper we study some properties of associate and presimplifiable rings. We give a characterization

of the associate (resp., domainlike) pullback P of R1 → R3 ← R2 , where R1 and R2 are two presimplifiable

(resp., domainlike) rings. We prove that R is presimplifiable ring if and only if the factor ring R/nil(R) is

presimplifiable and the ideal nil(R) is presimplifiable. Then we investigate the associate and presimplifiable

property of the dual rings R[x]/〈x2〉 and its modules through the base ring R and its modules.

Key Words: Associate ring, presimplifiable ring, domainlike, pullback and dual ring.

1. Introduction

Throughout this paper, all rings are assumed to be commutative with unity and all modules are unitary.
If R is a ring, the Jacobson radical of R, the nilradical of R, the set of zero divisors of R and the set of units
of R are denoted by J(R), nil(R), Z(R) and U(R), respectively. And the annihilator of a subset X of a module

over R is denoted by annR(X). Any unexplained terminology will be standard as in Hungerford [10].

Definition 1.1 A ring R is called presimplifiable if, whenever for any a, b ∈ R with a=ab, we have that a = 0
or b ∈ U(R) .

One can easily verify that a ring R is presimplifiable if and only if Z(R) ⊆ J(R). And every presimplifiable

ring is indecomposable while the converse of this statement need not necessarily be true. Domainlike rings (i.e.,

Z(R) ⊆ nil(R) ) and local rings are examples of presimplifiable rings.

Definition 1.2 A ring R is called an associate ring if whenever any two elements a and b generates the same
principal ideal of R there is a unit u such that a = ub .

The class of associate rings contains a large class of rings such as presimplifiable rings, principal ideal rings,
artinian rings, von Neumann regular rings and PP rings. This class of rings was originally studied by Kaplansky
[12]. Then Bouvier studied presimplifiable rings in a series of papers [5]–[8]. Recently, the class of associate

rings was studied more extensively by Anderson and Valdes Leon[1],[2], Spelman et al [13] and Anderson et al
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[3]. Our aim of this paper is to study some properties of presimplifiable and associate rings and to investigate

the associate and presimplifiable properties of the dual ring R[x]/〈x2〉 and its modules.

2. Some properties of associate and presimplifiable rings

Definition 2.1 A ring R is said to be superpresimplifiable (resp., superassociate) if every subring of R is

presimplifiable(resp., associate).

Remark 2.1 (Anderson et al [3]).

(1) Domainlike is superpresimplifiable.

(2) A subring of a presimplifiable (resp., associate) ring need not be presimplifiable (resp., associate).

(3) A superassociate ring need not be presimplifiable.

(4) A direct product of superassociate rings need not be superassociate.

Anderson et al in [3] gave Z × Z and Z2 × Z2 as an examples of superassociate rings. It is easy to generalize

this result to a direct product of any two presimplifiable rings with the set of units {±1} .

Theorem 2.1 A direct product of any two presimplifiable rings with the set of units {±1} is superassociate.

Proof.
Suppose that R = R1 ×R2 where R1 and R2 are two presimplifiable rings. Let S be a subring of R. Let

(a, b) and (c, d) be two nonzero elements of S that generate the same principal ideal of S. Then (a, b) = (x, y)(c, d)

and (c, d) = (m, n)(a, b) for some (x, y), (m, n) ∈ S . Then if a �= 0 and b �= 0 we have (xm, yn) ∈ U(R) because

the rings R1 and R2 are presimplifiable and (a, b) = (xm, yn)(a, b). So (x, y) ∈ U(R) and (x, y)2 = (1, 1).

Hence (x, y) ∈ U(S) . And if a = 0 then (y, y) ∈ U(S) and (a, b) = (y, y)(c, d) because R2 is presimplifiable

ring with the set of units {±1} and b = ynb . If b = 0 then, likewise, (x, x) ∈ U(S) with (a, b) = (x, x)(c, d).

�

However, the product of two presimplifiable rings with torsion units groups need not be superassociate.
For example, R = {(n, f(x)) ∈ Z × Z5[x] : f(0) ≡ n mod 5} is a subring of Z × Z5[x] . And Z , Z5[x] are

presimplifiable rings with the torsion units groups U(Z) = {±1} and U(Z5[x]) = {1, 2, 3, 4} . But R is not

associate because (0, x) and (0, 2x) generate the same principal ideal of R and there is no unit (a,b) satisfies

(0, x) = (a, b)(0, 2x) (see Anderson et al [3], page 1).

We consider now the pullback.

Definition 2.2 Let R1 , R2 and R3 be any three rings with homomorphisms pi : Ri → R3 , i = 1, 2 , which
preserve the unity. The subring P = {(r1, r2) ∈ R1 × R2 : p1(r1) = p2(r2)} of the ring R1 × R2 is called the

pullback P of R1 → R3 ← R2 with the set of units U(P ) = {(u1, u2) ∈ P : u1 ∈ U(R1) and u2 ∈ U(R2)} .

Anderson et al in [3] determined when the pullback P of R1 → R3 ← R2 , where R1 and R2 are integral
domains, is presimplifiable or associate.
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Theorem 2.2 Let R1 , R2 and R3 be any three rings with epimorphisms pi : Ri → R3 , i = 1, 2 , which are
not isomorphisms. Suppose that R1 and R2 are integral domains. Then the pullback P of R1 → R3 ← R2 is

presimplifiable (resp., associate) if and only if p−1
i (1) ⊆ U(Ri), i = 1, 2 (resp., p1(U(R1)) = p2(U(R2)) .

In the same manner we can prove that the pullback P of R1 → R3 ← R2 where R1 and R2 are
presimplifiable rings.

Theorem 2.3 Let R1 , R2 and R3 be any three rings with epimorphisms pi : Ri → R3 ,i = 1, 2 , which are
not isomorphisms. Suppose that R1 and R2 are presimplifiable rings. Then the pullback P of R1 → R3 ← R2

is presimplifiable if and only if p−1
i (1) ⊆ U(Ri), i = 1, 2 .

Proof. Let a ∈ p−1
1 (1) and x ∈ Ker(p2) − {0} . Then (a, 1), (0, x) ∈ P with (0, x)(a, 1) = (0, x). Since P is

presimplifiable we have (a, 1) ∈ U(P ). Thus a ∈ U(P ).

Conversely, let (a, b) = (x, y)(a, b) where (a, b), (x, y) ∈ P . Assume that (a, b) �= (0, 0), say a �= 0. Since

a = xa we have x ∈ U(R1). So there exists t ∈ R2 such that p1(x−1) = p2(t). Hence (x−1, t) ∈ P . Therefore,

(x, y)(x−1, t) = (1, ty) ∈ P and hence ty ∈ p−1
2 (1). But p2

−1(1) ⊆ U(R2) . So (x, y) ∈ U(P ) and hence P is
presimplifiable. �

Theorem 2.4 Let R1 , R2 and R3 be any three rings with epimorphisms pi : Ri → R3 ,i = 1, 2 , which are
not isomorphisms. Suppose that R1 and R2 are two presimplifiable rings. Then the following statements are
equivalent:

(1) The pullback P of R1 → R3 ← R2 is associate; and

(2) p1(U(R1)) = p2(U(R2)) or pi(U(Ri)) � pj(U(Rj)) implies that Ker(pi) � Z(Ri) and for any

ui ∈ U(Ri) with pi(ui) ∈ pi(U(Ri)) − pj(U(Rj)) and a ∈ Ker(pi) there exists vi ∈ U(Ri) with pi(vi) ∈
p1(U(R1)) ∩ p2(U(R2)) and ui − vi ∈ annRi(a) .

Proof. (1)=⇒(2): Suppose that p1(U(R1)) �= p2(U(R2)). WLOG assume that p1(U(R1)) � p2(U(R2)).

Then by (Proposition 5, [3]), Ker(p1) � Z(R1) implies that P is not associate. So we must assume that

Ker(p1) ⊆ Z(R1) . Now let, a ∈ Ker(p1) − {0} and u ∈ U(R1) with p1(u) ∈ p1(U(R1)) − p2(U(R2)) . Let

t, r ∈ R2 with p1(u) = p2(r) and p1(u−1) = p2(t). Therefore (u, r), (u−1, t) ∈ P − U(P ). Consequently,

(a, 0) = (u−1, t)(au, 0) and (au, 0) = (u, r)(a, 0), so, (a, 0) and (au, 0) generate the same ideal of P. Since

P is associate, there exists a unit (m, n) ∈ P with (au, 0) = (m, n)(a, 0), so, a(u − m) = 0 and hence,

u−m ∈ annR1(a) ⊆ Z(R1). Also, u−m ∈ R1 − Ker(p1). Otherwise, p1(u) = p1(m) = p2(n), a contradiction.

So Ker(p1) � Z(R1) .

(2)=⇒(1): Let (a, b) and (c, d) be two nonzero elements of P with (c, d) = (r, s)(a, b) and (a, b) =

(m, n)(c, d) for some (m, n), (r, s) ∈ P . If a �= 0 and b �= 0 then (r, s), (m, n) ∈ U(P ) because R1 and

R2 are presimplifiable. So WLOG assume that b = 0 and (r, s), (m, n) ∈ P − U(P ). Then r, m∈ U(R1)

and s, n ∈ R2 − U(R2). If there exists x ∈ U(R2) such that p1(m) = p2(x), then (m, x) ∈ U(P ) with

(a, b) = (m, x)(c, d). Otherwise, p1(m) ∈ p1(U(R1)) −p2(U(R2)). But c ∈ Ker(p1) because c(1−rm) = 0. So

there exists v ∈ U(R1) such that p1(v) ∈ p1(U(R1)) ∩ p2(U(R2)) and m − v ∈ annR1(c). Then p1(v) = p2(t)

for some t ∈ U(R2). Hence (a, b) = (v, t)(c, d), (v, t) ∈ U(P ) . Thus P is associate. �
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Example 2.1 The pullback P of Z → Z8 ← Z16 with natural maps pi, i = 1, 2, is associate eventhough
p1(U(Z)) = {1, 7} �= {1, 3, 5, 7}=p2(U(Z16)) since Ker(p2) � Z(Z16) and 5 − 7 , 3 − 1 ∈ annR2(8) .

Now, we determine when the pullback P of R1 → R3 ← R2 where R1 and R2 are domainlike is again
domainlike.

Theorem 2.5 Let R1 , R2 and R3 be rings with epimorphisms pi : Ri → R3 ,i = 1, 2 , which are not
isomorphisms. Suppose that R1 and R2 are domainlike. Then the pullback P of R1 → R3 ← R2 is domainlike
if and only if Ker(pi) ⊆ Z(Ri), i = 1, 2 .

Proof. Let a ∈ Ker(p1) − {0}. Then (a, 0) ∈ Z(P ) because (a, 0)(0, b) = (0, 0) for any b ∈ Ker(p2). But

P is domainlike so (a, 0)n = (0, 0) and hence an = 0. Thus a ∈ Z(R1) .

Conversely, let (a, b) ∈ Z(P ). If a �= 0, b �= 0, then a ∈ Z(R1) and b ∈ Z(R2). But R1 and R2 are

domainlike, so an = 0 and bm = 0 for some m, n ∈ Z . Therefore, (a, b)mn = (0, 0) and hence (a, b) ∈ nil(P ) .

Also, if b = 0 then a ∈ Ker(p1). But Ker(p1) ⊆ Z(R1) and R1 is domainlike. So, we have a ∈ nil(R1). Thus

(a, b) ∈ nil(P ). �

Example 2.2 The pullback P of Zpα → Zpβ ← Zpγ where β < α and β < γ and p is prime number is

domainlike because Zpα and Zpγ are domainlike and Ker(pi) ⊆ Z(Ri), i = 1, 2 .

The following is a consequence of Theorem 2.6 and Theorem 2.7.

Corollary 2.1 If R1 and R2 are domainlike, then the pullback P of R1 → R3 ← R2 is associate but not

domainlike if and only if Ker(pi) � Z(Ri), i = 1 or 2 and p1(U(R1)) = p2(U(R2)) .

Example 2.3 Let P be the pullback of Z9 → Z3 ← Z9[x] with the epimorphisms mapping p1 : Z9 → Z3 defined

by p1(x) = x̄ and p2 : Z9[x] → Z3 defined by p2(f(x)) = f(0) . Note that, p1(U(Z9)) = p2(U(Z9[x])) = {1, 2}
and Ker(p2) � Z(Z9[x]) since 3 + x ∈ Ker(p2) − Z(Z9[x]). So P is associate but not domainlike. Moreover,

P is not presimplifiable because (3, 0) = (1, 1 + x)(3, 0) and 1 + x ∈ Z9[x]− U(Z9[x]).

Next we give a new characterization of presimplifiable rings. But first we introduce the following definition.

Definition 2.3 Let R be a ring and I be an ideal of R. Then I is called a presimplifiable ideal if for every
a ∈ I − {0} and b ∈ R with the property a = ba implies that b ∈ U(R) .

Clearly, every ideal of a presimplifiable ring is presimplifiable.

Lemma 2.1 Let R be a ring and I be an ideal of R. Then I is a presimplifiable ideal if and only if annR(a) ⊆
J(R) for every a ∈ I − {0}.
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Proof. Let a ∈ I − {0} and x ∈ annR(a) . Then x · a = 0. Hence a(tx + 1) = a for any t ∈ R . Therefore

tx + 1 ∈ U(R) and hence x ∈ J(R).

Conversely, let a = ba where 0 �= a ∈ I and b ∈ R . Then b − 1 ∈ annR(a), annR(a)⊆ J(R) . Conse-

quently, b ∈ U(R). �

Theorem 2.6 A ring R is presimplifiable if and only if the factor ring R/nil(R) is presimplifiable and the

ideal nil(R) is presimplifiable.

Proof. Let ā ∈ Z(R/nil(R)) − {0̄} . Then āb̄ = 0̄ for some b̄ ∈ Z(R/nil(R)) − {0̄} . So there exits m ∈ N

such that ambm = 0 where bm �= 0. Therefore, a ∈ Z(R) . Since R is presimplifiable ring we have a ∈ J(R) .

So ax + 1 ∈ U(R) for every x ∈ R . Consequently, āx̄ + 1̄ ∈ U(R/nil(R)) for every x̄ ∈ R/nil(R) i.e.

ā ∈ J(R�nil(R)) .

Conversely, let ab = a where a and b are nonzeros belong to R. Then a ∈ nil(R) or 0̄ �= ā ∈ R/nil(R) .

Since nil(R) is presimplifiable ideal and R/nil(R) is presimplifiable ring, we have b ∈ U(R). �

Anderson and Valdes Leon [3] extended the presimplifiable and associate property to modules. Recall that a

module M is presimplifiable if for every m ∈ M and u ∈ R , m = um implies that u ∈ U(R). While a module

M is associate if for every m, n ∈ M with mR = nR implies that there exists u ∈ U(R) such that m = un .
It is easy to verify that every presimplifiable module is associate. And a module M is presimplifiable if and
only if annR(m) ⊆ J(R) for every m ∈ M − {0} . Recall that, a module M is torsion-free as an R-module

if annR(m) ⊆ Z(R) for every m ∈ M − {0}. Clearly, for any presimplifiable ring, a torsion-free R-module is
presimplifiable. However the converse need not be true as the following example shows.

Theorem 2.7 Let R be a ring and T be a maximal ideal of R with T � Z(R) . Let M = R/T and S = R−T .

Then M is presimplifiable module over a ring of fractions S−1R eventhough it is not torsion-free.

Proof. Note that, S−1R is local ring so it is presimplifiable. And M is S−1R module under the multiplica-

tion a
b · m̄ = acm where a

b ∈ S−1R , m̄ ∈ M and bc = 1̄. Now, let m̄ = a
b · m̄ and a

b ∈ S−1R − U(S−1R).

Then ā = 0̄ since a ∈ T . Thus, m̄ = 0̄ and hence M is presimplifiable as an S−1R module. However, M is not

torsion-free. To show this let m ∈ T − Z(R). Therefore, m
1
· 1̄ = 0̄ . Consequently, annS−1R(1̄) � Z(S−1R).

So the result holds. �

3. The ring of dual numbers

Let R be a commutative ring with unity. Then the ring R0 = R[x]/(x2) is called the ring of dual numbers.
This section is devoted to study the associate and presimplifiable properties of the dual ring R0 and its modules
via the basic ring R and its modules.

First, we need to prove the following important lemma.

Lemma 3.1 Let R0 = R[x]/(x2) be a ring of dual numbers. Then
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1. U(R0) = {a + bx : a, b ∈ R and a ∈ U(R)}

2. J(R0) = {a + bx : a, b ∈ R and a ∈ J(R)}

3. Z(R0) = {a + bx : a, b ∈ R and a ∈ Z(R)}

4. nil(R0) = {a + bx : a, b ∈ R and a ∈ nil(R)} .

Proof.
(1) Note that, a + bx ∈ R0 and a ∈ U(R) implies that (a + bx)(a−1 + (−a−2b)x) = 1.

(2) a+bx ∈ J(R0) ⇐⇒ 1 + (a + bx)(c + dx) ∈ U(R0) for every c+dx ∈ R0 ⇐⇒ 1 + ac ∈ U(R) for every

c ∈ R ⇐⇒ a ∈ J(R).

(3) Let a ∈ Z(R) . Then a = 0 gives (a + bx)(a + bx) = 0 for any b ∈ R . And a �= 0 implies that there

exists 0 �= c ∈ Z(R) with (a + bx)(cx) = 0 for every b ∈ R . So, a + bx ∈ Z(R0) .

(4) Let a ∈ nil(R). Then an = 0 for some n ∈ N . But (a + bx)n+1 = an+1 + (n + 1)anbx. Thus

a + bx ∈ nil(R0).

�

As a simple consequence of Lemma 3.1 we obtain the following results.

Theorem 3.1 If R0 = R[x]/(x2) is the ring of dual numbers then

1. R0 is presimplifiable if and only if R is presimplifiable.

2. R0 is domainlike if and only if R is domainlike.

Proof. Note that, Z(R0) ⊆ J(R0) (resp., Z(R0) ⊆ nil(R0)) if and only if Z(R) ⊆ J(R) (resp.,

Z(R) ⊆ nil(R) ). �

Theorem 3.2 Let R0 = R[x]/(x2) be the ring of dual numbers. Then R0 is associate implies that R is
associate.
Proof. Suppose that a and b are two nonzero elements belonging to R with aR = bR . Then aR0 = bR0

and hence a = (c + dx)b for some c + dx ∈ U(R0). So, a = cb, c ∈ U(R) . Therefore, R is associate. �

This raises the question: if the ring R is associate, is it true that the ring of the dual numbers R0 is also
associate? However, next we will give some examples of associate rings R for which the rings of dual numbers
R0 are also associate.

Recall that a ring R is a stable-range1 if for any a, x, b ∈ R satisfying ax + b = 1, there exists y ∈ R

such that a + by ∈ U(R). This class of rings is studied extensively in the literature, see, for example, Bass [4],

Mental [11] and Chen [9]. It is easy to prove that a ring of stable range1 is associate.

Theorem 3.3 Let R0 = R[x]/(x2) be a ring of satble-range1. If R is stable-range1, then so is R0 .

Proof. Let a + bx, c + dx and m + nx ∈ R0 satisfying (a + bx) + (m + nx)(c + dx) = 1. Then

a + mc = 1. Since R is a stable-range1 ring, there exist v ∈ R and u ∈ U(R) with av + c = u . So,

(a + bx)v + (c + dx) = u + (bv + d)x ∈ U(R0). �

338



GHANEM

Theorem 3.4 Let {Rλ : λ ∈ Γ} be a nonempty family of rings then (
∏

Rλ)0 ∼=
∏

(Rλ)0

Proof. Define Ψ : (
∏

Rλ)0 →
∏

(Rλ)0 by the relation

Ψ((aλ) + (bλ)x) = (aλ + bλx).

Then it is easy to verify that Ψ is a ring homomorphism. �

Since the direct product of associate rings is associate ([13], Theorem 6) using Theorems 3.1 and 3.3, we obtain
the following results.

Corollary 3.1 Let {Rλ : λ ∈ Γ} be a family of presimplifiable rings or stable-range1 rings then (
∏

Rλ)0 is
associate ring.

Corollary 3.2 For any principal ideal ring R, the ring of the dual numbers R0 is associate.

Proof. Note that, a principal ideal ring R is a direct product of principal ideal domains and special principal
ideal rings ([14], Theorem 33, page 245), and special principal ideal rings are presimplifiable since they are local.
So, R0 is a direct product of presimplifiable rings. Hence R0 is associate ring. �

Next, we investigate the relationship between presimplifiable (resp., associate) R0 -module and presimplifiable

(resp., associate) R-module. In the following theorem a characterization of R0 -module is given.

Theorem 3.5 If R0 = R[x]/(x2) is the ring of dual numbers then M is an R0 -module if and only if M is an

R-module and there exists an R-homomorphism α : M → M such that α2 = 0 .

Proof. Define α : M → M by α(m) = x.m then α is an R homomorphism with α2 = 0.

Conversely, let M be an R-module with R homomorphism α : M → M with α2 = 0. Then M is an
R0 -module under multiplication (a + bx) · m = a ·m + b · α(m), m ∈ M . �

Theorem 3.6 Let M be an R0 -module. Then M is presimplifiable R0 -module if and only if M is presimplifiable
R-module.
Proof. Suppose that M is a presimplifiable R0 module. Let m ∈ M − {0} and a ∈ R with am = 0 then,

a ∈ annR0(m) and hence, a ∈ J(R0) . Thus, a ∈ J(R) and hence, annR(m) ⊆ J(R) .

Conversely, let m ∈ M − {0} and a + bx ∈ R0 with (a + bx) · m = 0. Therefore, ax · m = 0. Now, if

x · m �= 0 then a ∈ annR(x · m) ⊆ J(R) and if x · m = 0 then a · m = 0 and hence a ∈ annR(m) ⊆ J(R). So,

a + bx ∈ J(R0). �

Theorem 3.7 Let M be an R0 -module. Then M is a torsion-free R-module if and only if M is a torsion-free
R0 -module.

Proof. Suppose that M is torsion-free R-module. Let a + bx ∈ R0 and m ∈ M − {0} with (a + bx)m = 0.

Then a · m = 0 or ax · m = 0. Hence a ∈ annR(m) or a ∈ annR(x · m) and thus a ∈ Z(R) . Therefore,

a + bx ∈ Z(R0). �

Anderson et al. [3] proved that for R = Z , M is presimplifiable R-module if and only if M is torsion-free. So
we can conclude the following.
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Corollary 3.3 Let R = Z and M be an R0 module. Then M is presimplifiable if and only if M is torsion-free.

However, if M is associate as R0 module, it need not be the case that M is associate as R module.

Example 3.1 Let R = Z and M = Z9 with x · 1̄ = 3̄ . Then it is easy to see that M is associate R0 module.
However, M is nonassociate R-module otherwise M = T

⊕
F where 4T = 0 or 6T = 0 and F is torsion-free

([3], Theorem 12).
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