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Homology with respect to a kernel transformation

Seyed Naser Hosseini and Mohammad Zaher Kazemi Baneh

Abstract

In this article we first give the relations between commonly used images of a morphism in a category.
We then investigate d-homology in a category with certain properties, for a kernel transformation d. In
particular, we show that, in an abelian category, d-homology, where d is induced by the subtraction
operation, is the standard homology and that in more general categories the d-homology for a trivial d
is zero. We also compute through examples the d-homology for certain kernel transformations d in such
categories as R-modules, abelian groups and short exact sequences of R-modules. Finally, we characterize
kernel transformations in the categories of R-modules, finitely generated R-modules, partial sets and pointed
sets.

Key Words: Kernel, image, abelian category, standard homology, homology with respect to a kernel
transformation, category of (finitely generated) R-modules, (finitely generated) abelian groups, partial sets,

pointed sets.

1. Introduction

Since we have different definitions of an image of a morphism, which is a crucial entity in the definition
of homology (see [2, 5, 6, 7, 9, 10, 12, 14]), we introduce all the usual images in a category in Section 2, and we

investigate the relations between them. Also in this section, we give a few illustrative examples. In Section 3,

for some general categories, we consider image and kernel as functors and for a pair A J. B 2 C with
gf =0, and give a functorial map from image of f to kernel of g. The homology with respect to a particular
natural transformation d: S o K — K : C — C, called kernel transformation, where C is the arrow category
of C, (see [13]), K is the kernel functor and S is the squaring functor, is investigated in Section 4, proving it
is the standard homology, when the category is abelian and d is given by the subtraction operation and that it
is zero when d is a trivial transformation, i.e., the projections or the zero transformation. Several examples are
given in this section, computing the d-homology in the category, Rmod, of R-modules for d = +(r x s), with
r,s € R and in the category, Shpg, of short exact sequences of R-modules, for certain kernel transformations
d. Finally in Section 4 we show for R a commutative ring with unity, the only kernel transformations in the
category Rmod are the ones of the form +(r x s) for some r, s € R and if, in addition, R is neotherian, these

are the only transformations in the category, FFGRmod, of finitely generated R-modules. We also prove the
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only kernel transformations in the categories Set of partial sets, (see [, 4, 8]), and Set, of pointed sets (see

[10]), are the trivial ones.

2. Image and kernel of morphisms

Using the notation K LN A for kernel, Py =1 A for the kernel pair, and B = Qy for the
Vo

T2

equ(f,g) coe(f,9)

cokernel pairof amap f: A — Bj;and Equ(f,g) A for the equalizer and B Coe(f,q)

f
for the coequalizer of a pair A == B we have the following definition.
g

Definition 2.1 See [3, 11, 13]. Let f: A — B be a morphism in a category C. Each of the following defines

an image of f (as an object).
(a) I’Jf =K., .
(b) If = Cy; .
(c) 1% = Coe(my, ma), where (w1, m2) is the kernel pair of f.

(d) I3 = Equ(vi,vs), where (v1,v2) is the cokernel pair of f.

Lemma 2.2 If in the following diagram the left squares commute and the top and bottom rows are coequalizers,

then there is a unique map ¢ making the right square commute. Furthermore, i is a reqular epi.

f e

A—B — (O

l g
" ilB l
f/
A —= B —— ('
g ¢

e .

Proof. Existence follows easily. Some computations show the diagram A ——= C —— ("’ is a coequalizer.
eg’

O

Theorem 2.3 Let C be a category with a zero object, pullbacks and pushouts and f: A — B be a map in C.

Then we have the following diagram, in which all the three and four sided subdiagrams commute:
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Diagram 1

Furthermore, f = ml}el} =mje; = m’}e’} =mfe} . In addition el}, €% and i;b are reqular epis and m$,

m’} and i;k are regular monos.

T b
Proof. To prove the existence of i;b : Ij‘i — I?, we know the diagram Py —— A LN I? is a coequalizer
T2

and w1 f = wof, so there is a unique ml} making the following triangle commute.

L eb

Pf:>> AHI‘?

T2
\ M‘
f

B.

Since fky = 0, there is a unique r making the following triangles commute:

Now, by the above lemma, there exists a unique regular epi i;b making the following triangle commute:

171



HOSSEINI, KAZEMI BANEH

k
f e}

Kf:>> A4>[]‘5

0
-cb
\ i i
e

b
! b
1.

We have mfe} = ml}el} = ml}i;be;. Since e} is epic, m§ = ml}i;b.

We dually get maps m§ : I}’ — B and €} : A— I}’ such that f = mGe§ and then the regular mono
i}’k : I}’ — I’Jf with the commutative triangles m’}i;’k =mj and i}’ke;’ = e’}.

To get il}o : I? — IJO», we have m;’e;m = fm = fmo = m}’e;ﬂg, with m; monic. So e;’m = e;’ﬂg and
thus €% factors through el} by a unique map il}" satisfying il}"el} =€}, We also have m}’il}"el} = mGes = f=
ml}el} with el} epic. So m}’il}" = ml}.

The maps (e il}k and i;k can be obtained by similar arguments as above or we can define them as

iy = il}"i;b, il}k = i}’kil}" and i;k = i;’kil}oi;f’. Commutativity of the corresponding diagrams follows easily. O

Corollary 2.4 Let C be a category with a zero object, pullbacks and pushouts and f: A — B be a map in C.
(a) If m§ is monic, then i;b : IJC» >~ I? is an isomorphism and the maps ml}, il}", i, il}k and i;k are
monic.

(b) If e’} is epic, then i}’k : I}’ =~ I’Jf is an isomorphism and the maps €%, il}", il}k, i’ and i;k are epic.

Proof. Using Diagram I and Theorem 2.3, the result follows easily. O

Example 2.5 In an abelian category C, for a map f: A — B we have

Since in an abelian category, every epi is a cokernel and every mono is a kernel (see [15]), m§ is monic
and e’} is epic. By Corollary 2.4, i;b : IJC» = I? and i}’k : I}’ = I’Jf are isomorphisms and il}" : I? =~ I}’ is a

bimorphism and hence also an isomorphism, since abelian categories are balanced.

Example 2.6 In the category Grp of groups, since every epi is a cokernel, (see [14]), mf is monic for every
[ and so I§ %I?.
Now consider f:7Zs — S3 such that f(1) = (1,2). Then I = I? ={I,(1,2)} and I’Jf is easily seen to

-bo cok
be the normal closure of I, which is Ss. By Theorem 2.3, we have monos I?>Zf—>I}’>Zf—>I’Jf. Since there

is no group between {I,(1,2)} and Ss, Iy = I? ={I,(1,2)} or Iy = I’Jf = S3. Since f is not epi, v1 # vo,
and so equ(vi,v2) # 1. It follows that Equ(vy,vs) # S3 and so I3 # I’Jf. Therefore I3 = 1§ = {I,(1,2)}.
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Example 2.7 In the category Set. of pointed sets, since every mono is a kernel, (see [14]), e’} is epic for
every f, and so Iy = I’Jﬁ.

Now for any f:(X,2z0) — (Y,v0), I = (X/R, [x0]), where R is the equivalence relation on X defined
by x1Rxo if and only if x1 = x9 or m1,x9 € Ky. On the other hand, 1% = (f(X),y0) and so, obviously,

Is # I? in some cases.

Example 2.8 In the category, Shr of short exact sequences of R-modules, neither every epi is a cokernel,
nor every mono is a kernel, see [13], page 177. We show for every F, m$% is monic and €% is epic. Hence By
Theorem 2.8, it : I& = 1% and i : 1% = I§. are isomorphisms and %9 : 1% = Ig. is a bimorphism.

With F = («, 8,7v) : M — N as shown below, we have

F e mfp
M — N Krp and I =Cy, so M I¢ N
0 0 0 0 0 0 0
L / f a
A A K, If;;ﬁKB A [f;BKIS A
f oy
B / f
B — B K, 7
P B B P ,
g gy K B K B
S / 9 g’
¢ Y ¢ ]9[3
C C
Top C—=1 — ¢
0 0 0
0 0 0 0,

where Iy is the image of the restriction of g on Kg, f(a) = f(a) + K and a(f(a) + Kg) = a(a). To show
m$ is monic, suppose mih = mék, where h = (hy, ha, h3) and k = (ki, ko, k3). Since & and 3 are monic,
hi = k1 and hg = ko. Since hsg” = ghe = gko = ksg” and ¢"” is epi, hs = ks and hence h = k. So m$ is
monic.

Next we have
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Cr and [% =K, andthen )M . Iy, SN
0 0 0 0 0
If/+l[5 D A ¢ D A/
1[5
/ I’
1, ’ I /
5 B B p B
In
g g
.
I, C I, C’
[
3 l
0 0 0 0,
0

where D = {a € A'|f'(a) € Ig}. To show ek is epic, suppose hek. = ke’}, where h = (hyi,ha, hs) and
k = (ki, ko, k). We know that [; and 4 are epic, so ho = ko and hy = k3. Since f"hy =hof =kof' = [k

and f" is monic, hy = k1 and so h = k. Therefore €% is epic.

3. Image and kernel as functors

Let C be a category with a zero object, kernels, kernel pairs and coequalizers of kernel pairs.

Let C be the arrow category of C, see [13], with objects the morphisms of C and with morphisms from

f:A— B to f/: A — B’ the pairs of morphisms («a, #) making the following square commutative:

/
A— B

S
Al — B,
f/

and let C be the pair-chain category of C, with objects the pair-chains, i.e., the composable pairs, (f,g), of
morphisms of C, such that gf =0 and with morphisms from (f,g) to (f’,¢’) the triples («, 3,~) making the
following squares commutative:
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A B C

SR L

A — B —— (.
f g

The next two theorems follow easily.

Theorem 3.1 Let f: A — B and f': A’ — B’ be objects in C. The mapping K : C — C that takes the

object f to Ky and the morphism (o, ) : f — f' to K(«,3), where K(«, ) is the unique map making the
square

ky
KfHA

K(,0) l i o

Kf’ —_— A/
kf/

commutative, is a functor.

Theorem 3.2 Let f : A — B and f : A’ — B’ be objects in C. The mapping I : C — C that takes
f:A— B toly= I? and (o, B) : f — ' to I(a, ), where I(c, 3) is the unique map making the square

ef
A —— Iy

e

A —— [f’
ef/

commutative, is a functor.

Lemma 3.3 We have:
(a) For each object (f,g) in C, there is a map Jrg Iy — K4 in C.

(b) For each morphism (o, 8,7) : (f,9) — (f',d') in C, the following square commutes.

Jfg
I; — K,

I(op) l i K(B.v)

[f/ H Kg/,
Jftg!
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Proof. (a)Let A J. B % Chean object of C. With e ¢ the coequalizer of the kernel pair of f, there

is an my making the following triangle commutative:

ef
A — Iy

N

B.

Since gmysey = gf = 0 and ey is epic, gmy = 0. So there is a unique map jr, making the following

triangle commutative:

kg
Kg — B
Jfg T /
my
I
(b) We have the following diagram:
f
/11
ef Jfg kg
o J/ /17 I(alﬁ) K(%ﬁ) /11 J/ B
A If’ Kg’ > B’
eyl Jprgl kg
W
f/

in which, the left, the right and the outer squares commute. Since kg, is monic and ef is epic, the middle

square commutes. d
We now easily get the following theorem.

Theorem 3.4 The mapping j : C — C that takes the object (f,g9) € C to Jfg and the morphism (o, 3,7) to
(I(a, B), K(5,7)) is a functor.

Remark 3.5 Let (f,g) € C. By the proof of Lemma 3.3, kgjrg = my and ky is monic. So jr, is monic if and

only if my is monic. Therefore by Corollary 2.4, if m$ is monic, then so is jg .
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4. Homology with respect to a kernel transformation

2
Definition 4.1 Let S :C — C be the squaring functor, i.e., the functor that takes a L btea L 82

Definition 4.2 A kernel transformation in a category C is a natural transformation d: So K — K :C — C
such that for all (f,g) in (f, the pullback ji, : Ry — KgQ, of jrg along dy and the coequalizer of the pair

Jj1= prlj;;g and jo = prgj;;g erist, where pri and pra are the projection maps.

With H}lg = Coe(j1,j2) and q = coe(ji1, j2), we have the following lemma.
Lemma 4.3 Let d : So K — K : C — C be a kernel transformation. For each morphism (a,3,7) :

(f,g9) — (f,d) in C, there exists a unique morphism HYa, B,7) : H?g — H?,g/ making the following

diagram commutative:

1 d
K, — HY,

K(Bv) l J{ He(aBy)
Ky — Hj,.
q

Proof. Let («a,f,v) be a morphism in C from (f,g9) to (f',¢'). Since in the diagram

R “ I
fg f
:S I(avﬁ)
It e jfg\
A d;‘/
Rf/g/ If/
j;/gl jf'gl
K? K,
\“’-" \ﬁv)
K2(B,v)
KQZ/ Kg/

the bottom square commutes by naturality of d, the right square commutes by Lemma 3.3, the front and the

back squares are pullbacks, and we get a unique s making the top and the left squares commutative.

The naturality of pr; yields K (3, ~)pr; = pri K%(3,7). So the left and the middle squares in the following
diagram commute:
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jfg pri q d
2 —
Ry, —> K} —= K, — H},

i KQ(B,Y)i . lK(IS,Y) lHd(a,ﬁ,v)

pri
Rf’g/ B —— KgQ, *4 Kg/ —_— Hd/g/.
jf’g’ pr2 q

Since ¢ = coe(j1, j2), we get the desired map H%(«, 3,7) making the right square in the above diagram

commutative. O
Now we easily get the following theorem.

Theorem 4.4 The mapping H? : C — C that takes the object (f,g9) € C to H?g and the morphism (a, 3,7)
to H%(a, 3,7) is a functor.

The functor H? : C — C is called the d-homology or the homology with respect to the kernel transfor-

mation d.
pri
Let C be an abelian category. For each A € C, the projections A2 ——= A yield pr; — pry which
pr2

we denote by —4 : A2 — A. It can be easily verified that these maps define a natural transformation

—:8 —1:C—C. So we get the kernel transformation —o K : So K — K : C — C. Denoting — o K

also by —, we have the following theorem.

Lemma 4.5 For any abelian category C, the kernel transformation — : So K — K : C — C is pointwise
split epic.

Proof. Foreach f: A — B, the right inverse of — is the morphism < 1,0 >: Ky — K?. O

The homology of a pair (f,g) € C, as defined in [13] is Coker(jtq). We call this homology the standard
homology of f and g and we denote it by H o The corresponding functor is denoted by H*®.

Theorem 4.6 In an abelian category C, H~ = H®.

Proof. Since H;g is the coequalizer coe(ji,j2) : K4 — H;g and C is an abelian category, we have
coe(ji, jo) = coker(ji — j2) = coker((pr1 — pra)j*) = coker(—,4j*) = coker(jss—;). Now —7, being the pull-
back of the split epi —g, is a split epi, so coker(jrg—;) = coker(jrg) = H; . O

Lemma 4.7 Let C be a category with a zero object, finite products and coequalizers. If A —— C 2B

apry
is an epi sink, then the coequalizer of A x B ,8:; C is C — 0. In particular, for any object A, the
pT2

pri
coequalizer of A2 —= A is A— 0.
pr2
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Proof. Follows from the fact that for any morphism f with fapri = fBprs, we have fa = fapr; < 1,0 >=
fBpro < 1,0 >=0 and fB = fBpro < 0,1 >= fapr; < 0,1 >=0 and so f =0. O

Corollary 4.8 Let (f,g) be a pair-chain. If Jtg = a x B with (o, B) an epi sink or if J}g s an epi, then
d _
Hfg _ 0 .

Proof. In the former case we have, H?g = Coe(prlj’}g,prgj;g) = Coe(apri, Bpra) = 0 and in the latter
case, H?g = Coe(prijj,. praji,) = Coe(pri, pra) = 0. O

Calling the projection transformations and the zero transformation the trivial transformations, we have

the following theorem.

Theorem 4.9 Let C be a category with a zero object, pullbacks and coequalizers. If d is a trivial kernel

transformation, then H? = 0.

Proof. Let (f,g) be any pair-chain. For d = pry, we get j’J’ig =jrg x 1, for d = pry, we get j’J’ig =1Xjg

and for d =0, we get j’J’ig:prl:Kng-

Grg Kg2. Since (jrg,1) and (1, jsq) are epi sinks, and pr; is epic,

the result follows from Corollary 4.8. O

Example 4.10 Let C = Rmod and d = rpri + spro = +(r x s) with r,s € R. Let (f,g) be a pair-chain.
Then Ryy = {(a,b) € KZ|ra+ sb € I}, j* is the inclusion and Hpy = MJ:W = {[a] : @ € K}, where
[a] = {b|r(a—b) € (r+s)Ky+ 15} = {b|s(a—0b) € (r+s)K,+1s} is the equivalence class under the equivalence

relation a ~ b if and only if Im,n € Ky such that a —b=m —n and rm+ sn € Iy.

Example 4.11 As a special case of Example 4.10, for d = +(r x 1) or d = +(1 x r) with r € R, we have

d __ Kq
Hfg = (I4r)Kg+If -

Example 4.12 As another special case of Example 4.10, let C = Abgrp. For d = +(r X s), with r,s € Z, and

any pair-chain (f,g) such that K, =7 and Iy = nZ, H?g = Zy, where | = ¢ (rts,n)

Toienyy s With (r+s,n) denoting

the greatest common divisor of r+ s and n, etc.

Example 4.13 Let C = Shy, d = —, and the pair-chain (f,g) be as in the following diagram with n an even

integer. Then we have:
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! g Jfg
A B C Iy —= K, and Ry,
0 0 0 0 0 0
n- 0 -
Z Z Z 7 — 7 {(a,b,b - na)la,be Z}
2 2- 2- 2- 2- (29
n- 0 -
/ Z Z 7 — 7

{(a,b,b - na)la, b€ Z}

0 0 0 l

Z2 X { (07 O)’ (1’ 1)}

0 0 0 0 0 l
0-

Therefore H}lg = Coker(j1 — j2) 1is:

Jji J2 q d
Ryq K, Hj,
0 0 0
{(a,b,b - na)la, bEZ} —— 7, 27,
(2-)? 2
{(a,b,b - na)|a,b € Z} "z /8
0
Zg X { (O, 0), (1, ].)} ZQ ZQ
0 0 0

Example 4.14 Consider C = Shy, d = +(r x 1) with r odd, and the pair-chain (f,g) as in the following

diagram with n odd. Then we have:
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{(a,b,na - rb)|a,b EZ}

(2-)°

{(a,b,na - rb)la,b EZ}

{(a,b,¢)la- b= c=0a,b,c EZy}

! g Jtg
A B C Iy — K, and
0 0 0 0 0
n— 0 n—
Y/ ) / 7 —— 7
2 2- 2- 2-
n— 0 n—
Y/ 7 Y/ 7 —— 7
1 0 1
Ly Ly Ly Lo —> 7o
0 0 0 0 0
Therefore H}lg = Coker(j1 — j2) 1is:
JiJ2 J
Ry, K, Hfg
0 0 0
na-(14r)b
{(a,b,na - rb)|a,b € Z} 7 Linyi4r)
2 )? 2-
na-(14r)b
{(a,b,na - rb)|a,b € Z} Y/ Li(nyi4r)
b-c
{(a,b,¢)la = b - c=0a,b,c € Zy} Zo 0
0 0 0.
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5. Kernel transformations in some categories

Theorem 5.1 Let R be a commutative ring with unity. Any natural transformation — : S — I : Rmod —
Rmod is of the form d = +(r x s), for some r,s € R. In particular, any such natural transformation d in
Abgrp is of the form d = +(r x s), for some r,s € Z.

Proof.  We first prove d4 = +(r x s) for a free R-module A. We know dr being an R-module homo-
morphism from R? to R is of the form dr = +(r x s). Let A =@; R and 7; : A=@; R — R be the
jth projection. Since d is a natural transformation and 7; is an R-module homomorphism, 7;d4 = 7r]2-dR =
+(r x 8)7'(]2 =m; 4+ (r x s). Since @; R C [[; R, the projections (7;); form a mono source. It follows that

da = +(r x s). The result then follows from the facts that every R-module is a homomorphic image of a free

R-module and the square of an epi is an epi. O

Theorem 5.1 yields the following corollary.

Corollary 5.2 Let R be a commutative ring with unity. Any kernel transformation in Rmod is of the form
d = +(rxs), for some r,s € R. In particular, any kernel transformation d in Abgrp is of the form d = +(rxs),

for some r,s € Z.

It can be easily verified that for a noetherian ring R, the category, F'GRmod, of finitely generated

R-modules is an abelian category. We have the following theorem.

Theorem 5.3 Let R be a noetherian commutative ring with unity. Any kernel transformation d in FGRmod
is of the form d = +(r x s) for some r,s € R. In particular any kernel transformation d in FGAbgrp is of
the form d = +(r x s) for some r,s € Z.

Proof. Since R is noetherian, every finitely generated R-module M is noetherian and hence any submodule
of M is finitely generated. The result follows by letting I be a finite set in the proof of Theorem 5.1. O

The categories, S’—et), of partial sets, see [1, 4, 8], and, Set,, of pointed sets see [10] have a zero object,

finite limits and finite colimits and we have this theorem:
Theorem 5.4 The only natural transformations, d : S — I : C — C, are the trivial ones for the categories:
(a) C= S—eg, and
(b) C = Set, .
- — — . . o . =
Proof. (a)Let d:S — I:Set — Set be a natural transformation. Denoting by x the product in Set,

we have the following commutative diagram for every partial map f X —Y:

dx
XxX — X
f?fl lf
YXY — Y
dy

Diagram II
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This gives the equality of the following two partial maps, in which D = (Dy | |(Dyx(X—Dy))) (D LI((X—
D) x D)) |LI(Df x Dy), g=(f D for1) LU(f D fpr2) LI(f x f) and all the vertical arrows are the inclusions,.

dx f g* dy
Px Dy Y = Qy Dy ——Y
if pb ifl/ / iy pb iyl /
dX f g d;/
Dy —— X D YXY
| et
X xX X xX

Diagram I1I

Therefore Py = Qy and fd% = dyg*.
This, for a whole map f: X — Y, yields the following pullback diagram:

DX—>DY

S [

XxX — YxY.
fXf

Since XXX = XJ[X]]X? and for a whole map f, fXf = f][f]]f?, we can decompose Dx as
Dx1 ] Dx2]] Dxs and the above pullback diagram yields the following pullback diagrams.

i I3
Dx;, — Dy; Dx3 —— Dys
X Y X2 - o Y2
! 12

where i = 1,2 in the left diagram. Now we prove:

(i) For i = 1,2, either for all X, Dx; = or for all X, Dx; = X, and either for all X, Dx3 = or for
all X, Dx3 = X2.

To prove the first assertion, given X, let Y be a singleton and f : X — Y be the unique map. Then
Dy; is either () or Y. Therefore by the above left pullback diagram Dx; is either ) or X . This proves for all
X, Dx; is either ) or X. Since the above left diagram is a pullback for all f, the result then easily follows.
The proof of the second assertion is similar.

The commutativity of Diagram II, for a whole map f: X — Y yields, for i = 1,2, 3, the commutativity
of the following diagram:
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Diagram IV

Writing dx = dx1 ® dx2 ® dxs3, we have:

(ii) For ¢ = 1,2, in the case for all X, Dx; = X, then for all X, dx; = 1x, and in the case for all X,
Dxs = X?, then for all X, dx3sAx = 1x, with Ax the diagonal map.

To prove the first assertion, given Y, pick X to be the singleton, the commutativity of the above diagram
for every whole map yields dy; is the identity function. The proof of the second assertion is similar.

By (i) and (ii) we have the following cases:
Case 1) Forall X, dx :Dx =0 — X.

In this case d = 0.
Case 2) For all X, dx =dx1 =1x:Dx =X — X.

Pick f: X — Y such that cardinality of Dy is 2, i.e., |Dy| = 2 and |X| = 3. Using Diagram III,
we get Px C X and Qy = Dy | |(Dy x (X — Dy)), so that |Px| < 3 and |Qy| = 4. Therefore Px # Qy, a

contradiction.
Case 3) For all X, dx =dx2=1x:Dx =X — X.

Similar to case 2 we get a contradiction.
Case 4) For all X, dx =dx1 ®dx2=1xd1lx:Dx =X][X — X.

Pick f: X — Y such that |Df| =1, |X| = 2. Using Diagram III, we see Px = D; ][ Dy, while
Qv = D = (DyU(Dy x (X — Dy))) U(Dy (X — Dy) x Dy)). So that [Px| = 2 while [Qy| = 4, a
contradiction.
Case 5) For all X, dx =dx3:Dx = X? — X.

Pick Dy = {a}, X = {a,b}. Using Diagram III, we see Px = Qy = Dy x Dy = (a,a). It follows that
dx(a,b) =b. Next pick Dy = {b} to get dx(a,b) =a. So a =b, a contradiction.
Case 6) For all X,

dx =dx1 @dx3 =1x ®dx3: Dx = X[[X? — X.

In this case, d;( = pr;. To prove this, for any f: X — Y, by Diagram III, Px = D¢ ][ Pxs, where
Px3 is obtained by the pullback

Px3 —— Df

L

X2 — X

dxs

and Qy = DfHDf X (X*Df)HDf X Df = DfH(Df X X) Let X = {a,b} and Df = {a} We
have, (a,b) € Dy x (X — Dy) € Qy = Px. Therefore (a,b) € Pxs, and so by the above pullback
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diagram, dxs(a,b) € Dy = {a}. It follows that dxs(a,b) = a. On the other hand dxs(b,a) = b, since
otherwise, dxs(b,a) = a and by the above pullback diagram and the second assertion of (ii), we get Pxs =
{(a,a), (a,b), (b,a)} # {(a,a),(a,b)} = Dy x X, a contradiction to Px = Qy. This proves for X = {a, b},
dxs =pri.

Now Let Y be any set, pick a whole f: X — Y. Diagram IV for i = 3 yields the following commutative

diagram:

pri

X2 — X

f

Y2 — Y.

dys

Given (y1,y2) € Y2, pick f so that f(a) = y1, f(b) = y2. We have dys(y1,y2) = dys(f(a), f(b) =
dy3sf?(a,b) = fpri(a,b) = f(a) = y1. Therefore dy3 = pry. This proves the assertion.
Case 7): For all X,

dX:dXQQBng:lX@ng:DX:XHX2*>X.

Similar argument as in the case 6, shows dx = pis.

Case 8): For all X,

dX:Xm@dXQ@dxgzlx@lx@dxgZDX:X;(}XHX.

In this case, Px = Qy yields, Pxs = Dy x (X — Dy)[[(X — Dy) x D¢ [[Df x Dy. Let X = {a,b}.
Picking Dy = {a}, we get (a,b) € Px3 and so dxs(a,b) € Dy = {a}, and so dx3(a,b) = a. On the other
hand, by picking Dy = {b}, we get dx3(a,b) = b, a contradiction.

(b) Let (X, z0) = ({wo, z1, 22}, 20). Then d(x 4, takes (x1,x2) to xg, 1 or x2. Suppose d(x o) (71, T2) =
xo. Let (Y,y9) € Set, and pick y1,y2 € Y. Let the mapping f : (X,z9) — (Y,y0) in Set, take z; to y;
for each i = 1,2,3. Naturality of d implies d(y,y,)(y1,¥2) = yo. Since y1 and y, were arbitrary, d(y,,,) is the
constant map with value yy. So d = 0.

Similar argument shows that in the two cases that d(x a,)(21,22) = 1 or d(x 40)(T1,22) = T2, diy,y,)

is the projection to the first, respectively second, factor. So that d = pr; or d = pra. O
Finally by Theorem 5.4 we get:
Corollary 5.5 The only kernel transformations in the categories S_et> and Set, are the trivial ones.

References

[1] Barr, M., Grillet, P.A. and Van Osdol, D.H.: Exact Categories and Categories of Sheaves, Lect. Notes in Math.,
236, pp. 121-222, Springer, 1971.

185



HOSSEINI, KAZEMI BANEH

[2] Borceux, F.: Handbook of Categorical Algebra, Cambridge Univ. Press, Vol 1-3, 1994.
[3] Borceux, F. and Bourn, D.: MalCev, Protomodular, Homological and Semi-Abelian Categories, Kluwer Academic
Publishers, 2004.
ockett, J.R.B. an ack, 5.: Restriction categories I: Categories of partial maps, eoretical Computer Science,
4] Cock J.R.B. and Lack, S.: Restricti gories I: Categories of ial Th ical C Sci
Vol. 270, No. 1, pp. 223-259, Elsevier, (2002).
[5] Eisenbud, D. and Harris, J.: The Geometry of Schemes, Springer, 1999.
[6] Freyd, P.: Abelian Categories, Harper and Row, 1964.
[7] Gelfand, S.I. and Manin, Y.I.: Homological Algebra, Springer-Verlag, 1999.
osseini, 5.N. an ielke, M.V.: Universal Monos in Partial Morphism Categories, Applie ategorical Structures,
8] H ini, S.N. and Mielke, M.V.: Uni 1 M in Partial Morphism Categories, Applied Categorical S
Online, Springer (2007).
[9] Humphreys, J.E.: Linear Algebraic Groups, Springer, 1975.
[10] MacLane, S.: Categories for the Working Mathematician, Springer-Verlag, 1971.
[11] MacLane, S. and Moerdijk, I.: Sheaves in Geometry and Logic, Springer-Verlag, 1992.
[12] Munxoz Parras, J.M.: On the Structure of the Birational Abel Morphisms, Mathematische Annalen, 281, 1-6,
Springer-Verlag, (1988).
[13] Osborne, M.S.: Basic Homological Algebra, Springer-Verlag, 2000.
[14] Schubert, H.: Categories, Springer-Verlag, 1972.
Seyed Naser HOSSEINI, Mohammad Zaher KAZEMI BANEH Received: 16.04.2009
Yy )

Mathematics Department,

Shahid Bahonar University of Kerman
Kerman-IRAN

e-mail: nhoseini@mail.uk.ac.ir

186



