
Turk J Math
35 (2011) , 341 – 353.
c© TÜBİTAK
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Nilpotent elements and reduced rings∗
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Abstract

In this paper, we show the following results: (1) R is a min-leftsemicentral ring if and only if eR(1 −
e)Re = 0 for all e ∈ MEl(R) ; (2) Quasi-normal rings, NI rings and weakly reversible rings are all min-

leftsemicentral ring; (3) R is left MC2 ring if and only if aRe = 0 implies eRa = 0 for all e ∈ MEl(R) and

a ∈ R if and only if every projective simple left R -module is MUP -injective; (4) R is reduced if and only

if R is n-regular and quasi-normal if and only if R is n-regular and weakly reversible; (5) R is strongly

regular if and only if R is regular and quasi-normal if and only if R is regular and weakly reversible.

Key Words: Min-leftsemicentral rings, quasi-normal rings. NCI rings, weakly reversible rings, left MC2

rings, directly finite rings, regular rings.

1. Introduction

Throughout this paper every ring is associative with identity. Let R be a ring, we use P (R), N∗(R),

N(R), J(R), E(R) and U(R) to denote the prime radical (i.e., the intersection of all prime ideals), the nilradical

(i.e., the sum of all nil ideals), the set of all nilpotent elements, the Jacobson radical, the set of all idempotent

elements and the set of all invertible elements of R , respectively. Note P (R) ⊆ N∗(R) ⊆ N(R). Due to Marks

[9], a ring R is called NI if N∗(R) = N(R), and R is reduced if N(R) = 0. Note that R is NI if and only

if N(R) forms an ideal if and only if R/N∗(R) is reduced.

Hwang et al. [4] call a ring R NCI if N(R) contains a nonzero ideal of R whenever N(R) �= 0. Clearly,

NI rings are NCI , But the converse need not be true by [4, Example 1.2].

According to [14], an element k of a ring R is called left minimal if Rk is a minimal left ideal of R ,
and an idempotent e of R is said to be left minimal idempotent if e is a left minimal element of R . We use
Ml(R) and MEl(R) to denote the set of all left minimal elements and the set of all left minimal idempotents
elements of R , respectively.

A ring R is called

(1) min − leftsemicentral if every element of MEl(R) is left semicentral in R ,
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(2) strongly min − leftsemicentral if every element of MEl(R) is central in R ,

(3) left MC2 if for any k ∈ Ml(R), Rk is a summand in RR, whenever Rk is projective as left R -module.

In [14], min-leftsemicentral rings are also called left min-abel and strongly min-leftsemicentral rings are

also called strongly left min-abel. Clearly, these rings are proper generalization of Abelian rings (i.e., every

idempotent element of R is central). [14, Theorem 1.2] shows that R is a left quasi-duo ring if and only if R

is a min-leftsemicentral MELT ring, where a ring R is called left quasi-duo (MELT , respectively) if every

maximal left ideal (essential maximal left ideal, respectively) of R is an ideal. In this paper, we show that (1)

NI rings are min-leftsemicentral, but NCI rings need not be (Theorem 2.2); (2) R is left MC2 ring if and only

if aRe = 0 implies eRa = 0 for all e ∈ MEl(R) and a ∈ R if and only if every projective simple left R -module

is MUP -injective (Theorem 2.13) and (Theorem 3.8). Where a left R -module M is called MUP -injective [13]
if for any complement left ideal C of R , a ∈ R , any left R -monomorphism g : Ca −→ M , there exists y ∈ M

such that g(ca) = cay for all c ∈ C .

A ring R is called quasi-normal if eR(1− e)Re = 0 for all e ∈ E(R). According to Theorem 2.6, (e.g.,

R is Abelian if and only if R is left idempotent reflexive and quasi-normal), these rings are proper generalization
of Abelian rings and Theorem 3.1 gives some characterization of quasi-normal rings. In term of quasi-normal
rings, we show that R is strongly regular if and only if R is regular and quasi-normal (Corollary 2.12).

A ring R is called semicommutative [1, 8, 10] if for all a, b ∈ R , ab = 0 implies aRb = 0. This is

equivalent to the definition that any left (right) annihilator over R is an ideal of R [6, Lemma 1.1]. Clearly,
semicommutative rings are Abelian and NI , so semicommutative rings are left MC2 and NCI . Since Abelian
NI rings need not be semicommutative, left MC2 NCI rings need not be semicommutative. Therefore
Theorem 2.15 generalizes [7, Theorem 4].

Call a left R -module M

(1) nil -injective [15] if for each k ∈ N(R) and any left R -morphism Rk −→ M extends to R .

(2) Wnil -injective [16] if for each k ∈ N(R), there exists n ≥ 1 such that kn �= 0 and any left R -
morphism Rkn −→ M extends to R .

(3) GP -injective [10] if for each k ∈ R , there exists a positive integer n such that kn �= 0 and any left
R -morphism Rkn −→ M extends to R .

Clearly, GP -injective modules and nil -injective modules are Wnil -injective. [7, Lemma 3] shows that if
R is a semicommutative ring whose every simple singular left R -module is GP -injective, then R is a reduced
ring. We show that a ring R is reduced if and only if R is left MC2 weakly reversible ring whose every simple
singular left module is nil -injective, where a ring R is called weakly reversible [17] if ab = 0 implies that
Rbra is a nil left ideal of R for all a, b, r ∈ R . Clearly semicommutative rings are weakly reversible.

2. NCI Rings and reduced rings

A ring R is called NI if N(R) = N∗(R). NI rings are almost completely characterized by Marks [9].
But surprisingly, some very natural characterizations of such rings seemed to have so far escaped notice. We
begin by offering some of these new characterizations of NI rings.
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Proposition 2.1 The following conditions are equivalent for a ring R :

(1) R is NI.

(2) N(R) is a left ideal of R .

(3) N(R) is a right ideal of R .

Proof. (1) =⇒ (i), i = 1, 2 is evident.

(2) =⇒ (1) Let a ∈ N(R) and b ∈ R . By (2), ba ∈ N(R), so there exists n ≥ 1 such that (ba)n = 0.

Clearly, (ab)n+1 = a(ba)nb = 0, which implies ab ∈ N(R).Therefore N(R) is a right ideal of R .

Similarly, we can show that (3) =⇒ (1). �

Theorem 2.2 (1) Let R be a NI ring. Then R is min-leftsemicentral.

(2) There exists a NCI ring which is not min-leftsemicentral.

Proof. (1) Let e ∈ MEl(R) and a ∈ R . Write h = ae − eae . If h �= 0, then eh = 0, he = h and so we have

h2 = 0 and Rh = Re . Since R is a NI ring, Rh ⊆ N(R), which implies e ∈ N(R). This is impossible, so
h = 0. Hence e is left semicentral in R and so R is a min-leftsemicentral ring.

(2) Let D be a division ring and the 2-by -2 upper triangular matrix ring S = UT2(D) =
(

D D
0 D

)
.

By [4, Lemma 1.1(1)], S is NCI . By [2, Lemma 1.1(7)], the matrix ring S2×2 =
(

S S
S S

)
is NCI . But

S2×2 is not min-leftsemicentral. �

According to [4], the subrings of NCI rings need not be NCI . But we have the following proposition.

Proposition 2.3 Let R be a NCI ring and e = e2 ∈ R . If ReR = R , then eRe is NCI .

Proof. If N(eRe) = 0, we are done. Hence we assume that N(eRe) �= 0. Thus N(R) �= 0 and so there exists

a nonzero ideal I of R contained in N(R) by hypothesis. Since I = RIR = ReRIReR = ReIeR , eIe �= 0.

Since eIe is an ideal of eRe and eIe ⊆ N(eRe), eRe is a NCI ring. �

An ideal I of a ring R is called quasi-normal if idempotents can be lifted modulo I and for any
e ∈ E(R), eR(1 − e)Re ⊆ I , and if zero ideal is quasi-normal, then R is called quasi-normal ring . Clearly,

semiabelian rings [3] (e.g., every idempotent element of R is either left semicentral or right semicentral) and so
Abelian rings are quasi-normal.

A ring R is called directly finite if ab = 1 implies ba = 1 for all a, b ∈ R . According to [4], NCI rings

need not be directly finite, but [2, Proposition 2.10] points out that NI rings must be directly finite. We have
the following theorem.

Theorem 2.4 (1) R/N∗(R) is directly finite if and only if R is directly finite.

(2) Let I be an ideal of R and idempotents can be lifted modulo I . Then R/I is quasi-normal if and
only if I is a quasi-normal ideal.

(3) Let I be a quasi-normal ideal of R and a, b ∈ R . If 1 − ab ∈ I , then 1 − ba ∈ I .
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(4) R is min-leftsemicentral if and only if eR(1 − e)Re = 0 for all e ∈ MEl(R) .

Proof. (1) and (2) are trivial.

(3) Let 1 − ab ∈ I . Then in R̄ = R/I , āb̄ = 1̄. Write b̄ā = x . Then x2 = x . Since I is a quasi-normal
ideal of R , there exists an idempotent e ∈ R such that ē = x , that is e − ba ∈ I . Therefore ebae − e ∈ I .
Since eR(1 − e)Re ⊆ I , eb(1 − e)ae ∈ I . Hence ebae − ebeae ∈ I and so e − ebeae ∈ I . Since 1 − ab ∈ I ,
bea − babea ∈ I . Thus bea − ebeae ∈ I because ba − e ∈ I and a − ae ∈ I . Therefore bea − e ∈ I and then
bea − ba ∈ I . This implies ab(1 − e)ab = abab − abeab = a(ba − bea)b ∈ I , so 1 − ba = 1 − e ∈ I because
1 − ab ∈ I .

(4) Let R be a min-leftsemicentral ring and e ∈ MEl(R). Then e is left semicentral in R , which implies

eR(1 − e)Re = eR(1 − e)eRe = 0.

Conversely, for any e ∈ MEl(R), by hypothesis, eR(1−e)Re = 0. If (1−e)Re �= 0, then R(1−e)Re = Re ,

which implies eRe = eR(1 − e)Re = 0, this is impossible. Hence (1 − e)Re = 0, which shows that e is left
semicentral. Therefore R is a min-leftsemicentral ring. �

Corollary 2.5 (1) If R is quasi-normal, then R is directly finite.

(2) If R is NI , then R is directly finite.

(3) If R is quasi-normal, then R is min-leftsemicentral.

Proof. (1) This is a direct result of Theorem 2.4(3).

(2) Since R is NI , N(R) = N∗(R) and R/N∗(R) is a reduced ring. Hence R/N∗(R) is quasi-normal,

by (1), R/N∗(R) is directly finite. By Theorem 2.4(1), R is directly finite.

(3) It is an immediate consequence of Theorem 2.4(4) and (2). �

Call an ideal I of a ring R left idempotent reflexive [5], if for any e ∈ E(R) and a ∈ R , aRe ⊆ I implies
eRa ⊆ I . If zero ideal is left idempotent reflexive, then R is called left idempotent reflexive ring. Clearly,
Abelian rings and reflexive rings (e.g., aRb = 0 implies bRa = 0 for all a, b ∈ R) are left idempotent reflexive.
Evidently, we have the following theorem.

Theorem 2.6 (1) Let I be an ideal of R and idempotents can be lifted modulo I . Then R/I is Abelian if and
only if I is a quasi-normal ideal and left idempotent reflexive ideal of R .

(2) R is Abelian if and only if R is quasi-normal and left idempotent reflexive.

(3) The following conditions are equivalent for a ring R :

(a) R is left idempotent reflexive.

(b) For any a ∈ N(R) , e ∈ E(R) , aRe = 0 implies eRa = 0 .

(c) For any a ∈ P (R) , e ∈ E(R) , aRe = 0 implies eRa = 0 .

(d) For any a ∈ N∗(R) , e ∈ E(R) , aRe = 0 implies eRa = 0 .

(e) For any a ∈ J(R) , e ∈ E(R) , aRe = 0 implies eRa = 0 .
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Let R be a ring. Write Tn(R) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎝

a a12 a13 · · · a1n−1 a1n

0 a a23 · · · a2n−1 a2n

0 0 a · · · a3n−1 a3n

· · · · · · · · · · · · · · ·
0 0 0 · · · a an−1n

0 0 0 · · · 0 a

⎞
⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣
a, aij ∈ R} and STn(R) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎝

a0 a1 a2 · · · an−2 an−1

0 a0 a1 · · · an−3 an−2

0 0 a0 · · · an−4 an−3

· · · · · · · · · · · · · · ·
0 0 0 · · · a0 a1

0 0 0 · · · 0 a0

⎞
⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣
ai ∈ R, i = 0, 1, 2, · · · , n− 1} . Clearly, Tn(R) and STn(R) have the

nonzero nilpotent ideals

⎛
⎜⎜⎝

0 0 · · · 0 R
0 0 · · · 0 0
· · · · · · · · · · · ·
0 0 · · · 0 0

⎞
⎟⎟⎠ . Hence, we have.

Proposition 2.7 For any ring R (possibly without identity), Tn(R) and STn(R) are NCI for n ≥ 2 .

Given a ring R , the polynomial ring over R is denoted by R[x] . Then R[x]/(xn) ∼= STn(R), where (xn)

is an ideal of R[x] generated by xn . Therefore we obtain the following corollary.

Corollary 2.8 Let R be a ring. Then R[x]/(xn) is NCI .

Let R be a ring, σ, τ ring endomorphisms of R and M a bimodule over R . The (σ, τ ) extension of R

and M is R ∝ M τ
σ = {(a, x)|a ∈ R, x ∈ M}} with addition defined componentwise and multiplication defined

by (a, x)(b, y) = (ab, σ(a)y +xτ(b)). Clearly R ∝ M τ
σ is a ring. If σ = τ = idR , we obtain the trivial extension

R ∝ M = R ∝ M idR

idR
of R and M . Clearly, 0 ∝ M τ

σ = {(0, x)|x ∈ M}} is a nonzero nilpotent ideal R ∝ M τ
σ .

Let R be a ring, M a bimodule over R . Write T (R, M) = {
(

c x
0 c

)
|c ∈ R, x ∈ M} , then T (R, M)

is a ring and T (R, M) ∼= R ∝ M . Especially, T (R, R) ∼= R ∝ R ∼= R[x]/(x2).

Let R be a ring and σ : R −→ R a ring endomorphism, let R[x; σ] denote the ring of skew polynomials

over R ; that is all formal polynomials in x with coefficients from R with multiplication defined by xr = σ(r)x .

Note that if R(σ) is the (R, R)-bimodule defined by RR(σ) =R R and m ◦ r = mσ(r) for all m ∈ R(σ) and

r ∈ R , then R[x; σ]/(x2) ∼= R ∝ R(σ).

Proposition 2.9 Let R be a ring, σ, τ ring endomorphisms of R and M a bimodule over R . Then

(1) R ∝ M τ
σ is NCI .

(2) T (R, M) is NCI

(3) R[x, σ]/(x2) is NCI .

(4) R ∝ M is NCI .

(5) R ∝ R is NCI .
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Let R, S be rings and RMS a (R, S)-bimodule. Let E =
(

R M
0 S

)
with the addition componentwise

and the usual matrix multiplication. Then E is a ring which is called the trivial extension of R and S by M .

Clearly,
(

0 M
0 0

)
is a nonzero nilpotent ideal of E . Hence we have the following proposition.

Proposition 2.10 Let R, S be rings and RMS a (R, S )-bimodule. Then E =
(

R M
0 S

)
is NCI .

A ring R is called

regular if a ∈ aRa for all a ∈ R .

unit − regular if for any a ∈ R , a = aua for some u ∈ U(R), where U(R) denotes the group of units
of R .

strongly regular if a ∈ a2R for all a ∈ R .

n − regular [15] if a ∈ aRa for all a ∈ N(R).

weakly regular if a ∈ RaRa ∩ aRaR for all a ∈ R .

left Nduo if Ra is an ideal of R for all a ∈ N(R).

2−primal if N(R) = P (R).

Clearly, (1) reduced =⇒ left Nduo ; (2) reduced =⇒ 2-primal =⇒ NI =⇒ NCI ; (3) reduced =⇒ n-

regular; (4) reduced =⇒ weakly reversible.

The following theorem gives some new characterization of reduced rings, which also generalizes [4,

Proposition 1.4].

Theorem 2.11 The following conditions are equivalent for a ring R .

(1) R is reduced.

(2) R is n-regular and left Nduo .

(3) R is n-regular and Abelian.

(4) R is n-regular and semiabelian.

(5) R is n-regular and quasi-normal.

(6) R is n-regular and 2- primal.

(7) R is n-regular and NI .

(8) R is n-regular and NCI .

(9) R is n-regular and weakly reversible.

Proof. (1) ⇐⇒ (3) ⇐⇒ (6) ⇐⇒ (7) are proved in [16, Theorem 2.7] and (1) =⇒ (i), i = 2, 6, 9; (3) =⇒
(4) =⇒ (5); (7) =⇒ (8) are trivial.

(2) =⇒ (3) Let e ∈ E(R). For a ∈ R , write h = ae − eae . Clearly he = h, eh = 0 and h2 = 0. By (2),

h = hch for some c ∈ R and hR ⊆ Rh . This implies hc ∈ Rh and so h = hch ∈ Rh2 = 0. Hence ae = eae for
any a ∈ R , thus R is Abelian.

(5) =⇒ (1) Since n-regular rings are semiprime, n-regular rings are left idempotent reflexive. Since R

is quasi-normal, by Theorem 2.6(3), R is Abelian. By [16, Theorem 2.7], R is reduced.
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(8) =⇒ (1) If N(R) = 0, we are done. Otherwise there exists a nonzero ideal I of R contained in N(R)

by the NCIness of R . Let 0 �= a ∈ I , then a = aca for some c ∈ R because R is n-regular. Since ca ∈ E(R)

and ca ∈ I , this is impossible. Hence N(R) = 0.

(9) =⇒ (1) In “(2) =⇒ (3)”, since R is weakly reversible and eh = 0, Rhre is nil left ideal of R for all
r ∈ R . This implies Rh is a nil left ideal of R . Since R is n-regular, this is impossible. Which shows that R

is Abelian, so R is reduced. �

Since R is strongly regular if and only if R is reduced and regular, we have the following corollary.

Corollary 2.12 The following conditions are equivalent for a ring R .

(1) R is strongly regular.

(2) R is regular and left Nduo .

(3) R is regular and semiabelian.

(4) R is regular and quasi-normal.

(5) R is regular and 2-primal.

(6) R is regular and NI .

(7) R is regular and NCI .

(8) R is regular and weakly reversible.

Proof. Since strongly regular rings are always regular and every principally left ideal is an ideal, (1) =⇒ (2)
is clear.

(2) =⇒ (1) By (2), R is n-regular and left Nduo . By Theorem 2.11, R is Abelian. Since Abelian

regular rings are always strongly regular, (2) =⇒ (1) is evident. �

[14, Theorem 1.6] and [14, Theorem 1.8] show that (1) R is left MC2 if and only if aRe = 0 implies

eRa = 0 for all e ∈ MEl(R) and a ∈ Ml(R); (2) R is strongly min-leftsemicentral if and only if R is
min-leftsemicentral and left MC2.

Let D be a division ring. Then the 2-by-2 upper triangular matrix ring UT2(D) =
(

D D
0 D

)
is a weakly

reversible ring by [17, Proposition 2.3]. Clearly
(

1 0
0 0

)
∈ MEl(UT2(D)). Since

(
0 1
0 1

)(
D D
0 D

)
(

1 0
0 0

)
= 0 and

(
1 0
0 0

)(
D D
0 D

)(
0 1
0 1

)
=

(
0 D
0 0

)
�= 0, UT2(D) is not a left MC2 ring.

Hence weakly reversible rings are not necessarily strongly min-leftsemicentral, so weakly reversible rings are not
necessarily Abelian. However, We have the following theorem.

Theorem 2.13 (1) Weakly reversible rings are directly finite.

(2) Weakly reversible rings are min-leftsemicentral.

(3) The following conditions are equivalent for a ring R :

(a) R is left MC2 .

(b) aRe = 0 implies eRa = 0 for all e ∈ MEl(R) and a ∈ R .
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(c) aRe = 0 implies eRa = 0 for all e ∈ MEl(R) and a ∈ N(R) .

(d) aRe = 0 implies eRa = 0 for all e ∈ MEl(R) and a ∈ J(R) .

(e) aRe = 0 implies eRa = 0 for all e ∈ MEl(R) and a ∈ N∗(R) .

(f) aRe = 0 implies eRa = 0 for all e ∈ MEl(R) and a ∈ P (R) .

Proof. (1) Let R be a weakly reversible ring and ab = 1. Write e = ba . Then (1 − e)b = 0, so we have

Rb(1−e) ⊆ N∗(R) because R is a weakly reversible ring. Therefore ab(1−e) ∈ N∗(R) ⊆ N(R), which implies

1 − e ∈ N(R). Hence ba = e = 1.

(2) Let e ∈ MEl(R). If eR(1 − e)Re �= 0, then R(1 − e)Re = Re because Re is a minimal left ideal of

R . Since e(1 − e) = 0, R(1− e)re is nil left ideal of R for all r ∈ R by the weakly reversiblity of R , Re is nil

left ideal of R , which is a contradiction. Hence eR(1− e)Re = 0, by Theorem 2.4(4), R is min-leftsemicentral.

(3) (a) =⇒ (b) Assume that a ∈ R and e ∈ MEl(R) with aRe = 0. If eRa �= 0, then there exists a

b ∈ R such that eba �= 0. Since eba ∈ Ml(R) and ebaRe = 0, by [14, Theorem 1.6], eReba = 0, which implies
eba = 0, a contradiction. Hence eRa = 0.

(b) =⇒ (c) =⇒ (e) =⇒ (f) and (b) =⇒ (d) =⇒ (f) are trivial.

(f) =⇒ (a) Let e ∈ MEl(R) and k ∈ Ml(R) with kRe = 0. If eRk �= 0, then ReRk = Rk by the

minimality of Rk . Since (Rk)2 = RkRk = RkReRk = 0, k ∈ P (R). By (f), eRk = 0, which is a contradiction.

Hence eRk = 0, by [14, Theorem 1.6], R is left MC2.

�

A left MC2 ring R is called strongly left MC2 if R is also a weakly reversible ring. Clearly semicom-
mutative rings are strongly left MC2 and strongly left MC2 rings are strongly min-leftsemicentral by Theorem
2.13(2) and [14, Theorem 1.8]. [7, Lemma 3] shows that if R is a semicommutative ring whose simple singular
left modules are GP -injective, then R is a reduced ring. We can generalize this result as follows.

Theorem 2.14 R is a reduced ring if and only if R is a strongly left MC2 ring whose simple singular left
modules are Wnil -injective.

Proof. The necessity is evident.

Conversely, let a2 = 0. Suppose that a �= 0. Then there exists a maximal left ideal M of R containing
l(a). First obverse that M is an essential left ideal of R . If not, then M = l(e) for some e ∈ MEl(R). Since
R is a strongly left MC2 ring, R is a strongly min-leftsemicentral ring, so we obtain e is central in R . Using
a ∈ l(a), we get ea = ae = 0. Hence e ∈ l(a) ⊆ M = l(e), which is a contradiction. Therefore M must be an

essential left ideal of R . Thus R/M is Wnil -injective and so any R -homomorphism of Ra into R/M extends

to one of R into R/M . Let f : Ra −→ R/M be defined by f(ra) = r + M . Note that f is a well-defined

R -homomorphism. Since R/M is Wnil -injective, there exists c ∈ R such that 1 + M = f(a) = ac + M . Since

a2 = 0, Raca ⊆ N∗(R) ⊆ N(R). Hence ac ∈ N(R) and so 1 − ac ∈ U(R), which implies M = R . This
contradiction shows that a = 0. �

The following theorem generalizes [7, Theorem 4].

Theorem 2.15 Let R be a strongly left MC2 ring. If every simple singular left R -module is GP -injective,
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then R is a reduced weakly regular ring.

Proof. By hypothesis and Theorem 2.14, R is a reduced ring, so R is a semicommutative ring. Therefore,
by [7, Theorem 4], we obtain that R is a weakly regular ring. �

Theorem 2.16 Let R be a NCI ring. If R satisfies one of following conditions, then R is a reduced ring:

(1) R is left weakly regular.

(2) Every simple left R -module is Wnil -injective.

(3) R is left MC2 whose every simple singular left module is Wnil -injective.

Proof. If N(R) �= 0, then there exists a nonzero ideal I of R contained in N(R). Clearly, there exists a

0 �= b ∈ I such that b2 = 0 and so there exists a maximal left ideal M of R containing l(b).

(1) If R is left weakly regular, then b = cb for some c ∈ RbR . Since RbR ⊆ I ⊆ N(R), there exists

n ≥ 2 such that cn = 0. Hence b = cb = c2b = · · · cnb = 0, which is a contradiction;

(2) By hypothesis, R/M is Wnil -injective, hence every left R -homomorphism of Rb into R/M extends

to one of R into R/M . Let f : Rb −→ R/M be defined by f(rb) = r + M . Then f is left R -homomorphism,

so there exists c ∈ R such that 1 − bc ∈ M . Since bc ∈ I ⊆ N(R), 1 − bc ∈ U(R), which is a contradiction.

(3) If M is not an essential left ideal of R , then M = l(e) for some e ∈ MEl(R). Clearly be = 0. If

bRe �= 0, then RbRe = Re . But RbRe ⊆ I ⊆ N(R), which is a contradiction because e /∈ N(R). Therefore

bRe = 0. Since R is left MC2, eRb = 0, which implies e ∈ l(b) ⊆ M = l(e), so e = 0. It is also a

contradiction. Therefore M is essential, then R/M is Wnil -injective. By the proof of (2), we know that a
similar contradiction can be made.

All these imply N(R) = 0. �

Corollary 2.17 Let R be a NCI left MC2 ring whose every simple singular left module is GP -injective.
Then:

(1) R is a weakly regular ring.

(2) If R is also a MELT ring, then R is strongly regular.

.
Proof. (1) By Theorem 2.16, R is a reduced ring. By [6, Theorem 4], R is weakly regular.

(2) By [14, Theorem 1.2], R is a quasi-duo ring. By [7, Proposition 8], R is strongly regular.

�

3. Rings characterized by idempotents

Theorem 3.1 The following conditions are equivalent for a ring R :

(1) R is quasi-normal.

(2) ea = 0 implies eRae = 0 for any a ∈ R and e ∈ E(R) .

(3) ea = 0 implies eRae = 0 for any a ∈ N(R) and e ∈ E(R) .
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(4) ae = 0 implies eaRe = 0 for any a ∈ R and e ∈ E(R) .

(5) ae = 0 implies eaRe = 0 for any a ∈ N(R) and e ∈ E(R) .

Proof. (1) =⇒ (2) Let ea = 0. Then a = (1− e)a , so eRae = eR(1− e)ae ⊆ eR(1− e)Re . By the definition
of quasi-normal ring, we have eRae = 0.

(2) =⇒ (3) is trivial.

(3) =⇒ (1) Let e ∈ E(R). For any a ∈ R , set h = ae−eae , then h ∈ N(R) and eh = 0. By hypothesis,

eRhe = 0. Since h = he = (1 − e)ae , eR(1 − e)ae = eRhe = 0 for any a ∈ R . Therefore eR(1 − e)Re = 0.

Similarly, we can show that (1) ⇐⇒ (4) ⇐⇒ (5). �

Since quasi-normal left idempotent reflexive rings are Abelian by Theorem 2.6(2) and there exists a

semiprime ring which is not Abelian. Hence, “N(R)”, as appears in Theorem 3.1, can not be replaced by

any the conditions P (R), N∗(R) and J(R), because semiprime rings are left idempotent reflexive. For min-
leftsemicentral rings, we have the following result.

Theorem 3.2 The following conditions are equivalent for a ring R :

(1) R is min-leftsemicentral.

(2) ea = 0 implies eRae = 0 for any a ∈ R and e ∈ MEl(R) .

(3) ea = 0 implies eRae = 0 for any a ∈ N(R) and e ∈ MEl(R) .

(4) ae = 0 implies eaRe = 0 for any a ∈ R and e ∈ MEl(R) .

(5) ae = 0 implies eaRe = 0 for any a ∈ N(R) and e ∈ MEl(R) .

(6) ae = 0 implies aRe = 0 for any a ∈ R and e ∈ MEl(R) .

(7) ae = 0 implies aRe = 0 for any a ∈ N(R) and e ∈ MEl(R) .

Proof. By Theorem 2.4(4) and similar to the proof of Theorem 3.2, we have (1) ⇐⇒ (2) ⇐⇒ (3) ⇐⇒ (4) ⇐⇒
(5). By the definition of min-leftsemicentral rings, we have (1) =⇒ (6) =⇒ (7).

(7) =⇒ (1) Let e ∈ MEl(R) and a ∈ R . Write h = ae − eae . If h �= 0, then Rh = Re , h = he ,

eh = h and h2 = 0. Set e = ch for some c ∈ R . Then h = he = hch = gh , where g = hc ∈ MEl(R) and

hg = h2c = 0. By (7), hRg = 0. Since hR = gR , gRg = hRg = 0. Therefore g = 0, which is a contradiction.
Hence h = 0, which implies ae = eae for all a ∈ R . Hence R is min-leftsemicentral. �

A ring R is called left sub-abelian if ea = 0 implies eRa = 0 for all e ∈ MEl(R) and a ∈ R . Clearly,
strongly min-leftsemicentral rings are left sub-abelian, and by Theorem 3.2, left sub-abelian rings are min-
leftsemicentral. But there exists a min-leftsemicentral ring which is not left sub-abelian.

Let D be a division ring. Then the 2-by-2 upper triangular matrix ring UT2(D) =
(

D D
0 D

)
is a left

quasi-duo ring, by [9, Theorem 1.2], UT2(D) is a min-leftsemicentral ring. Clearly,
(

1 0
0 0

)
∈ MEl(UT2(D))

and
(

1 0
0 0

) (
0 0
0 1

)
= 0, but

(
1 0
0 0

)
UT2(D)

(
0 0
0 1

)
=

(
0 D
0 0

)
�= 0. Therefore , UT2(D) is

not left sub-abelian. On the other hand, this example implies there exists a left quasi-duo ring which is not left
sub-abelian. By [14, Theorem 1.8], we have the following theorem.
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Theorem 3.3 The following conditions are equivalent for a ring R :

(1) R is strongly min-leftsemicentral.

(2) R is left sub-abelian left MC2 .

(3) eRae = 0 implies ea = 0 for any a ∈ R and e ∈ MEl(R) .

(4) eRae = 0 implies ea = 0 for any a ∈ N(R) and e ∈ MEl(R) .

Proof. (1) ⇐⇒ (2) is an immediate corollary of [14, Theorem 1.8]. (1) =⇒ (3) =⇒ (4) is trivial.

(4) =⇒ (1) Let e ∈ MEl(R) and a ∈ R . Write h = ea − eae . Then eh = h, he = 0 and h2 = 0.

Clearly, eRhe = 0, by (4), h = eh = 0. Therefore ea = eae , which implies e is right semicentral in R . By

the remark between [14, Theorem 1.8] and [14, Theorem 1.9], we obtain that R is strongly min-leftsemicentral.�

Contrast to Theorem 3.3, we have the following corollary.

Corollary 3.4 The following conditions are equivalent for a ring R :

(1) R is min-leftsemicentral.

(2) eaRe = 0 implies ae = 0 for any a ∈ R and e ∈ MEl(R) .

(4) eaRe = 0 implies ae = 0 for any a ∈ N(R) and e ∈ MEl(R) .

Theorem 3.5 The following conditions are equivalent for a ring R :

(1) R is left MC2 .

(2) aRe = 0 implies ea = 0 for all e ∈ MEl(R) and a ∈ R .

(3) aRe = 0 implies ea = 0 for all e ∈ MEl(R) and a ∈ N(R) .

(4) aRe = 0 implies ea = 0 for all e ∈ MEl(R) and a ∈ J(R) .

(5) aRe = 0 implies ea = 0 for all e ∈ MEl(R) and a ∈ N∗(R) .

(6) aRe = 0 implies ea = 0 for all e ∈ MEl(R) and a ∈ P (R) .

Proof. By Theorem 2.13, (1) =⇒ (2) =⇒ (3) =⇒ (5) =⇒ (6) and (2) =⇒ (4) =⇒ (6) are trivial.

(6) =⇒ (1) Now let e ∈ MEl(R) and a ∈ P (R) with aRe = 0. If eRa �= 0, then there exists a

b ∈ R such that eba �= 0. Since eba ∈ P (R) and ebaRe = 0, e(eba) = 0 by (6). Hence eba = 0, which is a
contradiction. Therefore eRa = 0, by Theorem 2.13, R is left MC2. �

Similarly, by Theorem 2.6, we have the following theorem.

Theorem 3.6 The following conditions are equivalent for a ring R :

(a) R is left idempotent reflexive.

(b) For any a ∈ N(R) , e ∈ E(R) , aRe = 0 implies ea = 0 .

(c) For any a ∈ P (R) , e ∈ E(R) , aRe = 0 implies ea = 0 .

(d) For any a ∈ N∗(R) , e ∈ E(R) , aRe = 0 implies ea = 0 .

(e) For any a ∈ J(R) , e ∈ E(R) , aRe = 0 implies ea = 0 .

As for Abelian rings, we have the following theorem.
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Theorem 3.7 The following conditions are equivalent for a ring R :

(a) R is Abelian.

(b) For any a ∈ N(R) , e ∈ E(R) , eaRe = 0 implies ae = 0 .

(c) For any a ∈ R , e ∈ E(R) , eaRe = 0 implies ae = 0 .

(d) For any a ∈ R , e ∈ E(R) , eRae = 0 implies ea = 0 .

(e) For any a ∈ N(R) , e ∈ E(R) , eRae = 0 implies ea = 0 .

A ring R is called left PS [11] if for any k ∈ Ml(R), RRk is projective, and R is left universally

mininjective [12] if for any k ∈ Ml(R), Rk = Re for some e ∈ MEl(R). Clearly, semiprime rings are left
universally mininjective and left universally mininjective rings are left PS .

A left R -module M is called MUP -injective [13] if for any complement left ideal C of R , a ∈ R , any

left R -monomorphism g : Ca −→ M , there exists y ∈ M such that g(ca) = cay for all c ∈ C . In term of
MUP -injective modules, we characterize left MC2 rings and left universally mininjective rings as follows.

Theorem 3.8 (1) R is left MC2 if and only if every projective simple left R -module is MUP -injective.

(2) R is left universally mininjective if and only if R is left PS whose every simple left module is
MUP -injective.

Proof. (1) First, we assume that R is left MC2 and M is a simple left R -module. Let C be a complement left
ideal of R and a ∈ R , f : Ca −→ M be any nonzero left R -monomorphism. Then f is an isomorphism which
implies Ca is a projective minimal left ideal of R . Since R is left MC2, Ca = Re for some e ∈ MEl(R). Write

f(e) = y ∈ M . Then f(ca) = f(cae) = caf(e) = cay for all c ∈ C which proves that RM is MUP -injective.

Conversely, let k ∈ Ml(R) and RRk be projective. By hypothesis, RRk is MUP -injective. Since

l(k) = Re for some e ∈ MEl(R), k = (1−e)k . Since R(1−e) is a complement left ideal of R , then the nonzero

left R -monomorphism f : R(1 − e)k −→ Rk defined by f(r(1 − e)k) = rk for all r ∈ R can be write f = ·y
for for y ∈ Rk , that is f(r(1 − e)k) = r(1 − e)ky for all r ∈ R . Especially, k = f((1 − e)k) = (1 − e)ky = ky .

This implies k ∈ kRk because y ∈ Rk . Hence Rk = Rg for some g ∈ MEl(R). and so R is a left MC2 ring.

(2) Since R is a left universally mininjective ring if and only if R is a left PS left MC2 ring, by (1) and

the necessity proof of (1), we can easily obtain (2) �

Finally, we generalize corner idempotents as follows: Call an idempotent e of R a left weakly corner
element if ReN = N for any left R -submodule N of Re . Clearly any central idempotent of a ring R is left
weakly corner element. Let e ∈ E(R) such that ReR = R , then e is also a left weakly corner element of R .

Theorem 3.9 Let R be a strongly left MC2 ring with e ∈ E(R) . If e satisfies one of the following conditions,
then S = eRe is strongly left MC2 .

(1) e is a left weakly corner element of R .

(2) e is contained in the central of R .

(3) ReR = R .

Proof. (1) Note that any subring of a weakly reversible ring is weakly reversible so if R is weakly reversible

then so is S . Now let g ∈ MEl(S) and a ∈ S such that aSg = 0. Then aRg = aeReg = aSg = 0. We claim
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that g ∈ MEl(R). In fact for any x ∈ R , if xg �= 0, then Rxg ⊆ Re , so we have ReRxg = Rxg because
e is a left weakly corner element of R . Hence eRxeg = eRxg �= 0. Since eRxeg is a left ideal of S = eRe

and g ∈ MEl(S), eRxg = eReg . Therefore Rg = Reg = ReReg = ReRxg ⊆ Rxg ⊆ Rg , this means that

g ∈ MEl(R). Since R is a left MC2 ring and aRg = 0, gRa = 0. Hence gSa = 0, this implies S is left MC2.

(2) and (3) are immediate results of (1) �

Acknoledgements

The authors are grateful to the referee for his/her valuable comments.

References

[1] Anderson, D.D., Camillo, V.: Semigroups and rings whose zero products commute. Comm. Algebra 27(6), 2847-2852

(1999).

[2] Birkenmeier, G.F., Heatherly, H.E., Lee, E.K.: Completely prime ideals and associated radicals. Proc. Biennial

Ohio State-Denison Conference 1992. ( edited by Jain, S.K., Rizvi, S.T.: Would Scientific, Singapore-New Jersey-

London-Hong Kong 102-129 (1993).)

[3] Chen, W.X.: On semiabelian π -regular rings. Intern. J. Math. Sci. 23, 1-10 (2007).

[4] Hwang, S.U., Jeon. Y.C., Park, K.S.: On NCI rings. Bull. Korean Math. Soc. 44(2), 215-223 (2007).

[5] Kim, J.Y.: Certain rings whose simple singular modules are GP -injective. Proc. Japan. Acad. 81, 125-128 (2005).

[6] Kim, N.K., Lee, Y.: Extensions of reversible rings. J. Pure Appl. Algebra 185, 207-223 (2003).

[7] Kim, N.K., Nam, S.B., Kim, J.Y.: On simple singular GP -injective modules. Comm. Algbra 27(5), 2087-2096

(1999).

[8] Krempa, J., Niewieczerzal, D.: Rings in which annihilators are ideals and their application to semigroup rings. Bull.

Acad. Polon. Sci. Ser. Sci., Math. Astronom, Phys. 25, 851-856 (1977).

[9] Marks, G.: On 2-primal Ore extensions. Comm. Algebra 29(5), 2113-2123 (2001).

[10] Nam, S.B., Kim, N.K., Kim, J.Y.: On simple GP -injective modules. Comm. Algebra 23(14), 5437-5444 (1995).

[11] Nicholson, W.K., Watters, J.F.: Rings with projective socle. Proc. Amer. Math. Soc. 102, 443-450 (1988).

[12] Nicholson, W.K., Yousif., M.F.: Minijective rings. J. Algebra 187, 548-578 (1997).

[13] Roger, Y.C.M.: On von Neumann regular rings, VII. Commentations Math. Univ. Carolinae 23(2), 427-442 (1982).

[14] Wei, J.C.: Certain rings whose simple singular modules are nil-injective. Turk. J. Math. 32, 393-408 (2008).

[15] Wei, J.C., Chen, J.H.: Nil -injective rings. Int. Electron. J. Algebra 3, 1-21 (2007).

[16] Wei, J.C., Chen, J.H.: NPP rings, reduced rings and SNF rings. Int. Electron. J. Algebra 4, 9-26 (2008).

[17] Zhao, L., Yang, G.: On weakly reversible rings. Acta. Math. Univ. Comenianae 76(2), 189-192 (2007).

Junchao WEI, Libin LI
School of Mathematics, Yangzhou University,
Yangzhou, 225002, P. R. China
e-mail: jcweiyz@yahoo.com.cn

Received: 23.01.2009

353


