

Some properties of Associate and Presimplifiable rings

 $Manal\ Ghanem$

Abstract

In this paper we study some properties of associate and presimplifiable rings. We give a characterization of the associate (resp., domainlike) pullback P of $R_1 \rightarrow R_3 \leftarrow R_2$, where R_1 and R_2 are two presimplifiable (resp., domainlike) rings. We prove that R is presimplifiable ring if and only if the factor ring R/nil(R) is presimplifiable and the ideal nil(R) is presimplifiable. Then we investigate the associate and presimplifiable property of the dual rings $R[x]/\langle x^2 \rangle$ and its modules through the base ring R and its modules.

Key Words: Associate ring, presimplifiable ring, domainlike, pullback and dual ring.

1. Introduction

Throughout this paper, all rings are assumed to be commutative with unity and all modules are unitary. If R is a ring, the Jacobson radical of R, the nilradical of R, the set of zero divisors of R and the set of units of R are denoted by J(R), nil(R), Z(R) and U(R), respectively. And the annihilator of a subset X of a module over R is denoted by $ann_R(X)$. Any unexplained terminology will be standard as in Hungerford [10].

Definition 1.1 A ring R is called presimplifiable if, whenever for any $a, b \in R$ with a=ab, we have that a = 0 or $b \in U(R)$.

One can easily verify that a ring R is presimplifiable if and only if $Z(R) \subseteq J(R)$. And every presimplifiable ring is indecomposable while the converse of this statement need not necessarily be true. Domainlike rings (i.e., $Z(R) \subseteq nil(R)$) and local rings are examples of presimplifiable rings.

Definition 1.2 A ring R is called an associate ring if whenever any two elements a and b generates the same principal ideal of R there is a unit u such that a = ub.

The class of associate rings contains a large class of rings such as presimplifiable rings, principal ideal rings, artinian rings, von Neumann regular rings and PP rings. This class of rings was originally studied by Kaplansky [12]. Then Bouvier studied presimplifiable rings in a series of papers [5]–[8]. Recently, the class of associate rings was studied more extensively by Anderson and Valdes Leon[1],[2], Spelman et al [13] and Anderson et al

²⁰⁰⁰ AMS Mathematics Subject Classification: .

[3]. Our aim of this paper is to study some properties of presimplifiable and associate rings and to investigate the associate and presimplifiable properties of the dual ring $R[x]/\langle x^2 \rangle$ and its modules.

2. Some properties of associate and presimplifiable rings

Definition 2.1 A ring R is said to be superpresimplifiable (resp., superassociate) if every subring of R is presimplifiable(resp., associate).

Remark 2.1 (Anderson et al [3]).

- (1) Domainlike is superpresimplifiable.
- (2) A subring of a presimplifiable (resp., associate) ring need not be presimplifiable (resp., associate).
- (3) A superassociate ring need not be presimplifiable.
- (4) A direct product of superassociate rings need not be superassociate.

And erson et al in [3] gave $\mathbb{Z} \times \mathbb{Z}$ and $\mathbb{Z}_2 \times \mathbb{Z}_2$ as an examples of superassociate rings. It is easy to generalize this result to a direct product of any two presimplifiable rings with the set of units $\{\pm 1\}$.

Theorem 2.1 A direct product of any two presimplifiable rings with the set of units $\{\pm 1\}$ is superassociate. **Proof.**

Suppose that $R = R_1 \times R_2$ where R_1 and R_2 are two presimplifiable rings. Let S be a subring of R. Let (a, b) and (c, d) be two nonzero elements of S that generate the same principal ideal of S. Then (a, b) = (x, y)(c, d) and (c, d) = (m, n)(a, b) for some $(x, y), (m, n) \in S$. Then if $a \neq 0$ and $b \neq 0$ we have $(xm, yn) \in U(R)$ because the rings R_1 and R_2 are presimplifiable and (a, b) = (xm, yn)(a, b). So $(x, y) \in U(R)$ and $(x, y)^2 = (1, 1)$. Hence $(x, y) \in U(S)$. And if a = 0 then $(y, y) \in U(S)$ and (a, b) = (y, y)(c, d) because R_2 is presimplifiable ring with the set of units $\{\pm 1\}$ and b = ynb. If b = 0 then, likewise, $(x, x) \in U(S)$ with (a, b) = (x, x)(c, d).

However, the product of two presimplifiable rings with torsion units groups need not be superassociate. For example, $R = \{(n, f(x)) \in \mathbb{Z} \times \mathbb{Z}_5[x] : f(0) \equiv n \mod 5\}$ is a subring of $\mathbb{Z} \times \mathbb{Z}_5[x]$. And \mathbb{Z} , $\mathbb{Z}_5[x]$ are presimplifiable rings with the torsion units groups $U(\mathbb{Z}) = \{\pm 1\}$ and $U(\mathbb{Z}_5[x]) = \{1, 2, 3, 4\}$. But R is not associate because (0, x) and (0, 2x) generate the same principal ideal of R and there is no unit (a,b) satisfies (0, x) = (a, b)(0, 2x) (see Anderson et al [3], page 1).

We consider now the pullback.

Definition 2.2 Let R_1 , R_2 and R_3 be any three rings with homomorphisms $p_i : R_i \to R_3$, i = 1, 2, which preserve the unity. The subring $P = \{(r_1, r_2) \in R_1 \times R_2 : p_1(r_1) = p_2(r_2)\}$ of the ring $R_1 \times R_2$ is called the pullback P of $R_1 \to R_3 \leftarrow R_2$ with the set of units $U(P) = \{(u_1, u_2) \in P : u_1 \in U(R_1) \text{ and } u_2 \in U(R_2)\}$.

And erson et al in [3] determined when the pullback P of $R_1 \to R_3 \leftarrow R_2$, where R_1 and R_2 are integral domains, is presimplifiable or associate.

Theorem 2.2 Let R_1 , R_2 and R_3 be any three rings with epimorphisms $p_i : R_i \to R_3$, i = 1, 2, which are not isomorphisms. Suppose that R_1 and R_2 are integral domains. Then the pullback P of $R_1 \to R_3 \leftarrow R_2$ is presimplifiable (resp., associate) if and only if $p_i^{-1}(1) \subseteq U(R_i)$, i = 1, 2 (resp., $p_1(U(R_1)) = p_2(U(R_2))$).

In the same manner we can prove that the pullback P of $R_1 \to R_3 \leftarrow R_2$ where R_1 and R_2 are presimplifiable rings.

Theorem 2.3 Let R_1 , R_2 and R_3 be any three rings with epimorphisms $p_i : R_i \to R_3$, i = 1, 2, which are not isomorphisms. Suppose that R_1 and R_2 are presimplifiable rings. Then the pullback P of $R_1 \to R_3 \leftarrow R_2$ is presimplifiable if and only if $p_i^{-1}(1) \subseteq U(R_i)$, i = 1, 2.

Proof. Let $a \in p_1^{-1}(1)$ and $x \in Ker(p_2) - \{0\}$. Then $(a, 1), (0, x) \in P$ with (0, x)(a, 1) = (0, x). Since P is presimplifiable we have $(a, 1) \in U(P)$. Thus $a \in U(P)$.

Conversely, let (a, b) = (x, y)(a, b) where $(a, b), (x, y) \in P$. Assume that $(a, b) \neq (0, 0)$, say $a \neq 0$. Since a = xa we have $x \in U(R_1)$. So there exists $t \in R_2$ such that $p_1(x^{-1}) = p_2(t)$. Hence $(x^{-1}, t) \in P$. Therefore, $(x, y)(x^{-1}, t) = (1, ty) \in P$ and hence $ty \in p_2^{-1}(1)$. But $p_2^{-1}(1) \subseteq U(R_2)$. So $(x, y) \in U(P)$ and hence P is presimplifiable.

Theorem 2.4 Let R_1 , R_2 and R_3 be any three rings with epimorphisms $p_i : R_i \to R_3$, i = 1, 2, which are not isomorphisms. Suppose that R_1 and R_2 are two presimplifiable rings. Then the following statements are equivalent:

(1) The pullback P of $R_1 \rightarrow R_3 \leftarrow R_2$ is associate; and

(2) $p_1(U(R_1)) = p_2(U(R_2))$ or $p_i(U(R_i)) \nsubseteq p_j(U(R_j))$ implies that $Ker(p_i) \subsetneq Z(R_i)$ and for any $u_i \in U(R_i)$ with $p_i(u_i) \in p_i(U(R_i)) - p_j(U(R_j))$ and $a \in Ker(p_i)$ there exists $v_i \in U(R_i)$ with $p_i(v_i) \in p_1(U(R_1)) \cap p_2(U(R_2))$ and $u_i - v_i \in ann_{R_i}(a)$.

Proof. $(1) \Longrightarrow (2)$: Suppose that $p_1(U(R_1)) \neq p_2(U(R_2))$. WLOG assume that $p_1(U(R_1)) \notin p_2(U(R_2))$. Then by (Proposition 5, [3]), $Ker(p_1) \notin Z(R_1)$ implies that P is not associate. So we must assume that $Ker(p_1) \subseteq Z(R_1)$. Now let, $a \in Ker(p_1) - \{0\}$ and $u \in U(R_1)$ with $p_1(u) \in p_1(U(R_1)) - p_2(U(R_2))$. Let $t, r \in R_2$ with $p_1(u) = p_2(r)$ and $p_1(u^{-1}) = p_2(t)$. Therefore $(u, r), (u^{-1}, t) \in P - U(P)$. Consequently, $(a, 0) = (u^{-1}, t)(au, 0)$ and (au, 0) = (u, r)(a, 0), so, (a, 0) and (au, 0) generate the same ideal of P. Since P is associate, there exists a unit $(m, n) \in P$ with (au, 0) = (m, n)(a, 0), so, a(u - m) = 0 and hence, $u - m \in ann_{R_1}(a) \subseteq Z(R_1)$. Also, $u - m \in R_1 - Ker(p_1)$. Otherwise, $p_1(u) = p_1(m) = p_2(n)$, a contradiction. So $Ker(p_1) \subsetneq Z(R_1)$.

 $(2) \Longrightarrow (1)$: Let (a, b) and (c, d) be two nonzero elements of P with (c, d) = (r, s)(a, b) and (a, b) = (m, n)(c, d) for some $(m, n), (r, s) \in P$. If $a \neq 0$ and $b \neq 0$ then $(r, s), (m, n) \in U(P)$ because R_1 and R_2 are presimplifiable. So WLOG assume that b = 0 and $(r, s), (m, n) \in P - U(P)$. Then $r, m \in U(R_1)$ and $s, n \in R_2 - U(R_2)$. If there exists $x \in U(R_2)$ such that $p_1(m) = p_2(x)$, then $(m, x) \in U(P)$ with (a, b) = (m, x)(c, d). Otherwise, $p_1(m) \in p_1(U(R_1)) - p_2(U(R_2))$. But $c \in Ker(p_1)$ because c(1 - rm) = 0. So there exists $v \in U(R_1)$ such that $p_1(v) \in p_1(U(R_1)) \cap p_2(U(R_2))$ and $m - v \in ann_{R_1}(c)$. Then $p_1(v) = p_2(t)$ for some $t \in U(R_2)$. Hence $(a, b) = (v, t)(c, d), (v, t) \in U(P)$. Thus P is associate.

Example 2.1 The pullback P of $\mathbb{Z} \to \mathbb{Z}_8 \leftarrow \mathbb{Z}_{16}$ with natural maps $p_i, i = 1, 2$, is associate eventhough $p_1(U(\mathbb{Z})) = \{1, 7\} \neq \{1, 3, 5, 7\} = p_2(U(\mathbb{Z}_{16}))$ since $Ker(p_2) \subsetneq Z(\mathbb{Z}_{16})$ and $5 - 7, 3 - 1 \in ann_{R_2(8)}$.

Now, we determine when the pullback P of $R_1 \rightarrow R_3 \leftarrow R_2$ where R_1 and R_2 are domainlike is again domainlike.

Theorem 2.5 Let R_1 , R_2 and R_3 be rings with epimorphisms $p_i : R_i \to R_3$, i = 1, 2, which are not isomorphisms. Suppose that R_1 and R_2 are domainlike. Then the pullback P of $R_1 \to R_3 \leftarrow R_2$ is domainlike if and only if $Ker(p_i) \subseteq Z(R_i), i = 1, 2$.

Proof. Let $a \in Ker(p_1) - \{0\}$. Then $(a, 0) \in Z(P)$ because (a, 0)(0, b) = (0, 0) for any $b \in Ker(p_2)$. But P is domainlike so $(a, 0)^n = (0, 0)$ and hence $a^n = 0$. Thus $a \in Z(R_1)$.

Conversely, let $(a, b) \in Z(P)$. If $a \neq 0, b \neq 0$, then $a \in Z(R_1)$ and $b \in Z(R_2)$. But R_1 and R_2 are domainlike, so $a^n = 0$ and $b^m = 0$ for some $m, n \in \mathbb{Z}$. Therefore, $(a, b)^{mn} = (0, 0)$ and hence $(a, b) \in nil(P)$. Also, if b = 0 then $a \in Ker(p_1)$. But $Ker(p_1) \subseteq Z(R_1)$ and R_1 is domainlike. So, we have $a \in nil(R_1)$. Thus $(a, b) \in nil(P)$.

Example 2.2 The pullback P of $\mathbb{Z}_{p^{\alpha}} \to \mathbb{Z}_{p^{\beta}} \leftarrow \mathbb{Z}_{p^{\gamma}}$ where $\beta < \alpha$ and $\beta < \gamma$ and p is prime number is domainlike because $\mathbb{Z}_{p^{\alpha}}$ and $\mathbb{Z}_{p^{\gamma}}$ are domainlike and $Ker(p_i) \subseteq Z(R_i), i = 1, 2$.

The following is a consequence of Theorem 2.6 and Theorem 2.7.

Corollary 2.1 If R_1 and R_2 are domainlike, then the pullback P of $R_1 \to R_3 \leftarrow R_2$ is associate but not domainlike if and only if $Ker(p_i) \notin Z(R_i), i = 1$ or 2 and $p_1(U(R_1)) = p_2(U(R_2))$.

Example 2.3 Let P be the pullback of $\mathbb{Z}_9 \to \mathbb{Z}_3 \leftarrow \mathbb{Z}_9[x]$ with the epimorphisms mapping $p_1 : \mathbb{Z}_9 \to \mathbb{Z}_3$ defined by $p_1(x) = \bar{x}$ and $p_2 : \mathbb{Z}_9[x] \to \mathbb{Z}_3$ defined by $p_2(f(x)) = f(0)$. Note that, $p_1(U(\mathbb{Z}_9)) = p_2(U(\mathbb{Z}_9[x])) = \{1, 2\}$ and $Ker(p_2) \notin Z(\mathbb{Z}_9[x])$ since $3 + x \in Ker(p_2) - Z(\mathbb{Z}_9[x])$. So P is associate but not domainlike. Moreover, P is not presimplifiable because (3, 0) = (1, 1 + x)(3, 0) and $1 + x \in \mathbb{Z}_9[x] - U(\mathbb{Z}_9[x])$.

Next we give a new characterization of presimplifiable rings. But first we introduce the following definition.

Definition 2.3 Let R be a ring and I be an ideal of R. Then I is called a presimplifiable ideal if for every $a \in I - \{0\}$ and $b \in R$ with the property a = ba implies that $b \in U(R)$.

Clearly, every ideal of a presimplifiable ring is presimplifiable.

Lemma 2.1 Let R be a ring and I be an ideal of R. Then I is a presimplifiable ideal if and only if $ann_R(a) \subseteq J(R)$ for every $a \in I - \{0\}$.

Proof. Let $a \in I - \{0\}$ and $x \in ann_R(a)$. Then $x \cdot a = 0$. Hence a(tx + 1) = a for any $t \in R$. Therefore $tx + 1 \in U(R)$ and hence $x \in J(R)$.

Conversely, let a = ba where $0 \neq a \in I$ and $b \in R$. Then $b - 1 \in ann_R(a)$, $ann_R(a) \subseteq J(R)$. Consequently, $b \in U(R)$.

Theorem 2.6 A ring R is presimplifiable if and only if the factor ring R/nil(R) is presimplifiable and the ideal nil(R) is presimplifiable.

Proof. Let $\bar{a} \in Z(R/nil(R)) - \{\bar{0}\}$. Then $\bar{a}\bar{b} = \bar{0}$ for some $\bar{b} \in Z(R/nil(R)) - \{\bar{0}\}$. So there exits $m \in \mathbb{N}$ such that $a^m b^m = 0$ where $b^m \neq 0$. Therefore, $a \in Z(R)$. Since R is presimplifiable ring we have $a \in J(R)$. So $ax + 1 \in U(R)$ for every $x \in R$. Consequently, $\bar{a}\bar{x} + \bar{1} \in U(R/nil(R))$ for every $\bar{x} \in R/nil(R)$ i.e. $\bar{a} \in J(R/nil(R))$.

Conversely, let ab = a where a and b are nonzeros belong to R. Then $a \in nil(R)$ or $\bar{0} \neq \bar{a} \in R/nil(R)$. Since nil(R) is presimplifiable ideal and R/nil(R) is presimplifiable ring, we have $b \in U(R)$.

Anderson and Valdes Leon [3] extended the presimplifiable and associate property to modules. Recall that a module M is presimplifiable if for every $m \in M$ and $u \in R$, m = um implies that $u \in U(R)$. While a module M is associate if for every $m, n \in M$ with mR = nR implies that there exists $u \in U(R)$ such that m = un. It is easy to verify that every presimplifiable module is associate. And a module M is presimplifiable if and only if $ann_R(m) \subseteq J(R)$ for every $m \in M - \{0\}$. Recall that, a module M is torsion-free as an R-module if $ann_R(m) \subseteq Z(R)$ for every $m \in M - \{0\}$. Clearly, for any presimplifiable ring, a torsion-free R-module is presimplifiable. However the converse need not be true as the following example shows.

Theorem 2.7 Let R be a ring and T be a maximal ideal of R with $T \notin Z(R)$. Let M = R/T and S = R - T. Then M is presimplifiable module over a ring of fractions $S^{-1}R$ eventhough it is not torsion-free.

Proof. Note that, $S^{-1}R$ is local ring so it is presimplifiable. And M is $S^{-1}R$ module under the multiplication $\frac{a}{b} \cdot \overline{m} = \overline{acm}$ where $\frac{a}{b} \in S^{-1}R$, $\overline{m} \in M$ and $\overline{bc} = \overline{1}$. Now, let $\overline{m} = \frac{a}{b} \cdot \overline{m}$ and $\frac{a}{b} \in S^{-1}R - U(S^{-1}R)$. Then $\overline{a} = \overline{0}$ since $a \in T$. Thus, $\overline{m} = \overline{0}$ and hence M is presimplifiable as an $S^{-1}R$ module. However, M is not torsion-free. To show this let $m \in T - Z(R)$. Therefore, $\frac{m}{1} \cdot \overline{1} = \overline{0}$. Consequently, $ann_{S^{-1}R}(\overline{1}) \nsubseteq Z(S^{-1}R)$. So the result holds.

3. The ring of dual numbers

Let R be a commutative ring with unity. Then the ring $R_0 = R[x]/(x^2)$ is called the ring of dual numbers. This section is devoted to study the associate and presimplifiable properties of the dual ring R_0 and its modules via the basic ring R and its modules.

First, we need to prove the following important lemma.

Lemma 3.1 Let $R_0 = R[x]/(x^2)$ be a ring of dual numbers. Then

- 1. $U(R_0) = \{a + bx : a, b \in R \text{ and } a \in U(R)\}$
- 2. $J(R_0) = \{a + bx : a, b \in R \text{ and } a \in J(R)\}$
- 3. $Z(R_0) = \{a + bx : a, b \in R \text{ and } a \in Z(R)\}$
- 4. $nil(R_0) = \{a + bx : a, b \in R \text{ and } a \in nil(R)\}.$

Proof.

(1) Note that, $a + bx \in R_0$ and $a \in U(R)$ implies that $(a + bx)(a^{-1} + (-a^{-2}b)x) = 1$.

(2) $a+bx \in J(R_0) \iff 1+(a+bx)(c+dx) \in U(R_0)$ for every $c+dx \in R_0 \iff 1+ac \in U(R)$ for every $c \in R \iff a \in J(R)$.

(3) Let $a \in Z(R)$. Then a = 0 gives (a + bx)(a + bx) = 0 for any $b \in R$. And $a \neq 0$ implies that there exists $0 \neq c \in Z(R)$ with (a + bx)(cx) = 0 for every $b \in R$. So, $a + bx \in Z(R_0)$.

(4) Let $a \in nil(R)$. Then $a^n = 0$ for some $n \in \mathbb{N}$. But $(a + bx)^{n+1} = a^{n+1} + (n+1)a^n bx$. Thus $a + bx \in nil(R_0)$.

As a simple consequence of Lemma 3.1 we obtain the following results.

Theorem 3.1 If $R_0 = R[x]/(x^2)$ is the ring of dual numbers then

1. R_0 is presimplifiable if and only if R is presimplifiable.

2. R_0 is domainlike if and only if R is domainlike.

Proof. Note that, $Z(R_0) \subseteq J(R_0)$ (resp., $Z(R_0) \subseteq nil(R_0)$) if and only if $Z(R) \subseteq J(R)$ (resp., $Z(R) \subseteq nil(R)$).

Theorem 3.2 Let $R_0 = R[x]/(x^2)$ be the ring of dual numbers. Then R_0 is associate implies that R is associate.

Proof. Suppose that a and b are two nonzero elements belonging to R with aR = bR. Then $aR_0 = bR_0$ and hence a = (c + dx)b for some $c + dx \in U(R_0)$. So, $a = cb, c \in U(R)$. Therefore, R is associate.

This raises the question: if the ring R is associate, is it true that the ring of the dual numbers R_0 is also associate? However, next we will give some examples of associate rings R for which the rings of dual numbers R_0 are also associate.

Recall that a ring R is a stable-range1 if for any $a, x, b \in R$ satisfying ax + b = 1, there exists $y \in R$ such that $a + by \in U(R)$. This class of rings is studied extensively in the literature, see, for example, Bass [4], Mental [11] and Chen [9]. It is easy to prove that a ring of stable range1 is associate.

Theorem 3.3 Let $R_0 = R[x]/(x^2)$ be a ring of satble-range1. If R is stable-range1, then so is R_0 .

Proof. Let a + bx, c + dx and $m + nx \in R_0$ satisfying (a + bx) + (m + nx)(c + dx) = 1. Then a + mc = 1. Since R is a stable-rangel ring, there exist $v \in R$ and $u \in U(R)$ with av + c = u. So, $(a + bx)v + (c + dx) = u + (bv + d)x \in U(R_0)$.

Theorem 3.4 Let $\{R_{\lambda} : \lambda \in \Gamma\}$ be a nonempty family of rings then $(\prod R_{\lambda})_0 \cong \prod (R_{\lambda})_0$ **Proof.** Define $\Psi : (\prod R_{\lambda})_0 \to \prod (R_{\lambda})_0$ by the relation

$$\Psi((a_{\lambda}) + (b_{\lambda})x) = (a_{\lambda} + b_{\lambda}x).$$

Then it is easy to verify that Ψ is a ring homomorphism.

Since the direct product of associate rings is associate ([13], Theorem 6) using Theorems 3.1 and 3.3, we obtain the following results.

Corollary 3.1 Let $\{R_{\lambda} : \lambda \in \Gamma\}$ be a family of presimplifiable rings or stable-range1 rings then $(\prod R_{\lambda})_0$ is associate ring.

Corollary 3.2 For any principal ideal ring R, the ring of the dual numbers R_0 is associate.

Proof. Note that, a principal ideal ring R is a direct product of principal ideal domains and special principal ideal rings ([14], Theorem 33, page 245), and special principal ideal rings are presimplifiable since they are local. So, R_0 is a direct product of presimplifiable rings. Hence R_0 is associate ring.

Next, we investigate the relationship between presimplifiable (resp., associate) R_0 -module and presimplifiable (resp., associate) R-module. In the following theorem a characterization of R_0 -module is given.

Theorem 3.5 If $R_0 = R[x]/(x^2)$ is the ring of dual numbers then M is an R_0 -module if and only if M is an R-module and there exists an R-homomorphism $\alpha : M \to M$ such that $\alpha^2 = 0$.

Proof. Define $\alpha: M \to M$ by $\alpha(m) = x.m$ then α is an R homomorphism with $\alpha^2 = 0$.

Conversely, let M be an R-module with R homomorphism $\alpha : M \to M$ with $\alpha^2 = 0$. Then M is an R_0 -module under multiplication $(a + bx) \cdot m = a \cdot m + b \cdot \alpha(m), m \in M$.

Theorem 3.6 Let M be an R_0 -module. Then M is presimplifiable R_0 -module if and only if M is presimplifiable R-module.

Proof. Suppose that M is a presimplifiable R_0 module. Let $m \in M - \{0\}$ and $a \in R$ with am = 0 then, $a \in ann_{R_0}(m)$ and hence, $a \in J(R_0)$. Thus, $a \in J(R)$ and hence, $ann_R(m) \subseteq J(R)$.

Conversely, let $m \in M - \{0\}$ and $a + bx \in R_0$ with $(a + bx) \cdot m = 0$. Therefore, $ax \cdot m = 0$. Now, if $x \cdot m \neq 0$ then $a \in ann_R(x \cdot m) \subseteq J(R)$ and if $x \cdot m = 0$ then $a \cdot m = 0$ and hence $a \in ann_R(m) \subseteq J(R)$. So, $a + bx \in J(R_0)$.

Theorem 3.7 Let M be an R_0 -module. Then M is a torsion-free R-module if and only if M is a torsion-free R_0 -module.

Proof. Suppose that M is torsion-free R-module. Let $a + bx \in R_0$ and $m \in M - \{0\}$ with (a + bx)m = 0. Then $a \cdot m = 0$ or $ax \cdot m = 0$. Hence $a \in ann_R(m)$ or $a \in ann_R(x \cdot m)$ and thus $a \in Z(R)$. Therefore, $a + bx \in Z(R_0)$.

Anderson et al. [3] proved that for $R = \mathbb{Z}$, M is presimplifiable R-module if and only if M is torsion-free. So we can conclude the following.

339

Corollary 3.3 Let $R = \mathbb{Z}$ and M be an R_0 module. Then M is presimplifiable if and only if M is torsion-free.

However, if M is associate as R_0 module, it need not be the case that M is associate as R module.

Example 3.1 Let $R = \mathbb{Z}$ and $M = \mathbb{Z}_9$ with $x \cdot \overline{1} = \overline{3}$. Then it is easy to see that M is associate R_0 module. However, M is nonassociate R-module otherwise $M = T \bigoplus F$ where 4T = 0 or 6T = 0 and F is torsion-free ([3], Theorem 12).

References

- Anderson, D.D. and Valddes-Leon, S.: Factorization in commutative rings with with zero divisors. Rocky Mountain J. Math, 26, 439 - 480 (1996)
- [2] Anderson, D.D. and Valdes-Leon, S.: Factorization in commutative rings with zero divisors, II, Factorization in integral domains. Lecture Notes in Pure and Appl. Math. New York: Marcel Dekker. 189, 197 - 219 (1997).
- [3] Anderson , D.D., Axtell, M., Forman, S.J., and Stickles, J.: When are associates unit multiples?. Rocky Mountain J. Math. 34, 811-828 (2004).
- [4] Bass, H.: Algebraic K-Theory. New York. Benjamin (1968).
- [5] Bouvier, A.: Sur les anneaux de functions des anneaux atomiques presimplifiables. Bull. Sci.Math. 95, 371-377 (1971).
- [6] Bouvier, A.: Anneaux presimplifiables. C. R.Acad. Sci. Paris Ser. A -B 274, 1605 -1607 (1972).
- [7] Bouvier, A.: Resultats nouveaux sur les anneaux presimplifiables, C. R.Acad. Sci. Paris Ser. A -B 275, 955 957 (1972).
- [8] Bouvier, A.: Anneaux presimplifiables. Rev.Routtmaine math.Pures Appl. 19, 713-724 (1974).
- [9] Chen, H.: Units and idempotants and stable range 1 conditions. Comm. Algebra. 29, 703 717(2001).
- [10] Hungerford, T.W.: Algebra. New York: Holt Rinehart and Winston, INC (1974).
- [11] Menal, P. and Moncasi, J.: K1 of von Neumann regular rings. J. Pure Appl. Algebra. 33, 295 312(1984).
- [12] Kaplansky, I.: Elementary divisors and modules. Tranc. Amer. Math. Soc. 66, 464-491 (1949).
- [13] Spellman, D., Benkart, G.M., Gaglione, A.M., Kidwell, M.E., Meyerson, M.D. and Wardlaw, W.P.: Principal ideals and associate rings. JP. Journal of Algebra, Number Theory and Applications. 2, 181-193(2002).
- [14] Zariski, O. and Samuel, P.: Commutative algebra, (I). New York. Van Nastrand Reinhold Company (1958).

Manal GHANEM Department of Mathematics, Irbid National university P.O.Box:2600 Irbid 21110, JORDAN E-mail: dr_mghanem@yahoo.com Received: 05.09.2009