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Properties of RD-projective and RD-injective modules

Lixin Mao

Abstract

In this paper, we first study RD -projective and RD -injective modules using, among other things, covers

and envelopes. Some new characterizations for them are obtained. Then we introduce the RD -projective

and RD -injective dimensions for modules and rings. The relations between the RD -homological dimensions

and other homological dimensions are also investigated.
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1. Introduction

Following [20], an exact sequence 0 → A → B → C → 0 of left R -modules is called RD -exact if

for every a ∈ R , the sequence Hom(R/Ra, B) → Hom(R/Ra, C) → 0 is exact, or equivalently, the sequence

0 → (R/aR) ⊗ A → (R/aR) ⊗ B is exact. A left R -module M is said to be RD -projective if for every RD -

exact sequence 0 → A → B → C → 0 of left R -modules, the sequence 0 → Hom(M, A) → Hom(M, B) →
Hom(M, C) → 0 is exact. A left R -module N is called RD -injective if for every RD -exact sequence 0 →
A → B → C → 0 of left R -modules, the sequence 0 → Hom(C, N) → Hom(B, N) → Hom(A, N) → 0 is exact.

According to [3], a right R -module F is called RD -flat if for every RD -exact sequence 0 → A → B → C → 0
of left R -modules, the sequence 0 → F ⊗ A → F ⊗ B → F ⊗ C → 0 is exact. For more details about
RD -projective, RD -injective and RD -flat modules, we refer the reader to [2, 3, 6, 15, 16, 19, 20].

Though the RD -property is most important and well known in the commutative case, so far not much
is known about the RD -property in the theory of modules over non-commutative rings. In this paper, we will
establish several basic results for RD -projective, RD -injective and RD -flat modules over a general ring.

In Section 2 of this paper, we obtain some properties of RD -projective and RD -injective modules in
terms of, among other things, covers and envelopes. New characterizations for them are presented. For example,
we prove that, if M is a submodule of an RD -injective left R -module E , then E is an RD -injective hull M

in the sense of Warfield if and only if the inclusion M → E is an RD -injective envelope in the sense of Enochs.
Also, we show that M is an RD -projective left R -module if and only if M is projective relative to every RD -
exact sequence 0 → K → E → F → 0 of left R -modules with E RD -injective. Dually, M is an RD -injective
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left R -module if and only if M is injective relative to every RD -exact sequence 0 → K → P → L → 0 of
left R -modules with P RD -projective. In addition, we get that the class of RD -injective left R -modules is
closed under extensions if and only if every Warfield cotorsion left R -module is RD -injective. Finally, we prove
that the following are equivalent for a ring R and an integer n ≥ 0: (1) Every RD -flat left R -module has flat

dimension ≤ n . (2) Every RD -projective left R -module has flat dimension ≤ n . (3) Every RD -injective right
R -module has injective dimension ≤ n . As a consequence, we obtain several new characterizations of left PP

rings and von Neumann regular rings.

In Section 3, we introduce and study the RD -derived functor Extn
RD(−,−) of Hom(−,−), and RD -

projective and RD -injective dimensions of modules and rings. We first prove that Ext1RD(M, N) → Ext1(M, N)

is a monomorphism for any ring R ; R is a von Neumann regular ring if and only if Ext1RD(M, N) ∼= Ext1(M, N)

for all left R -modules M and N . Then we get that the left global RD -projective dimension lRD −PD(R) is

equal to the left global RD -injective dimension lRD− ID(R). For a left strongly P -coherent ring R , we prove

that sup{id(M) : M is any divisible left R -module} ≤ lRD − ID(R), and sup{pd(M) : M is any torsionfree

left R -module} ≤ lRD − PD(R). Finally, it is shown that lD(R) ≤ lRD − ID(R) + sup{id(M) : M is any

RD -injective left R -module} ≤ lRD − ID(R) + wD(R).

Throughout this paper, R is an associative ring with identity and all modules are unitary. We write

RM to indicate a left R -module. The character module HomZ(M, Q/Z) of M is denoted by M+ . lD(R)

(resp. wD(R)) stands for the left (resp. the weak) global dimension of R . pd(M) (resp. id(M), fd(M))

denotes the projective (resp. injective, flat) dimension of M . Let M and N be R -modules. Hom(M, N) (resp.

Extn(M, N)) means HomR(M, N) (resp. Extn
R(M, N)), and similarly M ⊗ N (resp. Torn(M, N)) denotes

M ⊗R N (resp. TorR
n (M, N)) for an integer n ≥ 1. For unexplained concepts and notations, we refer the reader

to [1, 5, 6, 7, 11, 17, 21, 22].

2. RD-projective and RD-injective modules

We begin with the following lemmas.

Lemma 2.1 Let R be a ring.

(1) [6, Lemma VI 12.1] For any left R -module M , there exists an RD -exact sequence 0 → N → C → M → 0 ,
where C is a direct sum of cyclically presented left R -modules.

(2) [20, Corollary 1] and [3, Proposition 1.3] A left R -module M is RD -projective if and only if M is a
direct summand of a direct sum of cyclically presented left R -modules if and only if M is RD -flat and
pure-projective.

(3) [3, Proposition 1.4] A right R -module F is RD -flat if and only if F + is RD -injective.

Lemma 2.2 The following are equivalent:

(1) 0 → A → B → C → 0 is an RD -exact sequence of left R -modules.
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(2) The sequence 0 → Hom(M, A) → Hom(M, B) → Hom(M, C) → 0 is exact for any RD -projective left
R -module M .

(3) The sequence 0 → Hom(C, N) → Hom(B, N) → Hom(A, N) → 0 is exact for any RD -injective left
R -module N .

Proof. (1) ⇒ (2) and (1) ⇒ (3) are trivial.

(2) ⇒ (1) is clear since R/Ra is RD -projective for any a ∈ R .

(3) ⇒ (1) Let a ∈ R . By Lemma 2.1 (3), (R/aR)+ is RD -injective. So by (3), we get the exact sequence

Hom(B, (R/aR)+) → Hom(A, (R/aR)+) → 0,

which gives the exactness of the sequence

((R/aR) ⊗ B)+ → ((R/aR) ⊗ A)+ → 0.

Therefore we obtain the exact sequence

0 → (R/aR) ⊗ A → (R/aR) ⊗ B.

So the sequence 0 → A → B → C → 0 is RD -exact. �

According to [8, 11], a left R -module M is said to be divisible if Ext1(R/Ra, M) = 0 for all a ∈ R . A

right R -module N is called torsionfree if Tor1(N, R/Ra) = 0 for all a ∈ R . It is clear that a right R -module N

is torsionfree if and only if N+ is divisible by the standard isomorphism Ext1(R/Ra, N+) ∼= Tor1(N, R/Ra)+

for all a ∈ R .
Next we characterize divisible and torsion-free modules in terms of RD -projective and RD -injective

modules.

Proposition 2.3 The following are equivalent for a left R -module M :

(1) M is divisible.

(2) Every left R -module exact sequence 0 → M → E → F → 0 is RD -exact.

(3) There exists an RD -exact sequence 0 → M → B → C → 0 with B divisible.

(4) Ext1(N, M) = 0 for any RD -projective left R -module N .

(5) For every RD -injective left R -module G , any homomorphism M → G factors through an injective left
R -module.

Proof. (1) ⇔ (2) ⇔ (3) are routine.

(1) ⇒ (4) follows from Lemma 2.1 (2). (4) ⇒ (1) is clear.

(2) ⇒ (5) is easy since M embeds in an injective R -module.

(5) ⇒ (3) There exists an exact sequence 0 → M
i→ E → L → 0 with E injective. Let a ∈ R .

Then (R/aR)+ is RD -injective. For any f : M → (R/aR)+ , there exist an injective left R -module Q and
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g : M → Q and h : Q → (R/aR)+ such that f = hg by (5). Thus there exists α : E → Q such that g = αi ,

and so f = (hα)i . Therefore we get the exact sequence

Hom(E, (R/aR)+) → Hom(M, (R/aR)+) → 0,

which leads to the exactness of the sequence

((R/aR) ⊗ E)+ → ((R/aR) ⊗ M)+ → 0.

It follows that 0 → (R/aR) ⊗ M → (R/aR) ⊗ E is exact, as required. �

Proposition 2.4 The following are equivalent for a right R -module N :

(1) N is torsionfree.

(2) Every right R -module exact sequence 0 → K → P → N → 0 is RD -exact.

(3) There exists a right R -module RD -exact sequence 0 → K → T → N → 0 with T torsionfree.

(4) Ext1(N, M) = 0 for any RD -injective right R -module M .

(5) For every RD -projective right R -module F , every homomorphism f : F → N factors through a projective
right R -module.

(6) Tor1(N, M) = 0 for any RD -flat left R -module M .

Proof. (1) ⇔ (2) ⇔ (3) ⇔ (4) are straightforward.

(2) ⇒ (5) is clear since there is an exact sequence P → N → 0 with P projective.

(5) ⇒ (1) follows from [13, Lemma 3.9].

(1) ⇔ (6) holds by the fact that every RD -flat module is a direct limit of finite direct sums of cyclically

presented modules (see [3, Proposition I.1]). �

Corollary 2.5 The following are true for any ring R :

(1) A divisible RD -injective left R -module is injective.

(2) A torsionfree RD -projective right R -module is projective.

(3) A torsionfree RD -flat right R -module is flat.

Proof. (1) follows from Proposition 2.3. (2) holds by Proposition 2.4.

(3) Let N be a torsionfree RD -flat right R -module. Then N+ is divisible RD -injective by Lemma 2.1

(3), and so is injective by (1). Thus N is flat. �

Following [6], an RD -injective hull of an R -module M is defined as an RD -injective R -module E such
that M is an RD -essential submodule of E , where M is called an RD -essential submodule of E if M is

190



MAO

an RD -submodule of E , and there is no nonzero submodule K of E with K ∩ M = 0 and (K + M)/K an

RD -submodule of E/K .

By [6, Theorem 1.6], any R -module admits an RD -injective hull.

Let C be a class of R -modules and M an R -module. According to Enochs [4], a homomorphism

φ : C → M is a C -precover of M if C ∈ C and the abelian group homomorphism Hom(C ′, φ) : Hom(C ′, C) →
Hom(C ′, M) is surjective for every C ′ ∈ C . A C -precover φ : C → M is said to be a C -cover of M if
every endomorphism g : C → C such that φg = φ is an isomorphism. Dually we have the definitions of a
C -preenvelope and a C -envelope. C -covers (C -envelopes) may not exist in general, but if they exist, they are
unique up to isomorphism.

Theorem 2.6 Let R be a ring.

(1) Every R -module has an RD -projective precover.

(2) Every R -module has an RD -flat cover.

(3) Every R -module has an RD -injective envelope.

Proof. (1) follows from Lemma 2.1 (1).

(2) We first prove that the class of RD -flat R -modules is closed under pure quotient modules. Let
0 → A → B → C → 0 be a pure exact sequence with B RD -flat. Then we get the split exact sequence

0 → C+ → B+ → A+ → 0. Since B+ is RD -injective by Lemma 2.1 (3), C+ is RD -injective. So C is RD -
flat. In addition, the class of RD -flat R -modules is clearly closed under direct limits. Thus every R -module
has an RD -flat cover by [9, Theorem 2.5].

(3) Since every R -module admits an RD -injective hull, every R -module admits an RD -injective preen-

velope. On the other hand, any direct limit of RD -exact sequences is RD -exact (see [6, Exercise I 7.15]). By

a proof similar to that of [22, Theorem 2.3.8 or 2.2.6], every R -module has an RD -injective envelope. �

Theorem 2.7 Suppose that M is a submodule of an RD -injective left R -module E . Then the following are
equivalent:

(1) i : M → E is an RD -injective envelope (here i is the inclusion).

(2) E is an RD -injective hull of M .

Proof. (1) ⇒ (2) Suppose that there is a nonzero submodule K of E such that K∩M = 0 and (K +M)/K

is an RD -submodule of E/K . Since (K + M)/K ∼= M and E is RD -injective, there is β : E/K → E such

that the following diagram is commutative, where π : E → E/K is the natural map:

E

π

0 M

i

i

α E/K

β

E/ (K ⊕M) 0.

E
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Hence βπi = i . Since i is an envelope, βπ is an isomorphism, whence π is an isomorphism. But this is
impossible because π(K) = 0. So E is an RD -injective hull of M .

(2) ⇒ (1) Let E be an RD -injective hull of M . Clearly the inclusion i : M → E is an RD -injective

preenvelope. By Theorem 2.6 (3), M has an RD -injective envelope σ : M → N . Thus there exist f : N → E

and g : E → N such that the following diagram is commutative.

0 M

i

N

f

E.

g

So gfσ = gi = σ . Hence gf is an isomorphism. Without loss of generality, we may assume gf = 1. Thus
E = im(f)⊕ker(g). Note that M ∩ker(g) = 0 and M is an RD -submodule of im(f). So (M ⊕ker(g))/ ker(g)

is an RD -submodule of E/ ker(g) by [6, p.39]. Hence ker(g) = 0 by (2). Thus g is an isomorphism. Therefore
i : M → E is an RD -injective envelope. �

Now we give new characterizations of RD -projective and RD -injective modules.

Theorem 2.8 The following are equivalent for a left R -module M :

(1) M is RD -projective.

(2) Every RD -exact sequence 0 → K → N → M → 0 of left R -modules is split.

(3) M is projective relative to every RD -exact sequence 0 → K → E → F → 0 of left R -modules with E

RD -injective.

Proof. (1) ⇒ (2) and (1) ⇒ (3) are clear.

(2) ⇒ (1) By Lemma 2.1 (1), there exists an RD -exact sequence 0 → N → C → M → 0 with C

RD -projective. So M is RD -projective by (2).

(3) ⇒ (1) Let 0 → A → B → C → 0 be an RD -exact sequence of left R -modules. By Theorem 2.6 (3),
B has an RD -injective envelope λ : B → H . Then we have the following pushout diagram:

0 0

0 A
ι

B
π

C

ϕ

0

0 A
α

H

ρ

D

δ

0

N N

0 0.
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Thus α = λι , and so 0 → A → H → D → 0 is an RD -exact sequence. Let ψ : M → C be any
homomorphism. By (3), there exists γ : M → H such that βγ = ϕψ . Since ργ = δβγ = δϕψ = 0, we

have im(γ) ⊆ ker(ρ) = im(λ). So we can define θ : M → B by

θ(x) = λ−1γ(x) for any x ∈ M .

Thus
ϕψ = βγ = βλθ = ϕπθ.

So ψ = πθ since ϕ is monic. Hence M is RD -projective. �

Theorem 2.9 The following are equivalent for a left R -module M :

(1) M is RD -injective.

(1) Every RD -exact sequence 0 → M → E → F → 0 of left R -modules is split.

(2) M is injective relative to every RD -exact sequence 0 → K → P → L → 0 of left R -modules with P

RD -projective.

Proof. (1) ⇒ (2) and (1) ⇒ (3) are clear.

(2) ⇒ (1) By [6, Theorem 1.6], there exists an RD -exact sequence 0 → M → B → N → 0 with B

RD -injective. So M is RD -injective by (2).

(3) ⇒ (1) Let 0 → A → B → C → 0 be an RD -exact sequence of left R -modules. By Lemma 2.1 (1),
there is an RD -exact sequence 0 → D → P → B → 0 with P RD -projective. Then we have the following
pullback diagram:

0 0

D

δ

ϕ

D

λ

0 Q
ι

P

ρ

π
C 0

0 A
α

B
β

C 0

0 0.

Thus π = βρ , and so 0 → Q → P → C → 0 is an RD -exact sequence. Let ψ : A → M be any homomorphism.
By (3), there exists γ : P → M such that ψϕ = γι . Since γιδ = ψϕδ = 0, we have

ker(ρ) = im(λ) = im(ιδ) ⊆ ker(γ).

So there exists θ : B → M such that θρ = γ . Thus

ψϕ = θρι = θαϕ.

Therefore ψ = θα since ϕ is epic. Hence M is RD -injective. �

RD -injective and RD -flat modules over a commutative ring can be characterized as follows.
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Proposition 2.10 Let R be a commutative ring. The following are equivalent for an R -module M :

(3) M is an RD -injective R -module.

(4) Hom(F, M) is an RD -injective R -module for any flat R -module F .

Proof. (1) ⇒ (2) Let 0 → A → B → C → 0 be an RD -exact sequence of R -modules. For any flat R -module
F , we get the exact sequence

0 → F ⊗ A → F ⊗ B → F ⊗ C → 0.

It is easy to verify that the sequence is RD -exact. Since M is RD -injective, we obtain the exact sequence

Hom(F ⊗ B, M) → Hom(F ⊗ A, M) → 0,

which yields the exact sequence

Hom(B, Hom(F, M)) → Hom(A, Hom(F, M)) → 0.

Thus Hom(F, M) is an RD -injective R -module.

(2) ⇒ (1) is clear by letting F = R . �

Proposition 2.11 Let R be a commutative ring. The following are equivalent for an R -module N :

(1) N is an RD -flat R -module.

(2) Hom(N, E) is an RD -injective R -module for any injective R -module E .

Proof. (1) ⇒ (2) Let E be any injective R -module. Then there is a split exact sequence

0 → E → ΠR+.

So we get the split exact sequence

0 → Hom(N, E) → Hom(N, ΠR+) ∼= ΠHom(N, R+) ∼= ΠN+.

By (1), N+ is RD -injective, and so ΠN+ is RD -injective. Thus Hom(N, E) is RD -injective.

(2) ⇒ (1) is obvious by letting E = R+ . �

Recall that a right R -module M is Warfield cotorsion [6, 7] if Ext1(F, M) = 0 for every torsionfree right
R -module F . Clearly, any RD -injective module is Warfield cotorsion by Proposition 2.4.

The following theorem exhibits the homological property of RD -projective, RD -injective and RD -flat
modules.

Theorem 2.12 The following are equivalent for a ring R and an integer n ≥ 0 :

(1) Every RD -flat left R -module has flat dimension ≤ n .

(2) Every RD -projective left R -module has flat dimension ≤ n .
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(3) Every Warfield cotorsion right R -module has injective dimension ≤ n .

(4) Every RD -injective right R -module has injective dimension ≤ n .

Proof. (1) ⇒ (2) is clear by Lemma 2.1 (2).

(2) ⇒ (3) Let M be a Warfield cotorsion right R -module and N any right R -module. Then there is an
exact sequence

0 → Kn → Pn−1 → · · · → P1 → P0 → N → 0

with each Pi projective. By (2), for any a ∈ R , we have

Tor1(Kn, R/Ra) ∼= Torn+1(N, R/Ra) = 0.

Thus Kn is torsionfree, and so

Extn+1(N, M) ∼= Ext1(Kn, M) = 0.

It follows that M has injective dimension ≤ n .

(3) ⇒ (4) is trivial.

(4) ⇒ (1) For every RD -flat left R -module A , A+ is RD -injective. By (4), for every right R -module
B , we have

Torn+1(B, A)+ ∼= Extn+1(B, A+) = 0.

So Torn+1(B, A) = 0, and hence A has flat dimension ≤ n . �

Recall that a ring R is left PP if every principal left ideal of R is projective. R is called left P -coherent [15]
in case each principal left ideal of R is finitely presented.

Corollary 2.13 The following are equivalent for a ring R :

(1) R is a left PP ring.

(2) R is a left P -coherent ring and every submodule of a torsionfree right R -module is torsionfree.

(3) Every quotient module of a divisible left R -module is divisible.

(4) Every RD -projective left R -module has projective dimension ≤ 1 .

(5) R is a left P -coherent ring and every RD -injective right R -module has injective dimension ≤ 1 .

(6) R is a left P -coherent ring and every RD -flat left R -module has flat dimension ≤ 1 .

Proof. (1) ⇔ (2) ⇔ (3) hold by [14, Theorem 5.1].

(3) ⇒ (4) Let M be an RD -projective left R -module and N any left R -module. Then there is an exact

sequence 0 → N → E → L → 0 with E injective. By (3), L is divisible, and so Ext2(M, N) ∼= Ext1(M, L) = 0
by Proposition 2.3. It follows that M has projective dimension ≤ 1.

(4) ⇒ (1) Let a ∈ R . Since R/Ra has projective dimension ≤ 1, Ra is projective.

(4) ⇒ (5) ⇒ (6) follow from Theorem 2.12 and the equivalence of (4) and (1).
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(6) ⇒ (1) Let a ∈ R . Since R/Ra has flat dimension ≤ 1, Ra is flat. So Ra is projective since Ra is
finitely presented. �

In general, RD -projective (RD -injective) modules need not be projective (injective). For example, Z2 is an

RD -projective (RD -injective) Z -module, but it is not a projective (injective) Z -module. In fact, we have the
following result.

Corollary 2.14 The following are equivalent for a ring R :

(1) R is a von Neumann regular ring.

(2) Every RD -projective left R -module is projective.

(3) Every RD -flat left R -module is flat.

(4) Every RD -injective right R -module is injective.

(5) Every left R -module exact sequence 0 → A → B → C → 0 is RD -exact.

Proof. (1) ⇒ (2) By Lemma 2.1 (2), an RD -projective left R -module is a direct summand of a direct sum of

cyclically presented left R -modules. Since every cyclically presented left R -module is projective by (1), every
RD -projective left R -module is projective.

(2) ⇒ (3) ⇒ (4) follow from Theorem 2.12 by letting n = 0.

(4) ⇒ (5) holds by Lemma 2.2.

(5) ⇒ (1) By (5) and Proposition 2.3, every left R -module is divisible. So R is a von Neumann regular
ring. �

Recall that a left R -module M is absolutely pure [12] if M is a pure submodule of every module which contains
M as a submodule.

Proposition 2.15 Consider the following conditions for a ring R :

(1) Every RD -exact sequence 0 → A → B → C → 0 of left R -modules is pure.

(2) Every pure injective left R -module is RD -injective.

(3) Every pure projective left R -module is RD -projective.

(4) Every finitely presented left R -module is a summand of a direct sum of cyclically presented left R -modules.

(5) every divisible left R -module is absolutely pure.

Then (1) ⇔ (2) ⇔ (3) ⇔ (4) ⇒ (5).

Proof. The equivalence of (1) through (4) follow from [3, Theorem I.4].

(1) ⇒ (5) holds by Proposition 2.3. �

In [2], some examples of pure-injective modules that fail to be RD -injective were given for commutative
rings. The following example gives an RD -exact sequence which is not pure over a non-commutative ring, and
so there exists a pure-injective left module, which is not RD -injective.
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Example 2.16 Let K be a field and ρ an isomorphism of K onto a subfield L such that K = L and K has
finite vector space dimension over L . K[X; ρ] will denote the ring of twisted right polynomials over K , i.e.,

K[X; ρ] is the set of all formal polynomials in commuting indeterminate X with coefficients from K write on
the right. Equality and addition are defined in the usual fashion and multiplication by assuming the associate
and distributive laws and the rule

aX = Xρ(a)

for all a ∈ K .
Let R = K[X; ρ]/(X2). Then by [18, Example 1], RR is divisible, and R is a two-sided Artinian ring,

but is not a quasi-Frobenius ring. Thus RR is not absolutely pure (and so is not RD -injective by Corollary

2.5 (1)). Let E(RR) denote the injective envelope of RR . Then by Proposition 2.3, the left R -module exact
sequence

0 → RR → E(RR) → E(RR)/RR → 0

is an RD -exact sequence, but it is not pure. Thus by Proposition 2.15, there exists a pure injective left R -module
which is not RD -injective, and there exists a pure projective left R -module which is not RD -projective.

By the way, the class of RD -flat left R -modules coincides with the class of RD -projective left R -modules
by [3, Theorem III.1] since R is left Artinian.

Remark 2.17 We note that some properties of RD -projective and RD -injective modules over commutative
rings can be generalized to non-commutative cases. For example, by [6, Theorem XIII 1.1 and Example VI

12.5], for a commutative domain R , every RD -injective R -module has injective dimension ≤ 1, and every
RD -projective R -module has projective dimension ≤ 1. By replacing “commutative domain” with “left PP

ring”, Corollary 2.13 extends the above result to a more general setting.

However, there seems to be some difference between the commutative and the non-commutative cases
when we consider the projectivity and injectivity for RD . For instance, if R is a commutative domain, then by
[6, Proposition IX 3.4 and Theorem XIII 2.8], all conditions in Proposition 2.15 are equivalent (which exactly

characterizes Prüfer domain). But for a non-commutative ring, we do not know whether the conditions (4) and

(5) in Proposition 2.15 are equivalent. However, by [7, Corollary 3.2.4], the condition (5) in Proposition 2.15 is
equivalent to the condition that every finitely presented left R -module is a direct summand in a left R -module
N such that N is a union of a continuous chain, (Nα : α < λ), for a cardinal λ , N0 = 0 and Nα+1/Nα is
cyclically presented for all α < λ .

Although the class of RD -injective left R -modules is closed under direct products and direct summands, the
class of RD -injective left R -modules is not closed under direct sums in general. In fact, if R is not a left
Artinian ring, then the class of RD -injective left R -modules is not closed under direct sums by [3, Theorem II.

1].

Next we will consider when the class of RD -injective left R -modules is closed under extensions.

Theorem 2.18 The following are equivalent for a ring R :

(1) The class of RD -injective left R -modules is closed under extensions.

(2) Every Warfield cotorsion left R -module is RD -injective.
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Proof. (1) ⇒ (2) Let M be a Warfield cotorsion left R -module. Then by Theorem 2.6 (3), we have an exact

sequence 0 → M → N → L → 0, where M → N is an RD -injective envelope of M . By (1) and Wakamatsu’s

Lemma (see [22, Lemma 2.1.2]), Ext1(L, C) = 0 for every RD -injective left R -module C , and so L is torsionfree

by Proposition 2.4. Therefore Ext1(L, M) = 0, and hence the exact sequence 0 → M → N → L → 0 is split.
Thus M is RD -injective.

(2) ⇒ (1) is obvious because the class of Warfield cotorsion left R -modules is closed under extensions. �

Remark 2.19 (1) In general, the class of RD -injective R -modules is not closed under extensions. For example,

[22, p. 75, Example] constructs a cotorsion Z -module which is not pure injective. Since torsionfree Z -modules
coincide with flat Z -modules, Warfield cotorsion Z -modules need not be RD -injective. So the class of RD -
injective Z -modules is not closed under extensions by Theorem 2.18.

(2) If R is a left pure-semisimple ring, then the equivalent conditions of Theorem 2.18 are clearly satisfied.

(3) If R is a von Neumann regular ring, then every RD -injective left R -module is injective by Corollary
2.14. So the equivalent conditions of Theorem 2.18 are also satisfied.

(4) If R is a Prüfer domain, then the equivalent conditions of Theorem 2.18 hold if and only if the class of

RD -injective R -modules is closed under cokernels of monomorphisms by [16, Proposition 4.5] and [22, Theorem

3.5.1].

3. RD-derived functors of Hom(−,−) and RD-homological dimensions

By Theorem 2.6 (1), every left R -module has an RD -projective precover. So every left R -module M

has a left RD -projective resolution, that is, there is an exact sequence · · · → P1 → P0 → M → 0 with each
Pi RD -projective and such that Hom(N,−) leaves the sequence exact whenever N is an RD -projective left
R -module, equivalently, there exists an RD -exact sequence · · · → P1 → P0 → M → 0 with each Pi RD -
projective by Lemma 2.2. Write K0 = M, K1 = ker(P0 → M), Ki = ker(Pi−1 → Pi−2) for i ≥ 2. The nth

kernel Kn (n ≥ 0) is called the nth RD -projective syzygy of M .

Dually, by Theorem 2.6 (3), every left R -module N has an RD -injective envelope. So N has a right

RD -injective resolution, that is, there is an exact sequence 0 → N → E0 → E1 → · · · with each Ei RD -
injective and such that Hom(−, M) leaves the sequence exact whenever M is an RD -injective left R -module,

equivalently, there is an RD -exact sequence 0 → N → E0 → E1 → · · · with each Ei RD -injective by Lemma

2.2. Write L0 = N, L1 = coker(N → E0), Li = coker(Ei−2 → Ei−1) for i ≥ 2. The nth cokernel Ln (n ≥ 0)
is called the nth RD -injective cosyzygy of N .

Note that Hom(−,−) is right balanced by {the class of all RD -projective left R -modules} × {the class

of all RD -injective left R -modules} (see [5, Definition 8.2.13]). Let Extn
RD(−,−) denote the nth right derived

functor of Hom(−,−) with respect to {the class of all RD -projective left R -modules} × {the class of all RD -

injective left R -modules}. Then, for two left R -modules M and N , Extn
RD(M, N) can be computed using a

left RD -projective resolution of M or a right RD -injective resolution of N .

For any family {Mi} of left R -modules, it is easy to check that the natural map Extn
RD(⊕Mi, N) →
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∏
Extn

RD(Mi, N) is an isomorphism for any left R -module N and n ≥ 0. Moreover, we have the following
result.

Theorem 3.1 Let R be a ring such that the class of RD -injective left R -modules is closed under direct sums.
If N is a finitely generated left R -module, {Mi} is a family of left R -modules, then Extn

RD(N,⊕Mi) ∼=
⊕Extn

RD(N, Mi) for any n ≥ 0 .

Proof. Every Mi has a right RD -injective resolution

0 → Mi → E0
i → E1

i → E2
i → · · · .

Then by hypothesis and [22, Proposition 1.2.4],

0 → ⊕Mi → ⊕E0
i → ⊕E1

i → ⊕E2
i → · · ·

is a right RD -injective resolution of ⊕Mi . Applying Hom(N,−), we have the following commutative diagram
of complexes:

0 Hom(N,E 0
i )

θ0

Hom(N,E 1
i )

θ1

Hom(N,E 2
i )

θ2

· · ·

0 Hom(N, E0
i ) Hom(N, E1

i ) Hom(N, E2
i ) · · · .

⊕ ⊕ ⊕

⊕⊕⊕

Since N is finitely generated, every θi is an isomorphism by [1, Exercise 16.3]. So Extn
RD(N,⊕Mi) ∼=

⊕Extn
RD(N, Mi) for any n ≥ 0 by [17, Exercise 6.7]. �

We now compare the RD -derived functor Extn
RD(−,−) with the usual derived functor Extn(−,−). There is a

natural transformation Extn
RD(−,−) → Extn(−,−).

Theorem 3.2 The following are true for any ring R .

(1) Ext0RD(M, N) ∼= Hom(M, N) ∼= Ext0(M, N) for all left R -modules M and N .

(2) Ext1RD(M, N) → Ext1(M, N) is a monomorphism for all left R -modules M and N .

Proof. Let

0 → N
ε→ D0 d0

→ D1 d1

→ D2 d2

→ · · ·

be a right RD -injective resolution of N . Since D0 can be embedded in an injective left R -module E0 , N

admits a right injective resolution

0 → N
λ→ E0 e0

→ E1 e1

→ E2 e2

→ · · · .

So we can complete the following commutative diagram uniquely up to homotopy, where τ0 is a monomorphism:

0 N D0

τ0

d0

D1

τ1

d1

D2
d2

τ2

⋅ ⋅ ⋅

0 N
λ

E0
e0

E1
e1

E2
e2

⋅ ⋅ ⋅ .
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Applying Hom(M,−) for any left R -module M , we have the following commutative diagram of complexes:

0 Hom(M,D0)

τ0

d0

Hom(M,D1)

τ1

d1

Hom(M,D2)
d2

τ2

⋅ ⋅ ⋅

0 Hom(M,E0)
e0

Hom(M,E1)
e1

Hom(M,E2)
e2

⋅ ⋅ ⋅ .

(1) It is clear that Ext0RD(M, N) ∼= Hom(M, N) ∼= Ext0(M, N).

(2) Note that Ext1RD(M, N) = ker(d1
∗)/im(d0

∗) and Extn(M, N) = ker(e1
∗)/im(e0

∗).

Define θ : Ext1RD(M, N) → Extn(M, N) via θ(α) = τ1∗(α) for any α ∈ ker(d1
∗).

Let θ(α) = τ1∗(α) = 0 for some α ∈ ker(d1
∗). Then

τ1∗(α) = τ1α ∈ im(e0
∗).

So there exists β ∈ Hom(M, E0) such that

τ1α = e0
∗(β) = e0β.

Since d1α = d1
∗(α) = 0, we have α(x) ∈ ker(d1) = im(d0) for any x ∈ M . Thus there exists y ∈ D0 such that

α(x) = d0(y). Hence

e0β(x) = τ1α(x) = τ1d
0(y) = e0τ0(y),

and so
β(x) − τ0(y) ∈ ker(e0) = im(λ) = im(τ0ε).

Therefore there exists t ∈ N such that
β(x) − τ0(y) = τ0ε(t).

Thus β(x) = τ0(y + ε(t)). Define γ : M → D0 via

γ(x) = y + ε(t).

Then γ is well defined since τ0 is a monomorphism. Note that α = d0
∗(γ), and so α = 0. It follows that

θ : Ext1RD(M, N) → Ext1(M, N) is a monomorphism. �

In general, Ext1RD(M, N) → Ext1(M, N) need not be an epimorphism. In fact, Ext1RD(M, N) → Ext1(M, N)
is an epimorphism if and only if R is a von Neumann regular ring as shown by the following proposition.

Proposition 3.3 The following are equivalent for a ring R :

(1) R is a von Neumann regular ring.

(2) Extn
RD(M, N) → Extn(M, N) is an isomorphism for all left R -modules M and N and n ≥ 1 .

(3) Ext1RD(M, N) → Ext1(M, N) is an isomorphism for all left R -modules M and N .

200



MAO

Proof. (1) ⇒ (2) By (1) and Corollary 2.14, the class of RD -injective left R -modules coincides with the class

of injective left R -modules. So Extn
RD(M, N) ∼= Extn(M, N) for all left R -modules M and N and n ≥ 1.

(2) ⇒ (3) is trivial.

(3) ⇒ (1) Let N be any RD -injective left R -module. Then Ext1RD(M, N) = 0 for any left R -module

M since there exists a right RD -injective resolution 0 → N → N → 0 → 0 → · · · . So Ext1(M, N) = 0 by (3).
Thus N is injective. Hence R is a von Neumann regular ring by Corollary 2.14. �

Next we introduce the RD -projective and RD -injective dimensions for modules and rings.

Definition 3.4 Let R be a ring. For a left R -module M , let RD − pd(M) = inf{n : there exists a left

RD -projective resolution 0 → Pn → · · · → P0 → M → 0} and call RD− pd(M) the RD -projective dimension

of M . If no such sequence exists for any n , set RD − pd(M) = ∞ .

Put lRD−PD(R) = sup{RD−pd(M): M ranges over all left R -modules} and call lRD−PD(R) the
left global RD -projective dimension of the ring R .

Dually, we can define the RD -injective dimension RD−id(M) of a left R -module M , and the left global

RD -injective dimension lRD − ID(R) of the ring R .

Proposition 3.5 The following are equivalent for a left R -module M and an integer n ≥ 0 :

(1) RD − pd(M) ≤ n .

(2) Extn+j
RD (M, N) = 0 for all left R -modules N and j ≥ 1 .

(3) Extn+1
RD (M, N) = 0 for all left R -modules N .

(4) Every nth RD -projective syzygy of M is RD -projective.

Proof. (1) ⇒ (2) By (1), M admits a left RD -projective resolution

0 → Pn → · · · → P0 → M → 0.

Then Hom(Pn+j , N) = 0 for all left R -modules N and j ≥ 1. So Extn+j
RD (M, N) = 0.

(2) ⇒ (3) is trivial.

(3) ⇒ (4) Let
· · · → Pn+2 → Pn+1 → Pn → Pn−1 → · · · → P0 → M → 0

be a left RD -projective resolution of M with Kn = ker(Pn−1 → Pn−2) and Kn+1 = ker(Pn → Pn−1). Then
we have the following exact commutative diagram:

⋅ ⋅ ⋅ Pn+2

g
Pn+1

π

f
Pn ⋅ ⋅ ⋅ P0 M 0

Kn+1

λ

0 0.
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By (3), Extn+1
RD (M, Kn+1) = 0. Thus the sequence

Hom(Pn, Kn+1)
f∗

→ Hom(Pn+1, Kn+1)
g∗

→ Hom(Pn+2, Kn+1)

is exact. Since g∗(π) = πg = 0, π ∈ ker(g∗) = im(f∗). Thus there exists h ∈ Hom(Pn, Kn+1) such that

π = f∗(h) = hf = hλπ , and hence hλ = 1 since π is epic. So the exact sequence 0 → Kn+1
λ→ Pn → Kn → 0

is split. Therefore Kn is RD -projective.

(4) ⇒ (1) is obvious. �

Dually, we have the following proposition.

Proposition 3.6 The following are equivalent for a left R -module N and an integer n ≥ 0 :

() RD − id(N) ≤ n .

(1) Extn+j
RD (M, N) = 0 for all left R -modules M and j ≥ 1 .

(2) Extn+1
RD (M, N) = 0 for all left R -modules M .

(3) Every nth RD -injective cosyzygy of N is RD -injective.

Combining Propositions 3.5 with 3.6, we have

Theorem 3.7 The following are equivalent for a ring R and an integer n ≥ 0 :

(1) lRD − PD(R) ≤ n .

(2) lRD − ID(R) ≤ n .

(3) Extn+j
RD (M, N) = 0 for all left R -modules M , N and j ≥ 1 .

(4) Extn+1
RD (M, N) = 0 for all left R -modules M and N .

We list some corollaries of Theorem 3.7 as follows.

Corollary 3.8 For any ring R , lRD − PD(R) = lRD − ID(R) .

Corollary 3.9 The following are equivalent for a ring R :

(1) lRD − PD(R) = lRD − ID(R) = 0.

(2) Every left R -module is RD -projective.

(3) Every left R -module is RD -injective.

(4) Extn
RD(M, N) = 0 for all left R -modules M , N and n ≥ 1 .

(5) Ext1RD(M, N) = 0 for all left R -modules M and N .
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(6) Every left R -module RD -exact sequence is split.

Corollary 3.10 The following are equivalent for a ring R :

(1) lRD − PD(R) = lRD − ID(R) ≤ 1.

(2) Every RD -submodule of an RD -projective left R -module is RD -projective.

(3) For any RD -submodule of an RD -injective left R -module M , M/N is RD -injective.

(4) Extn
RD(M, N) = 0 for all left R -modules M , N and n ≥ 2 .

(5) Ext2RD(M, N) = 0 for all left R -modules M and N .

Finally, we discuss the relations between the RD -homological dimensions and other homological dimensions.

Recall that R is left strongly P -coherent [15] if every principal left ideal of R is cyclically presented.

Theorem 3.11 Let R be a left strongly P -coherent ring. Then

(1) RD − id(M) = id(M) for a divisible left R -module M .

(2) RD − pd(M) = pd(M) for a torsionfree left R -module M .

(3) sup{id(M): M is any divisible left R -module} ≤ lRD − ID(R) .

(4) sup{pd(M): M is any torsionfree left R -module} ≤ lRD − PD(R) .

Proof. (1) Let M be a divisible left R -module. By [15, Lemma 4.10] and Proposition 2.3, a right injective

resolution of M must be its right RD -injective resolution. So RD − id(M) ≤ id(M). Conversely, we may

assume RD − id(M) = m < ∞ . There is an exact sequence

0 → M → E0 → E1 → · · · → Em−1 → Lm → 0

with each Ei injective. By [15, Lemma 4.10] and Proposition 2.3, the above sequence is an RD -exact sequence.

Thus Lm is divisible and RD -injective by Proposition 3.6, and hence is injective by Corollary 2.5 (1). So

id(M) ≤ m . Thus RD − id(M) = id(M).

(2) Let M be a torsionfree left R -module. By [15, Lemma 4.10] and Proposition 2.4, a left projection

resolution of M must be its left RD -projective resolution. So RD − pd(M) ≤ pd(M).

Conversely, we may assume RD − pd(M) = n < ∞ . There exists an exact sequence

0 → Kn → Pn−1 → · · · → P1 → P0 → M → 0,

where each Pi is projective. By [15, Lemma 4.10] and Proposition 2.4, the above sequence is an RD -exact

sequence. So Kn is torsionfree and RD -projective by Proposition 3.5, and so is projective by Corollary 2.5 (2).

Thus pd(M) ≤ n . Hence RD − pd(M) = pd(M).

(3) follows from (1), (4) holds by (2). �

Observing the following facts:
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(1) If R is a von Neumann regular ring, then lD(R) = lRD − ID(R) by Corollary 2.14.

(2) If lRD − ID(R) = 0, then lD(R) = wD(R).

In general, we have the following inequalities.

Theorem 3.12 Let R be a ring. Then

lD(R) ≤ lRD − ID(R) + sup{id(M) : M is any RD -injective left R -module}
≤ lRD − ID(R) + wD(R) .

Proof. By Theorem 2.12, sup{id(M) : M is any RD -injective left R -module} = sup{fd(M) : M is any

RD -flat right R -module} ≤ wD(R). So the second inequality in the theorem holds.

Next we show that lD(R) ≤ lRD − ID(R) + sup{id(M) : M is any RD -injective left R -module}. We

may assume that both lRD − ID(R) and sup{id(M) : M is any RD -injective left R -module} are finite. Let

lRD − ID(R) = m < ∞ and sup{id(M) : M is any RD -injective left R -module} = n < ∞ . Suppose M is a
left R -module, then M admits a right RD -injective resolution

0 → M → E0 → E1 → · · · → Em−1 → Em → 0.

Note that id(Ei) ≤ n . For every left R -module N , we have

Extn+m+1(N, M) ∼= Extn+1(N, Em) = 0.

So id(M) ≤ n + m . Thus lD(R) ≤ n + m . �

We conclude this paper with the following

Remark 3.13 (1) Let R = Z . Then D(R) = RD − ID(R) = wD(R) = 1.

By [21, 40.5], sup{id(M) : M is any divisible left R -module} = 0. So the inequality sup{id(M) : M is

any divisible left R -module} ≤ lRD − ID(R) in Theorem 3.11 may be strict.

On the other hand, by Corollaries 2.13 and 2.14, sup{id(M) : M is any RD -injective left R -module}
= 1. Thus the inequality lD(R) ≤ lRD − ID(R) + sup{id(M) : M is any RD -injective left R -module} in
Theorem 3.12 may be strict.

(2) The second inequality in Theorem 3.12 may be also strict. For example, by [10, Corollary, p.439],

there exists a left Noetherian domain R with lD(R) = wD(R) = 2. Then sup{id(M) : M is any RD -injective

left R -module} = 1 by Corollary 2.13.
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