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Homology with respect to a kernel transformation

Seyed Naser Hosseini and Mohammad Zaher Kazemi Baneh

Abstract

In this article we first give the relations between commonly used images of a morphism in a category.

We then investigate d -homology in a category with certain properties, for a kernel transformation d . In

particular, we show that, in an abelian category, d -homology, where d is induced by the subtraction

operation, is the standard homology and that in more general categories the d -homology for a trivial d

is zero. We also compute through examples the d -homology for certain kernel transformations d in such

categories as R -modules, abelian groups and short exact sequences of R -modules. Finally, we characterize

kernel transformations in the categories of R -modules, finitely generated R -modules, partial sets and pointed

sets.

Key Words: Kernel, image, abelian category, standard homology, homology with respect to a kernel

transformation, category of (finitely generated) R -modules, (finitely generated) abelian groups, partial sets,

pointed sets.

1. Introduction

Since we have different definitions of an image of a morphism, which is a crucial entity in the definition
of homology (see [2, 5, 6, 7, 9, 10, 12, 14]), we introduce all the usual images in a category in Section 2, and we
investigate the relations between them. Also in this section, we give a few illustrative examples. In Section 3,

for some general categories, we consider image and kernel as functors and for a pair A
f−−→ B

g−−→ C with
gf = 0, and give a functorial map from image of f to kernel of g . The homology with respect to a particular

natural transformation d : S ◦ K −→ K : C̄ −→ C , called kernel transformation, where C̄ is the arrow category
of C , (see [13]), K is the kernel functor and S is the squaring functor, is investigated in Section 4, proving it
is the standard homology, when the category is abelian and d is given by the subtraction operation and that it
is zero when d is a trivial transformation, i.e., the projections or the zero transformation. Several examples are
given in this section, computing the d -homology in the category, Rmod , of R -modules for d = +(r × s), with
r, s ∈ R and in the category, ShR , of short exact sequences of R -modules, for certain kernel transformations
d . Finally in Section 4 we show for R a commutative ring with unity, the only kernel transformations in the
category Rmod are the ones of the form +(r × s) for some r, s ∈ R and if, in addition, R is neotherian, these
are the only transformations in the category, FGRmod , of finitely generated R -modules. We also prove the
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only kernel transformations in the categories
−→
Set of partial sets, (see [1, 4, 8]), and Set∗ of pointed sets (see

[10]), are the trivial ones.

2. Image and kernel of morphisms

Using the notation Kf
kf−−−→ A for kernel, Pf

π1−−−→−−−→
π2

A for the kernel pair, and B
ν1−−→−−→
ν2

Qf for the

cokernel pair of a map f : A −→ B ; and Equ(f, g)
equ(f,g)−−−−−−−−→ A for the equalizer and B

coe(f,g)−−−−−−−→ Coe(f, g)

for the coequalizer of a pair A
f−−→−−→
g

B we have the following definition.

Definition 2.1 See [3, 11, 13]. Let f : A −→ B be a morphism in a category C . Each of the following defines

an image of f (as an object).

(a) Ik
f = Kcf .

(b) Ic
f = Ckf .

(c) Ib
f = Coe(π1, π2) , where (π1, π2) is the kernel pair of f .

(d) Io
f = Equ(ν1, ν2) , where (ν1, ν2) is the cokernel pair of f .

Lemma 2.2 If in the following diagram the left squares commute and the top and bottom rows are coequalizers,
then there is a unique map i making the right square commute. Furthermore, i is a regular epi.

A
f

g
B

e

C

r 1B i

A
f

g

B
e

C

Proof. Existence follows easily. Some computations show the diagram A
ef ′

−−−→−−−→
eg′

C
i−−→ C ′ is a coequalizer.

�

Theorem 2.3 Let C be a category with a zero object, pullbacks and pushouts and f : A −→ B be a map in C .
Then we have the following diagram, in which all the three and four sided subdiagrams commute:
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A

ec
f eb

f
eo
f

ek
f

Ic
f

mc
f

icb
f

ico
f

ick
f

Ib
f

mb
f

ibo
f

ibk
f

Io
f

mo
f

iok
f

Ik
f

mk
f

B

Diagram I

Furthermore, f = mb
f eb

f = mc
f ec

f = mk
f ek

f = mo
feo

f . In addition eb
f , ec

f and icb
f are regular epis and mo

f ,

mk
f and iok

f are regular monos.

Proof. To prove the existence of icb
f : Ic

f −→ Ib
f , we know the diagram Pf

π1−−−→−−−→
π2

A
eb

f−−−→ Ib
f is a coequalizer

and π1f = π2f , so there is a unique mb
f making the following triangle commute.

Pf

π1

π2

A

eb
f

f

Ib
f

mb
f

B.

Since fkf = 0, there is a unique r making the following triangles commute:

Kf 0

r

kf

Pf

π2

pbπ1

A

f

A
f

B.

Now, by the above lemma, there exists a unique regular epi icb
f making the following triangle commute:
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Kf

kf

0
A

ec
f

eb
f

Ic
f

icb
f

I  .b
f

We have mc
f ec

f = mb
f eb

f = mb
f icb

f ec
f . Since ec

f is epic, mc
f = mb

f icb
f .

We dually get maps mo
f : Io

f −→ B and eo
f : A −→ Io

f such that f = mo
f eo

f and then the regular mono

iok
f : Io

f −→ Ik
f with the commutative triangles mk

f iok
f = mo

f and iok
f eo

f = ek
f .

To get ibo
f : Ib

f −→ Io
f , we have mo

f eo
fπ1 = fπ1 = fπ2 = mo

f eo
fπ2 , with mo

f monic. So eo
fπ1 = eo

fπ2 and

thus eo
f factors through eb

f by a unique map ibo
f satisfying ibo

f eb
f = eo

f . We also have mo
f ibo

f eb
f = mo

f eo
f = f =

mb
f eb

f with eb
f epic. So mo

f ibo
f = mb

f .

The maps ico
f , ibk

f and ick
f can be obtained by similar arguments as above or we can define them as

ico
f = ibo

f icb
f , ibk

f = iok
f ibo

f and ick
f = iok

f ibo
f icb

f . Commutativity of the corresponding diagrams follows easily. �

Corollary 2.4 Let C be a category with a zero object, pullbacks and pushouts and f : A −→ B be a map in C .

(a) If mc
f is monic, then icb

f : Ic
f
∼= Ib

f is an isomorphism and the maps mb
f , ibo

f , ico
f , ibk

f and ick
f are

monic.
(b) If ek

f is epic, then iok
f : Io

f
∼= Ik

f is an isomorphism and the maps eo
f , ibo

f , ibk
f , ico

f and ick
f are epic.

Proof. Using Diagram I and Theorem 2.3, the result follows easily. �

Example 2.5 In an abelian category C , for a map f : A −→ B we have

Ic
f
∼= Ib

f
∼= Io

f
∼= Ik

f .

Since in an abelian category, every epi is a cokernel and every mono is a kernel (see [13]), mc
f is monic

and ek
f is epic. By Corollary 2.4, icb

f : Ic
f
∼= Ib

f and iok
f : Io

f
∼= Ik

f are isomorphisms and ibo
f : Ib

f
∼= Io

f is a

bimorphism and hence also an isomorphism, since abelian categories are balanced.

Example 2.6 In the category Grp of groups, since every epi is a cokernel, (see [14]), mc
f is monic for every

f , and so Ic
f
∼= Ib

f .

Now consider f : Z2 −→ S3 such that f(1̄) = (1, 2) . Then Ic
f = Ib

f = {I, (1, 2)} and Ik
f is easily seen to

be the normal closure of Ic
f , which is S3 . By Theorem 2.3, we have monos Ib

f

ibo
f

Io
f

iok
f

Ik
f . Since there

is no group between {I, (1, 2)} and S3 , Io
f = Ib

f = {I, (1, 2)} or Io
f = Ik

f = S3 . Since f is not epi, ν1 �= ν2 ,

and so equ(ν1, ν2) �= 1 . It follows that Equ(ν1, ν2) �= S3 and so Io
f �= Ik

f . Therefore Io
f = Ic

f = {I, (1, 2)} .
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Example 2.7 In the category Set∗ of pointed sets, since every mono is a kernel, (see [14]), ek
f is epic for

every f , and so Io
f
∼= Ik

f .

Now for any f : (X, x0) −→ (Y, y0) , Ic
f = (X/R, [x0]) , where R is the equivalence relation on X defined

by x1Rx2 if and only if x1 = x2 or x1, x2 ∈ Kf . On the other hand, Ib
f = (f(X), y0) and so, obviously,

Ic
f �= Ib

f in some cases.

Example 2.8 In the category, ShR of short exact sequences of R -modules, neither every epi is a cokernel,

nor every mono is a kernel, see [13], page 177. We show for every F , mc
F is monic and ek

F is epic. Hence By

Theorem 2.3, icb
F : Ic

F
∼= Ib

F and iok
F : Io

F
∼= Ik

F are isomorphisms and ibo
F : Ib

F
∼= Io

F is a bimorphism.

With F = (α, β, γ) : M −→ N as shown below, we have

M
F

N

0 0

A
α

f

A

f

B
β

g

B

g

C
γ

C

0 0

KF

0

Kα

f

Kβ

g

Igβ

0

and Ic
F = CkF

0

If+Kβ

Kβ

B
Kβ

C
Igβ

0

so M
ec
F

Ic
F

mc
F

N

0 0 0

A
f

f

If+Kβ

Kβ

α
A

f

B

g

B
Kβ

β

B

g

C
C

Igβ
γ

C

0 0 0,

where Igβ is the image of the restriction of g on Kβ , f̄(a) = f(a) + Kβ and ᾱ(f(a) + Kβ) = α(a) . To show

mc
F is monic, suppose mc

F h = mc
F k , where h = (h1, h2, h3) and k = (k1, k2, k3) . Since ᾱ and β̄ are monic,

h1 = k1 and h2 = k2 . Since h3g
′′ = gh2 = gk2 = k3g

′′ and g′′ is epi, h3 = k3 and hence h = k . So mc
F is

monic.
Next we have

173



HOSSEINI, KAZEMI BANEH

CF

0

If +Iβ

Iβ

B
Iβ

C
Iγ

0

and Ik
F = KcF

0

D

Iβ

Iγ

0

and then M
ek
F

Ik
F

mk
F

N

0 0 0

A
α

f

D A

f

B
β

g

Iβ B

g

C
γ

Iγ C

0 0 0,

where D = {a ∈ A′|f ′(a) ∈ Iβ} . To show ek
F is epic, suppose hek

F = kek
f , where h = (h1, h2, h3) and

k = (k1, k2, k3) . We know that β̂ and γ̂ are epic, so h2 = k2 and h3 = k3 . Since f ′′h1 = h2f
′ = k2f

′ = f ′′k1

and f ′′ is monic, h1 = k1 and so h = k . Therefore ek
F is epic.

3. Image and kernel as functors

Let C be a category with a zero object, kernels, kernel pairs and coequalizers of kernel pairs.

Let C̄ be the arrow category of C , see [13], with objects the morphisms of C and with morphisms from

f : A −→ B to f ′ : A′ −→ B′ the pairs of morphisms (α, β) making the following square commutative:

A
f

α

B

β

A
f

B ,

and let Ĉ be the pair-chain category of C , with objects the pair-chains, i.e., the composable pairs, (f, g), of

morphisms of C , such that gf = 0 and with morphisms from (f, g) to (f ′, g′) the triples (α, β, γ) making the
following squares commutative:
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A
f

α

B
g

β

C

γ

A
f

B
g

C .

The next two theorems follow easily.

Theorem 3.1 Let f : A −→ B and f ′ : A′ −→ B′ be objects in C̄ . The mapping K : C̄ −→ C that takes the
object f to Kf and the morphism (α, β) : f −→ f ′ to K(α, β) , where K(α, β) is the unique map making the
square

Kf

kf

��

K(α,β)
��

A

α

��

Kf ′
kf ′

�� A′

commutative, is a functor.

Theorem 3.2 Let f : A −→ B and f ′ : A′ −→ B′ be objects in C̄ . The mapping I : C̄ −→ C that takes

f : A −→ B to If = Ib
f and (α, β) : f −→ f ′ to I(α, β) , where I(α, β) is the unique map making the square

A
ef

��

α

��

If

I(α,β)
��

A′
ef ′

�� If ′

commutative, is a functor.

Lemma 3.3 We have:

(a) For each object (f, g) in Ĉ , there is a map jfg : If −→ Kg in C .

(b) For each morphism (α, β, γ) : (f, g) −→ (f ′, g′) in Ĉ , the following square commutes.

If

jfg

I(α,β )

Kg

K(β,γ )

If
jf g

K  .g
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Proof. (a) Let A
f−−→ B

g−−→ C be an object of Ĉ . With ef the coequalizer of the kernel pair of f , there

is an mf making the following triangle commutative:

A
ef

f

If

mf

B.

Since gmf ef = gf = 0 and ef is epic, gmf = 0. So there is a unique map jfg making the following

triangle commutative:

Kg

kg

B

I  .f

jfg

mf

(b) We have the following diagram:

A

α ///

��

ef

�� ��

///

f

��
If

I(α,β)
��

jfg

�� Kg

K(β,γ)
��

��
kg

�� B

/// β

��

A′

f ′

///

��ef ′
�� �� If ′

jf ′g′
�� Kg′ ��

kg′

�� B′

in which, the left, the right and the outer squares commute. Since kg′ is monic and ef is epic, the middle
square commutes. �

We now easily get the following theorem.

Theorem 3.4 The mapping j : Ĉ −→ C̄ that takes the object (f, g) ∈ Ĉ to jfg and the morphism (α, β, γ) to

(I(α, β), K(β, γ)) is a functor.

Remark 3.5 Let (f, g) ∈ Ĉ . By the proof of Lemma 3.3, kgjfg = mf and kf is monic. So jfg is monic if and

only if mf is monic. Therefore by Corollary 2.4, if mc
f is monic, then so is jfg .
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4. Homology with respect to a kernel transformation

Definition 4.1 Let S : C −→ C be the squaring functor, i.e., the functor that takes a
f−−→ b to a2 f2

−−−→ b2 .

Definition 4.2 A kernel transformation in a category C is a natural transformation d : S ◦K −→ K : C̄ −→ C
such that for all (f, g) in Ĉ , the pullback j∗fg : Rfg −→ K2

g , of jfg along dg and the coequalizer of the pair

j1 = pr1j
∗
fg and j2 = pr2j

∗
fg exist, where pr1 and pr2 are the projection maps.

With Hd
fg = Coe(j1, j2) and q = coe(j1, j2), we have the following lemma.

Lemma 4.3 Let d : S ◦ K −→ K : C̄ −→ C be a kernel transformation. For each morphism (α, β, γ) :

(f, g) −→ (f ′, g′) in Ĉ , there exists a unique morphism Hd(α, β, γ) : Hd
fg −→ Hd

f ′g′ making the following

diagram commutative:

Kg

q

K(β,γ )

Hd
fg

Hd(α,β ,γ )

Kg
q

H    .d
f g

Proof. Let (α, β, γ) be a morphism in Ĉ from (f, g) to (f ′, g′). Since in the diagram

Rfg

d∗g
��

j∗fg

��

s

��

If

jfg

��

I(α,β)

		�
��

��
��

�

Rf ′g′

d∗
g′

��

j∗
f ′g′

��

If ′

jf ′g′

��

K2
g

dg

��

K2(β,γ) 

��
��

��
��

Kg

K(β,γ)

		�
��

��
��

�

K2
g′

dg′

�� Kg′

the bottom square commutes by naturality of d , the right square commutes by Lemma 3.3, the front and the
back squares are pullbacks, and we get a unique s making the top and the left squares commutative.

The naturality of pri yields K(β, γ)pri = priK
2(β, γ). So the left and the middle squares in the following

diagram commute:
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Rfg

jfg

K2
g

pr1

pr2

Kg

q

Hd
fg

s K2(β,γ ) K(β,γ ) Hd(α,β ,γ )

Rf g
j
f g

K2
g

pr1

pr2

Kg
q

H    .d
f g

Since q = coe(j1 , j2), we get the desired map Hd(α, β, γ) making the right square in the above diagram
commutative. �

Now we easily get the following theorem.

Theorem 4.4 The mapping Hd : Ĉ −→ C that takes the object (f, g) ∈ Ĉ to Hd
fg and the morphism (α, β, γ)

to Hd(α, β, γ) is a functor.

The functor Hd : Ĉ −→ C is called the d-homology or the homology with respect to the kernel transfor-
mation d .

Let C be an abelian category. For each A ∈ C , the projections A2
pr1−−−→−−−→
pr2

A yield pr1 − pr2 which

we denote by −A : A2 −→ A . It can be easily verified that these maps define a natural transformation

− : S −→ I : C −→ C . So we get the kernel transformation − ◦ K : S ◦ K −→ K : C̄ −→ C . Denoting − ◦ K

also by − , we have the following theorem.

Lemma 4.5 For any abelian category C , the kernel transformation − : S ◦ K −→ K : C̄ −→ C is pointwise
split epic.

Proof. For each f : A −→ B , the right inverse of −f is the morphism < 1, 0 >: Kf −→ K2
f . �

The homology of a pair (f, g) ∈ Ĉ , as defined in [13] is Coker(jfg). We call this homology the standard
homology of f and g and we denote it by Hs

fg . The corresponding functor is denoted by Hs .

Theorem 4.6 In an abelian category C , H− = Hs .

Proof. Since H−
fg is the coequalizer coe(j1, j2) : Kg −→ H−

fg and C is an abelian category, we have

coe(j1 , j2) = coker(j1 − j2) = coker((pr1 − pr2)j∗) = coker(−gj∗) = coker(jfg−∗
g). Now −∗

g , being the pull-

back of the split epi −g , is a split epi, so coker(jfg−∗
g) = coker(jfg) = Hs

fg . �

Lemma 4.7 Let C be a category with a zero object, finite products and coequalizers. If A
α−−→ C

β←−− B

is an epi sink, then the coequalizer of A × B
αpr1−−−−→−−−−→
βpr2

C is C −→ 0 . In particular, for any object A , the

coequalizer of A2
pr1−−−→−−−→
pr2

A is A −→ 0 .
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Proof. Follows from the fact that for any morphism f with fαpr1 = fβpr2 , we have fα = fαpr1 < 1, 0 >=
fβpr2 < 1, 0 >= 0 and fβ = fβpr2 < 0, 1 >= fαpr1 < 0, 1 >= 0 and so f = 0. �

Corollary 4.8 Let (f, g) be a pair-chain. If j∗fg = α × β with (α, β) an epi sink or if j∗fg is an epi, then

Hd
fg = 0 .

Proof. In the former case we have, Hd
fg = Coe(pr1j

∗
fg, pr2j

∗
fg) = Coe(αpr1, βpr2) = 0 and in the latter

case, Hd
fg = Coe(pr1j

∗
fg , pr2j

∗
fg) = Coe(pr1, pr2) = 0. �

Calling the projection transformations and the zero transformation the trivial transformations, we have
the following theorem.

Theorem 4.9 Let C be a category with a zero object, pullbacks and coequalizers. If d is a trivial kernel

transformation, then Hd = 0 .

Proof. Let (f, g) be any pair-chain. For d = pr1 , we get j∗fg = jfg × 1, for d = pr2 , we get j∗fg = 1 × jfg

and for d = 0, we get j∗fg = pr1 : K2
g × Kjfg −→ K2

g . Since (jfg , 1) and (1, jfg) are epi sinks, and pr1 is epic,

the result follows from Corollary 4.8. �

Example 4.10 Let C = Rmod and d = rpr1 + spr2 = +(r × s) with r, s ∈ R . Let (f, g) be a pair-chain.

Then Rfg = {(a, b) ∈ K2
g |ra + sb ∈ If} , j∗ is the inclusion and Hfg = Kg

(j1−j2)(Rfg)
= {[a] : a ∈ Kg} , where

[a] = {b|r(a− b) ∈ (r +s)Kg + If} = {b|s(a− b) ∈ (r +s)Kg + If} is the equivalence class under the equivalence

relation a ∼ b if and only if ∃m, n ∈ Kg such that a − b = m − n and rm + sn ∈ If .

Example 4.11 As a special case of Example 4.10, for d = +(r × 1) or d = +(1 × r) with r ∈ R , we have

Hd
fg = Kg

(1+r)Kg+If
.

Example 4.12 As another special case of Example 4.10, let C = Abgrp . For d = +(r × s) , with r, s ∈ Z , and

any pair-chain (f, g) such that Kg = Z and If = nZ , Hd
fg = Zl , where l = (r+s,n)

(r,(r+s,n))
, with (r +s, n) denoting

the greatest common divisor of r + s and n , etc.

Example 4.13 Let C = ShZ , d = −, and the pair-chain (f, g) be as in the following diagram with n an even
integer. Then we have:
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A
f

B
g

C

0 0 0

Z

n−

2

Z

0

2−

Z

2−

Z

n−

Z

0

Z

Z2

0

Z2

0

Z2

0 0 0

If

jfg

Kg

0 0

Z

n−

2−

Z

2−

Z

n−

Z

Z2

0

Z2

0 0

and Rfg

0

{(a, b, b − na)|a, b Z}

(2 −)3

{(a, b, b − na)|a, b Z}

Z2 × { (0, 0), (1, 1)}

0

 ∈

∈

.

Therefore Hd
fg = Coker(j1 − j2) is:

Rfg

j1 j2
Kg

q

Hd
fg

0 0 0

{(a, b, b − na)|a, b Z}
na

(2−)3

Z

2

2Zn

{(a, b, b − na)|a, b Z}
na

Z Zn

Z2 × { (0, 0), (1, 1)}
0

Z2 Z2

0 0 0.

∈

∈

Example 4.14 Consider C = ShZ , d = +(r × 1) with r odd, and the pair-chain (f, g) as in the following
diagram with n odd. Then we have:
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A
f

B
g

C

0 0 0

Z

n−

2−

Z

0

2

Z

2−

Z

n−

Z

0

Z

Z2

1

Z2

0

Z2

0 0 0

If

jfg

Kg

0 0

Z

n−

2−

Z

2−

Z

n−

Z

Z2

1

Z2

0 0

and Rfg

0

{(a, b, na − rb)|a, b ∈ Z}

(2 −)3

{(a, b, na − rb)|a, b ∈ Z}

{(a, b, c)|a − b − c = 0a, b, c ∈ Z2}

0.

Therefore Hd
fg = Coker(j1 − j2) is:

Rfg

j1 j2
Kg

q

Hd
fg

0 0 0

{(a, b, na − rb)|a, b ∈ Z}
na −(1+r)b

(2 )3

Z

2−

Z(n,1+r)

{(a, b, na − rb)|a, b ∈ Z}
na −(1+r)b

Z Z(n,1+r)

{(a, b, c)|a − b − c = 0a, b, c ∈ Z2}
b −c

Z2 0

0 0 0.
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5. Kernel transformations in some categories

Theorem 5.1 Let R be a commutative ring with unity. Any natural transformation − : S −→ I : Rmod −→
Rmod is of the form d = +(r × s) , for some r, s ∈ R . In particular, any such natural transformation d in

Abgrp is of the form d = +(r × s) , for some r, s ∈ Z .

Proof. We first prove dA = +(r × s) for a free R -module A . We know dR being an R -module homo-

morphism from R2 to R is of the form dR = +(r × s). Let A =
⊕

I R and πj : A =
⊕

I R −→ R be the

j th projection. Since d is a natural transformation and πj is an R -module homomorphism, πjdA = π2
jdR =

+(r × s)π2
j = πj + (r × s). Since

⊕
I R ⊆

∏
I R , the projections (πj)I form a mono source. It follows that

dA = +(r × s). The result then follows from the facts that every R -module is a homomorphic image of a free
R -module and the square of an epi is an epi. �

Theorem 5.1 yields the following corollary.

Corollary 5.2 Let R be a commutative ring with unity. Any kernel transformation in Rmod is of the form
d = +(r×s) , for some r, s ∈ R . In particular, any kernel transformation d in Abgrp is of the form d = +(r×s) ,
for some r, s ∈ Z .

It can be easily verified that for a noetherian ring R, the category, FGRmod , of finitely generated
R -modules is an abelian category. We have the following theorem.

Theorem 5.3 Let R be a noetherian commutative ring with unity. Any kernel transformation d in FGRmod

is of the form d = +(r × s) for some r, s ∈ R . In particular any kernel transformation d in FGAbgrp is of

the form d = +(r × s) for some r, s ∈ Z .

Proof. Since R is noetherian, every finitely generated R -module M is noetherian and hence any submodule
of M is finitely generated. The result follows by letting I be a finite set in the proof of Theorem 5.1. �

The categories,
−→
Set , of partial sets, see [1, 4, 8], and, Set∗ , of pointed sets see [10] have a zero object,

finite limits and finite colimits and we have this theorem:

Theorem 5.4 The only natural transformations, d : S −→ I : C −→ C , are the trivial ones for the categories:

(a) C =
−→
Set , and

(b) C = Set∗ .

Proof. (a) Let �d : S −→ I :
−→
Set −→ −→

Set be a natural transformation. Denoting by �× the product in
−→
Set ,

we have the following commutative diagram for every partial map �f : X −→ Y :

X ×X
dX

f  ×f

X

f

Y × Y
dY

Y

Diagram II
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This gives the equality of the following two partial maps, in which D = (Df

⊔
(Df×(X−Df )))

⊔
(Df

⊔
((X−

Df )× Df))
⊔

(Df ×Df ), g = (f
⊕

fpr1)
⊔

(f
⊕

fpr2)
⊔

(f × f) and all the vertical arrows are the inclusions,.

PX

dX
∗

∗∗

∗

pbif

Df

f

if

Y

DX

dX

ix

X
f

X ×X
dX

= QY

g

pbiY

DY

dY

iY

Y

D
g

ig

Y × Y
dY

X ×X
f ×f

Diagram III

Therefore PX = QY and fd∗
X = dY g∗ .

This, for a whole map f : X −→ Y , yields the following pullback diagram:

DX

iX

DY

iY

X ×X
f ×f

Y × Y.

Since X�×X = X
∐

X
∐

X2 and for a whole map f , f �×f = f
∐

f
∐

f2 , we can decompose DX as

DX1

∐
DX2

∐
DX3 and the above pullback diagram yields the following pullback diagrams.

DXi

fi

DY i

X
f

Y

DX3

f3

DY 3

X2

f2
Y 2

where i = 1, 2 in the left diagram. Now we prove:

(i) For i = 1, 2, either for all X , DXi = ∅ or for all X , DXi = X , and either for all X , DX3 = ∅ or for

all X , DX3 = X2 .

To prove the first assertion, given X , let Y be a singleton and f : X −→ Y be the unique map. Then
DY i is either ∅ or Y . Therefore by the above left pullback diagram DXi is either ∅ or X . This proves for all
X , DXi is either ∅ or X . Since the above left diagram is a pullback for all f , the result then easily follows.
The proof of the second assertion is similar.

The commutativity of Diagram II, for a whole map f : X −→ Y yields, for i = 1, 2, 3, the commutativity
of the following diagram:
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DXi

dXi

fi

X

f

DY i
dY i

Y

Diagram IV

Writing dX = dX1 ⊕ dX2 ⊕ dX3 , we have:

(ii) For i = 1, 2, in the case for all X , DXi = X , then for all X , dXi = 1X , and in the case for all X ,

DX3 = X2 , then for all X , dX3ΔX = 1X , with ΔX the diagonal map.

To prove the first assertion, given Y , pick X to be the singleton, the commutativity of the above diagram
for every whole map yields dY i is the identity function. The proof of the second assertion is similar.

By (i) and (ii) we have the following cases:

Case 1) For all X , dX : DX = ∅ −→ X .

In this case �d = 0.
Case 2) For all X , dX = dX1 = 1X : DX = X −→ X .

Pick �f : X −→ Y such that cardinality of Df is 2, i.e., |Df | = 2 and |X| = 3. Using Diagram III,

we get PX ⊆ X and QY = Df

⊔
(Df × (X − Df )), so that |PX | ≤ 3 and |QY | = 4. Therefore PX �= QY , a

contradiction.
Case 3) For all X , dX = dX2 = 1X : DX = X −→ X.

Similar to case 2 we get a contradiction.

Case 4) For all X , dX = dX1 ⊕ dX2 = 1X ⊕ 1X : DX = X
∐

X −→ X .

Pick �f : X −→ Y such that |Df | = 1, |X| = 2. Using Diagram III, we see PX = Df

∐
Df , while

QY = D = (Df

⊔
(Df × (X − Df)))

⊔
(Df

⊔
((X − Df ) × Df)). So that |PX| = 2 while |QY | = 4, a

contradiction.
Case 5) For all X , dX = dX3 : DX = X2 −→ X .

Pick Df = {a} , X = {a, b} . Using Diagram III, we see PX = QY = Df × Df = (a, a). It follows that

dX(a, b) = b . Next pick Df = {b} to get dX(a, b) = a . So a = b , a contradiction.

Case 6) For all X ,

dX = dX1 ⊕ dX3 = 1X ⊕ dX3 : DX = X
∐

X2 −→ X .

In this case, �dX = �pr1 . To prove this, for any �f : X −→ Y , by Diagram III, PX = Df

∐
PX3 , where

PX3 is obtained by the pullback

PX3 Df

if

X2

dX3

X

and QY = Df

∐
Df × (X − Df)

∐
Df × Df = Df

∐
(Df × X). Let X = {a, b} and Df = {a} . We

have, (a, b) ∈ Df × (X − Df ) ⊆ QY = PX . Therefore (a, b) ∈ PX3 , and so by the above pullback
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diagram, dX3(a, b) ∈ Df = {a} . It follows that dX3(a, b) = a . On the other hand dX3(b, a) = b , since

otherwise, dX3(b, a) = a and by the above pullback diagram and the second assertion of (ii), we get PX3 =

{(a, a), (a, b), (b, a)} �= {(a, a), (a, b)} = Df × X , a contradiction to PX = QY . This proves for X = {a, b} ,

dX3 = pr1 .

Now Let Y be any set, pick a whole f : X −→ Y . Diagram IV for i = 3 yields the following commutative
diagram:

X2
pr1

f2

X

f

Y 2

dY 3

Y.

Given (y1, y2) ∈ Y 2 , pick f so that f(a) = y1, f(b) = y2 . We have dY 3(y1, y2) = dY 3(f(a), f(b)) =

dY 3f
2(a, b) = fpr1(a, b) = f(a) = y1 . Therefore dY 3 = pr1 . This proves the assertion.

Case 7): For all X ,

dX = dX2 ⊕ dX3 = 1X ⊕ dX3 : DX = X
∐

X2 −→ X.

Similar argument as in the case 6, shows �dX = �pr2 .

Case 8): For all X ,

dX = dX1 ⊕ dX2 ⊕ dX3 = 1X ⊕ 1X ⊕ dX3 : DX = X�×X −→ X.

In this case, PX = QY yields, PX3 = Df × (X − Df )
∐

(X − Df ) × Df

∐
Df × Df . Let X = {a, b} .

Picking Df = {a} , we get (a, b) ∈ PX3 and so dX3(a, b) ∈ Df = {a} , and so dX3(a, b) = a . On the other

hand, by picking Df = {b} , we get dX3(a, b) = b , a contradiction.

(b) Let (X, x0) = ({x0, x1, x2}, x0). Then d(X,x0) takes (x1, x2) to x0 , x1 or x2 . Suppose d(X,x0)(x1, x2) =

x0 . Let (Y, y0) ∈ Set∗ and pick y1, y2 ∈ Y . Let the mapping f : (X, x0) −→ (Y, y0) in Set∗ take xi to yi

for each i = 1, 2, 3. Naturality of d implies d(Y,y0)(y1, y2) = y0 . Since y1 and y2 were arbitrary, d(Y,y0) is the

constant map with value y0 . So d = 0.

Similar argument shows that in the two cases that d(X,x0)(x1, x2) = x1 or d(X,x0)(x1, x2) = x2 , d(Y,y0)

is the projection to the first, respectively second, factor. So that d = pr1 or d = pr2 . �

Finally by Theorem 5.4 we get:

Corollary 5.5 The only kernel transformations in the categories
−→
Set and Set∗ are the trivial ones.
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