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Existence theory for positive solutions of p-laplacian multi-point
BVPs on time scales∗
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Abstract

This paper is concerned with the one-dimensional p-Laplacian multi-point boundary value problem on

time scales �:

(ϕp(u
Δ))∇ + h(t)f(u) = 0, t ∈ [0, T ]

�
,

subject to multi-point boundary conditions

u(0) − B0

��m−2
i=1 aiu

Δ(ξi)
�

= 0, uΔ(T ) = 0,

or

uΔ(0) = 0, u(T ) + B1

��m−2
i=1 biu

Δ(ξ′
i)
�

= 0,

where ϕp(u) is p-Laplacian operator, i.e., ϕp(u) = |u|p−2 u, p > 1, ξi, ξ
′
i ∈ [0, T ]

�
, m ≥ 3 and satisfy

0 ≤ ξ1 < ξ2 < . . . < ξm−2 < ρ(T ), σ(0) < ξ′
1 < ξ′

2 < . . . < ξ′
m−2 ≤ T, ai, bi ∈ [0,∞) (i = 1, 2, . . . , m − 2).

Some new sufficient conditions are obtained for the existence of at least one positive solution by using

Krasnosel’skii’s fixed-point theorem and new sufficient conditions are obtained for the existence of twin,

triple or arbitrary odd positive solutions by using generalized Avery and Henderson fixed-point theorem and

Avery-Peterson fixed-point theorem. Our results include and extend some known results. As applications,

two examples are given to illustrate the main results and their differences. These results are new even for

the special cases of continuous and discrete equations, as well as in the general time scale setting.

Key Words: Time scales; boundary value problem; positive solutions; p-Laplacian; fixed-point theorem.

1. Introduction

The development of the theory of time scales was initiated by Hilger in his Ph.D thesis in 1988 [17]. An
initial motivation to develop and study calculus on time scales was to provide the unification of continuous and
discrete calculus. Such a study on time scales lead to deeper understanding of modeling hybrid-type continuous-
discrete systems. Since then, the theory of dynamic equations on time scales are considerably active. Now, it

2000 AMS Mathematics Subject Classification: 34B15, 39A10.
Supported by the grant of Department of Education Jiangsu Province (09KJD110006).
∗Supported by the NSFC (No.10571078).

219



SU

is still a new subject, and research in this area is rapidly developed. Furthermore, the time scales calculus has
tremendous potential in application, for example, in the study of biology, heat transfer, stock market, wound
healing and epidemic models [1, 19, 20, 37], etc.

For convenience, we make the blanket assumption that 0, T are points in T, for an interval (0, T )T we

always mean (0, T ) ∩ T. Other types of interval are defined similarly.

Throughout this paper, we denote the p-Laplacian operator by ϕp(u), i.e., ϕp(u) = |u|p−2 u for p > 1

with (ϕp)−1 = ϕq and 1/p + 1/q = 1. In addition, B0 and B1 satisfy

A′x ≤ Bi(x) ≤ Bx, x ∈ R
+, i = 0, 1, (1.1)

here, A′ and B are positive real numbers.

Recently, boundary value problems (BVPs) for dynamic equation on time scales have received considerable

attention [3, 29, 30, 32, 35, 41]. In particular, there is some attention focused on the study of two-point,

three-point BVPs for p-Laplacian dynamic equation on time scales. For two-point BVPs, see [15, 16, 36] and

references therein. As far as three-point BVPs, see [12, 18, 31, 38]. However, little work has been done to
existence of positive solutions to multi-point BVPs for one-dimensional p-Laplacian dynamic equation on time
scales [32, 33, 34].

In the following, we would like to review some results of He [12], He and Li [15], He and Jiang [16], Hong

[18], Sun and Li [36] and Wang [38], which motivate us to consider one dimensional p-Laplacian multi-point
BVPs on time scales.

For the two-point BVP

(ϕp(uΔ))Δ + h(t)f(uσ) = 0, t ∈ [a, b]
T

,
u(a) − B0(uΔ(a)) = 0, uΔ(σ(b)) = 0;

Sun and Li [36] established the existence theory for positive solutions of the above dynamic equation by using
some fixed-point theorems.

In terms of the generalized Avery and Henderson fixed point theorem due to Ren et al. [28], He and

Jiang [16] considered the dynamic equation on time scales

(ϕp(uΔ))∇ + h(t)f(u) = 0, t ∈ [0, T ]
T

, (1.2)

with boundary conditions

u(0) − B0(uΔ(0)) = 0, uΔ(T ) = 0, (1.3)

or

uΔ(0) = 0, u(T ) + B1(uΔ(T )) = 0, (1.4)

and gave the sufficient condition for the existence of at least three positive solutions. Furthermore, He et al.
[15] also obtained the existence criteria of at least three positive solutions of problem (1.2) and (1.3) or (1.4) by

using the five functional fixed point theorem [8].

For the dynamic equation (1.2) satisfying the three-point boundary value conditions

u(0) − B0(uΔ(η)) = 0, uΔ(T ) = 0, (1.5)
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or
uΔ(0) = 0, u(T ) + B1(uΔ(η)) = 0, (1.6)

where η ∈ (0, ρ(T ))T , by using the fixed point theorem due to Avery and Henderson [6], He [12] proved that the

BVPs (1.2) and (1.5) or (1.6) has at least two positive solutions under some suitable assumption. In addition,

Hong [18] used the fixed point theorem due to Avery-Peterson [7] and established the existence criteria for at

least a triple positive solutions of problems (1.2) and (1.5) or (1.6). Wang [38] also gave the existence criteria

for at least three positive solutions of problems (1.2) and (1.5) or (1.6) by using the Leggett-Williams fixed

point theorem [23].

It is also noted that the above mentioned researchers [12, 15, 16, 18, 32, 38] only considered partial
results on existence of positive solutions. On the one hand, they failed to further provide comprehensible results
of positive solutions of dynamic equations. On the other hand, few literature resources [29, 36] are available
concerning the arbitrary positive solutions of boundary value problems for p-Laplacian dynamic equations on
time scales. Naturally, it is quite necessary to consider the arbitrary positive solutions for p-Laplacian dynamic
equations in all respects.

In this paper, we all-sidedly consider the dynamic equation (1.2) subject to multi-point boundary
conditions

u(0) − B0

(∑m−2
i=1 aiu

Δ(ξi)
)

= 0, uΔ(T ) = 0, (1.7)

or

uΔ(0) = 0, u(T ) + B1

(∑m−2
i=1 biu

Δ(ξ′i)
)

= 0, (1.8)

where ξi, ξ
′
i ∈ [0, T ]

T
, m ≥ 3 and satisfy 0 ≤ ξ1 < ξ2 < . . . < ξm−2 < ρ(T ), σ(0) < ξ′1 < ξ′2 < . . . < ξ′m−2 ≤ T,

ai, bi ∈ [0,∞) (i = 1, 2, . . . , m − 2). Some new and more general results are obtained for the existence of at
least one, two, three or arbitrary odd positive solutions for the above problems by using Krasnosel’skii’s fixed
point theorem [21], the generalized Avery and Henderson fixed point theorem [28] and fixed point theorem due

to Avery-Peterson [7]. Our results are new even for some special cases of difference equations and differential
equations as well as in the general time scale setting. As applications, two examples are given to illustrate the
result, in addition, these two examples show the differences of the existence criteria established in Section 4.

In particular, our results include and extend many results of Avery et al. [5] (p = 2), Li et al. [24],

Liu et al. [25], Lü, et al. [27] and Wang [40] in the case T = R ; Avery et al. [5] (p = 2), He [13, 14] and

Liu et al. [26] in the case of T = Z . That is to say, when T = R, if T = 1, B0(u) is nondecreasing odd

function, then our results in Section 3 reduce to those of Li et al. [24] and Wang [40]; the results in Section

4 include and extend the results of Liu et al. [25]. If B0(u) ≡ 0, T = 1, then the results in [27] is a special
case of ours in Section 4. For the case T = Z , our criteria in Section 3 include and generalize the main results
of He [14]. The results in Section 4 improve and generalize the main results of He [13] and Liu et al. [26].
For the general time scale T , the results in Sections 4 improve and generalize some known works of He et
al. [16] (m = 3, ξ1 = 0, ξ′1 = T and a1 = b1 = 1), He [12], Hong [18] and Wang [38] (note, the later three,

m = 3, ξ1 = ξ′1 = η and a1 = b1 = 1), respectively.

We note that, by a solution u of problems (1.2) and (1.7) or (1.8), we mean u : [0, T ]T → R which is

delta differentiable, uΔ and (ϕp(uΔ))∇ are both regulated on [0, T ]Tκ∩Tκ , and u satisfies problems (1.2) and
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(1.7) or (1.8). If (uΔ)∇ ≤ 0, then we say u is concave on [0, T ]T.

The rest of the paper is organized as follows. In Section 2, we first present two lemmas which are needed
throughout this paper and then state several fixed point results. In Section 3, by using Krasnosel’skii’s fixed
point theorem, we obtain the existence of at least one or two positive solutions of problems (1.2) and (1.7)

or (1.8). In Section 4, the existence criteria for at least three positive and arbitrary odd positive solutions of

problems (1.2) and (1.7) or (1.8) are established. In Section 5, we present two simple examples to illustrate our
main results.

For the convenience of statements, now we present some basic definitions concerning the calculus on time
scales that one needs to read this manuscript, which can be found in [9] and [10]. One of another excellent

sources for dynamical systems on measure chains is the book [22].

Definition 1.1 [4, 9, 10] A time scale T is a nonempty closed subset of R. For t ∈ T , the forward and

back jump operators σ, ρ : T → T are well defined, respectively, by σ(t) = inf {s ∈ T : s > t} and ρ(t) =

sup {s ∈ T : s < t} . In this definition one put inf ∅ := sup T and sup ∅ := inf T, where ∅ denotes the empty

set. A point t ∈ T is called left-dense if ρ(t) = t , left-scattered if ρ(t) < t , right-dense if σ(t) = t , right-

scattered if σ(t) > t. If T has a right-scattered minimum m, define Tκ = T − {m}; otherwise, set Tκ = T. If

T has a left-scattered maximum M, define T
κ = T − {M}; otherwise, set T

κ = T . The forward graininess is

μ(t) := σ(t) − t. Similarly, the backward graininess is ν(t) := t − ρ(t).

Definition 1.2 [9, 10] If f : T → R is a function and t ∈ T
κ, then the delta derivative of f at the

point t is defined as the number fΔ(t) (provided it exists) with the property that for any ε > 0, there

is a neighborhood U ⊂ T of t such that
∣∣f(σ(t)) − f(s) − fΔ(t)(σ(t) − s)

∣∣ ≤ ε |σ(t) − s| for all s ∈ U. If

f : T → R and t ∈ Tκ, then the nabla derivative of f at the point t is defined by the number f∇(t)

(provided it exists) with the property that for any ε > 0, there is a neighborhood U ⊂ T of t such that∣∣f(ρ(t)) − f(s) − f∇(t)(ρ(t) − s)
∣∣ ≤ ε |ρ(t) − s| for all s ∈ U.

Definition 1.3 [9, 10] A function h : T → R is rd-continuous provided it is continuous at right-dense points

in T and its left-sided limit exists (finite) at left-dense points in T.

Throughout this paper, it is assumed that

(S1) f ◦ u : [0, T ]T → [0, +∞) is rd-continuous and does not vanish identically;

(S2) h :∈ Crd([0, T ]T, [0, +∞)) and does not vanish identically on any closed subinterval of [0, T ]
T
, where

Crd([0, T ]T, [0, +∞)) denotes the set of all right dense continuous functions from [0, T ]T to [0, +∞);

(S3) While discussing problem (1.2) and (1.7), we assume that if ξm−2 > 0, then choose η = ξm−2 , if

ξm−2 = 0, then let η = min{t ∈ T : t ≥ T
2 } , and there exists r ∈ T such that η < r < T holds. While

discussing problem (1.2) and (1.8), we assume that if ξ′1 < T, then choose ξ = ξ′1, if ξ′1 = T , then let

ξ = max
{
t ∈ T : 0 < t ≤ T

2

}
, and there exists l ∈ T such that 0 < l < ξ < T holds.
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2. Some Lemmas

Let the Banach space E = Crd([0, T ]T, R) with the norm ‖u‖ = supt∈[0,T ]T |u| , and define the cone

P ⊂ E by

P =
{
u ∈ E

∣∣uΔ(T ) = 0, u is concave and nonnegative on [0, T ]
T

}
.

Clearly, ‖u‖ = u(T ) for u ∈ P.

First, integrating (1.2) from t to T, one obtains

ϕp

(
uΔ(T )

)
− ϕp(uΔ(t)) = −

∫ T

t h(s)f(u)∇s.

Thus, in view of (1.7), we have

uΔ(t) = ϕq

(∫ T

t
h(s)f(u)∇s

)
, (2.1)

which implies

u(t) − u(0) =
∫ t

0 ϕq

(∫ T

τ h(s)f(u)∇s
)

Δτ. (2.2)

From boundary condition (1.7) and

uΔ(ξi) = ϕq

(∫ T

ξi
h(s)f(u)∇s

)
for i = 1, 2, . . . , m− 2,

one gets

u(t) = B0

(∑m−2
i=1 aiϕq

(∫ T

ξi
h(s)f(u)∇s

))
+

∫ t

0
ϕq

(∫ T

τ
h(s)f(u)∇s

)
Δτ. (2.3)

Define the operator A : P → E by

Au = B0

(∑m−2
i=1 aiϕq

(∫ T

ξi
h(s)f(u)∇s

))
+

∫ t

0 ϕq

(∫ T

τ h(s)f(u)∇s
)

Δτ. (2.4)

Now, we show that A : P → P is completely continuous.

Lemma 2.1 A : P → P is completely continuous.

Proof. Firstly, it is easy to obtain that (Au)(t) ≥ 0 for t ∈ [0, T ]T and (Au)Δ(T ) = 0.

In addition, (Au)Δ(t) = ϕq

(∫ T

t h(s)f (u)∇s
)
≥ 0, t ∈ [0, T ]T is differentiable and nonincreasing in

[0, T ]T. Moreover, ϕq(x) is a monotone increasing continuously differentiable function for x > 0.

(∫ T

t
h(s)f (u)∇s

)∇
= −h(t)f (u) ≤ 0, t ∈ [0, T ]T.

If
∫ T

t h(s)f (u)∇s > 0, by the chain rule [10, Theorem 1.87, p. 31], we obtain (Au)Δ∇(t) ≤ 0 for [0, T ]T.

If
∫ T

t
h(s)f (u)∇s = 0, we have (Au)Δ(t) = ϕq

(∫ T

t
h(s)f (u)∇s

)
= 0, t ∈ [0, T ]T, then (Au)Δ∇(t) =

0 for [0, T ]T.

So, A : P → P.
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Secondly, we show that A maps bounded set into bounded set. Assume c > 0 is a constant and

u ∈ P c = {x ∈ P : ‖x‖ ≤ c}. Note that the rd-continuity of f ◦ u guarantees that there is a C > 0 such that

f(u) ≤ ϕp(C) :

‖Au‖ = (Au)(T )
= B0

(∑m−2
i=1 aiϕq

(∫ T

ξi
h(s)f (u)∇s

))
+

∫ T

0 ϕq

(∫ T

τ h(s)f (u)∇s
)

Δτ

≤
(
B

∑m−2
i=1 ai + T

)
ϕq

(∫ T

0
h(s)ϕp (C)∇s

)
≤ C

(
B

∑m−2
i=1 ai + T

)
ϕq

(∫ T

0
h(s)Δs

)
.

That is, AP c is uniformly bounded.

Thirdly, for t1, t2 ∈ [0, T ]T , we have

|(Au)(t1) − (Au)(t2)| =
∣∣∣∫ t2

t1
ϕq

(∫ T

τ
h(s)f (u)∇s

)
Δτ

∣∣∣
≤ C

∣∣∣∫ t2
t1

ϕq

(∫ T

τ
h(s)∇s

)
Δτ

∣∣∣ ≤ C |t1 − t2|ϕq

(∫ T

0
h(s)∇s

)
→ 0 as t1 → t2.

The Arzela-Ascoli Theorem on time scales [2] tells us that AP c is relatively compact.

We next claim that A : P c → P is continuous. Assume that {un}∞n=1 ⊂ P c and un → u0 for [0, T ]T.

Since {(Aun) (t)}∞n=1 is uniformly bounded and equicontinuous on [0, T ]T, there exists uniformly convergent

subsequence in {(Aun) (t)}∞n=1 . Let
{(

Aun(m)

)
(t)

}∞
m=1

be a subsequence which converges to v(t) uniformly

on [0, T ]T. Observe that

Aun(t) = B0

(∑m−2
i=1 aiϕq

(∫ T

ξi
h(s)f (un(s))∇s

))
+

∫ t

0
ϕq

(∫ T

τ
h(s)f (un(s))∇s

)
Δτ.

Inserting un(m) into the above and then letting m → ∞, we obtain

v(t) = B0

(∑m−2
i=1 aiϕq

(∫ T

ξi
h(s)f (u0(s))∇s

))
+

∫ t

0 ϕq

(∫ T

τ h(s)f (u0(s))∇s
)

Δτ.

Here, we used the Lebesgue’s dominated convergence Theorem on time scales [4]. From the definition of A, we

know that v(t) = Au0(t) on [0, T ]T. This shows that each subsequence of {Aun(t)}∞n=1 uniformly converges

to (Au0)(t). Therefore, the sequence {(Aun)(t)}∞n=1 uniformly converges to (Au0)(t). This means that A is

continuous at u0 ∈ P c. So, A is continuous on P c since u0 is arbitrary. Thus, A is completely continuous.
The proof is complete. �

Hence, we obtain that every fixed point of A is a solution of the problem (1.2) and (1.7).

Second, define the cone P1 ⊂ E by

P1 =
{
u ∈ E

∣∣uΔ(0) = 0, u is concave and nonnegative on [0, T ]
T

}
.

Clearly, ‖u‖ = u(0) for u ∈ P1. Define the operator A1 : P1 → E by

A1u = B1

(∑m−2
i=1 biϕq

(∫ ξ′
i

0 h(s)f(u)∇s
))

+
∫ T

t ϕq

(∫ τ

0 h(s)f(u)∇s
)
Δτ. (2.5)
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It is easy to see that A1 : P1 → P1 is completely continuous and every fixed point of A1 is a solution of the
problem (1.2) and (1.8).

To obtain our main results, we make use of the following two lemmas.

Lemma 2.2 [15] If u ∈ P, then (i) u(t) ≥ t
T ‖u‖ = t

T u(T ) for t ∈ [0, T ]
T

; (ii) su(t) ≤ tu(s) for s, t ∈ [0, T ]
T

and s ≤ t.

Lemma 2.3 [15] If u ∈ P1, then (i) u(t) ≥ T−t
T

‖u‖ = T−t
T

u(0) for t ∈ [0, T ]
T

; (ii) (T − t)u(s) ≤ (T − s)u(t)

for s, t ∈ [0, T ]
T

and s ≤ t.

Now, we provide some background material from the theory of cones in Banach spaces [11], and state
several fixed point theorems needed later.

Definition 2.4 A map α is said to be a nonnegative continuous concave (convex) functional on a cone P

of a real Banach space E if α : P → [0,∞) is continuous and α(tx + (1 − t)y) ≥ tα(x) + (1 − t)α(y)

(β(tx + (1 − t)y) ≤ tβ(x) + (1 − t)β(y)) for all x, y ∈ P and t ∈ [0, 1].

We firstly list the Krasnosel’skii’s fixed point theorem [11, 21].

Lemma 2.5 [11, 21] Let P be a cone in a Banach space E. Assume Ω1, Ω2 are open subsets of E with

0 ∈ Ω1, Ω1 ⊂ Ω2. If A : P ∩ (Ω2\Ω1) → P is a completely continuous operator such that either

(i) ‖Ax‖ ≤ ‖x‖ , ∀x ∈ P ∩ ∂Ω1 and ‖Ax‖ ≥ ‖x‖ , ∀x ∈ P ∩ ∂Ω2, or

(ii) ‖Ax‖ ≥ ‖x‖ , ∀x ∈ P ∩ ∂Ω1 and ‖Ax‖ ≤ ‖x‖ , ∀x ∈ P ∩ ∂Ω2 .

Then A has a fixed point in P ∩ (Ω2\Ω1).

Given a nonnegative continuous functional γ on a cone P of a real Banach space E, we define, for each
d > 0, the set P (γ, d) = {x ∈ P : γ(x) < d} .

The following fixed-point theorem due to Ren et al. [28], which is motivated by Avery and Henderson’s

double fixed-point theorem [6].

Lemma 2.6 [28] Let P be a cone in a real Banach space E. Let α, β and γ be increasing, nonnegative

continuous functionals on P such that for some c > 0 and H > 0, γ(x) ≤ β(x) ≤ α(x) and ‖x‖ ≤ Hγ(x) for

all x ∈ P (γ, c). Suppose that there exist positive numbers a and b with a < b < c and A : P (γ, c) → P is a
completely continuous operator such that

(i) γ(Ax) < c for all x ∈ ∂P (γ, c);

(ii) β(Ax) > b for all x ∈ ∂P (β, b);

(iii) P (α, a) �= ∅ and α(Ax) < a for x ∈ ∂P (α, a) .

Then A has at least three fixed points x1, x2 and x3 belonging to P (γ, c) such that

0 ≤ α(x1) < a < α(x2) with β(x2) < b < β(x3) and γ(x3) < c.
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Lemma 2.7 [29] Let P be a cone in a real Banach space E. Let α, β and γ be increasing, nonnegative

continuous functionals on P such that for some c > 0 and H > 0, γ(x) ≤ β(x) ≤ α(x) and ‖x‖ ≤ Hγ(x) for

all x ∈ P (γ, c). Suppose that there exist positive numbers a and b with a < b < c and A : P (γ, c) → P is a
completely continuous operator such that

(i) γ(Ax) > c for all x ∈ ∂P (γ, c);

(ii) β(Ax) < b for all x ∈ ∂P (β, b);

(iii) P (α, a) �= ∅ and α(Ax) > a for x ∈ ∂P (α, a) .

Then A has at least three fixed points x1, x2 and x3 belonging to P (γ, c) such that

0 ≤ α(x1) < a < α(x2) with β(x2) < b < β(x3) and γ(x3) < c.

Let β and φ be nonnegative continuous convex functionals on P , λ be a nonnegative continuous concave
functional on P and ϕ be a nonnegative continuous functional respectively on P. We define the following convex
sets:

P (φ, λ, b, d) = {x ∈ P : b ≤ λ(x), φ(x) ≤ d} ,
P (φ, β, λ, b, c, d) = {x ∈ P : b ≤ λ(x), β(x) ≤ c, φ(x) ≤ d} ,

and a closed set R(φ, ϕ, a, d) = {x ∈ P : a ≤ ϕ(x), φ(x) ≤ d} .

Finally, we list the fixed point theorem due to Avery-Peterson [7].

Lemma 2.8 [7] Let P be a cone in a real Banach space E and β, φ, λ, ϕ be defined as above, moreover, ϕ

satisfies ϕ(λ′x) ≤ λ′ϕ(x) for 0 ≤ λ′ ≤ 1 such that, for some positive numbers h and d ,

λ(x) ≤ ϕ(x) and ‖x‖ ≤ hφ(x) (2.6)

for all x ∈ P (φ, d). Suppose A : P (φ, d) → P (φ, d) is completely continuous and there exist positive real numbers
a, b, c, with a < b such that:

(i) {x ∈ P (φ, β, λ, b, c, d) : λ(x) > b} �= ∅ and λ(A(x)) > b for x ∈ P (φ, β, λ, b, c, d);

(ii) λ(A(x)) > b for x ∈ P (φ, λ, b, d) with β(A(x)) > c;

(iii) 0 /∈ R(φ, ϕ, a, d) and λ(A(x)) < a for all x ∈ R(φ, ϕ, a, d) with ϕ(x) = a.

Then A has at least three fixed points x1, x2, x3 ∈ P (φ, d) such that

φ(xi) ≤ d for i=1,2,3, b < λ(x1), a < ϕ(x2) and λ(x2) < b with ϕ(x3) < a.

3. Single or twin solutions

For t ∈ [0, T ]T, let

f0 = limu→0+
f(u)

ϕp(u) and f∞ = limu→∞
f(u)

ϕp(u) ,

here, while considering the problem (1.2) and (1.7), then we assume that u ∈ P ; while considering the problem

(1.2) and (1.8), then we assume that u ∈ P1 .
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Similarly to [39], we define i0 =number of zeros in the set {f0, f∞} and i∞ =number of infinities in the

set {f0, f∞} . Clearly, i0, i∞ = 0, 1, or 2 and there exist six possible cases: (i) i0 = 1 and i∞ = 1; (ii) i0 = 0

and i∞ = 0; (iii) i0 = 0 and i∞ = 1; (iv) i0 = 0 and i∞ = 2; (v) i0 = 1 and i∞ = 0; and (vi) i0 = 2 and
i∞ = 0. In the following, by using Krasnosel’skii’s fixed point theorem in a cone, we study the existence for
positive solutions of problem (1.2) and (1.7) or (1.8) under the above six possible cases.

3.1. For the case i0 = 1 and i∞ = 1

In this subsection, we discuss the existence of single positive solution for the problem (1.2) and (1.7) or

(1.8) under i0 = 1 and i∞ = 1.

Theorem 3.1 Problem (1.2) and (1.7) has at least one positive solution in the case i0 = 1 and i∞ = 1.

Proof. We divide the proof into two cases:

Case (i) f0 = 0 and f∞ = ∞ .

In view of f0 = 0, there exists an H1 > 0 such that f(u) ≤ ϕp(ε)ϕp(u) = ϕp(εu) for 0 < u ≤ H1, where

ε > 0, and satisfies ε
(
B

∑m−2
i=1 ai + T

)
ϕq

(∫ T

0
h(s)Δs

)
≤ 1.

If u ∈ P with ‖u‖ = H1, then, by (1.1), we have

‖Au‖ = supt∈[0,T ]T |Au| = Au(T )

= B0

(∑m−2
i=1 aiϕq

(∫ T

ξi
h(s)f(u)∇s

))
+

∫ T

0
ϕq

(∫ T

τ
h(s)f(u)∇s

)
Δτ

≤ B
∑m−2

i=1 aiϕq

(∫ T

0
h(s)f(u)∇s

)
+ Tϕq

(∫ T

0
h(s)f(u)∇s

)
=

(
B

∑m−2
i=1 ai + T

)
ϕq

(∫ T

0 h(s)f(u)∇s
)

≤ ε ‖u‖
(
B

∑m−2
i=1 ai + T

)
ϕq

(∫ T

0
h(s)Δs

)
≤ ‖u‖ .

Suppose ΩH1 = {u ∈ E : ‖u‖ < H1} , then ‖Au‖ ≤ ‖u‖ for u ∈ P ∩ ∂ΩH1 .

From f∞ = ∞, there exists an H ′
2 > 0 such that f(u) ≥ ϕp(k)ϕp(u) = ϕp(ku) for u ≥ H ′

2, where k > 0,

and satisfies the following inequality

kη
T

(
A′ ∑m−2

i=1 aiϕq

(∫ T

η
h(s)Δs

)
+

∫ T

η
ϕq

(∫ T

τ
h(s)Δs

)
∇τ

)
≥ 1. (3.1)

Set

H2 = max
{

2H1,
T
η
H ′

2

}
and ΩH2 = {u ∈ E : ‖u‖ < H2} .

If u ∈ P with ‖u‖ = H2, then, by Lemma 2.2, one has

mint∈[η,T ]T u = u(η) ≥ η
T ‖u‖ ≥ H ′

2. (3.2)

For u ∈ P ∩ ∂ΩH2 , in terms of (1.1), (3.1) and (3.2), we get

‖Au‖ = supt∈[0,T ]T |Au| = Au(T )

≥ A′ ∑m−2
i=1 aiϕq

(∫ T

ξi
h(s)f(u)∇s

)
+

∫ T

0
ϕq

(∫ T

τ
h(s)f(u)∇s

)
Δτ

> A′ ∑m−2
i=1 aiϕq

(∫ T

η
h(s)ϕp(ku)Δs

)
+

∫ T

η
ϕq

(∫ T

τ
h(s)ϕp(ku)Δs

)
Δτ

≥ kη
T ‖u‖

(
A′ ∑m−2

i=1 aiϕq

(∫ T

η h(s)Δs
)

+
∫ T

η ϕq

(∫ T

τ h(s)Δs
)
∇τ

)
≥ ‖u‖ .

(3.3)
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Thus, by (i) of Lemma 2.5, the problem (1.2) and (1.7) has at least a single positive solution u in P ∩(ΩH2\ΩH1)

with H1 ≤ ‖u‖ ≤ H2.

Case (ii) f0 = ∞ and f∞ = 0.

Since f0 = ∞, there exists an H3 > 0 such that f(u) ≥ ϕp(m)ϕp(u) = ϕp(mu) for 0 < u ≤ H3, where

m is such that
mη
T

(
A′ ∑m−2

i=1 aiϕq

(∫ T

η h(s)Δs
)

+
∫ T

η ϕq

(∫ T

τ h(s)Δs
)

Δτ
)
≥ 1. (3.4)

If u ∈ P with ‖u‖ = H3, then, by (3.2) and (3.4), one has

‖Au‖ = supt∈[0,T ]T |Au| = Au(T )

≥ A′ ∑m−2
i=1 aiϕq

(∫ T

ξi
h(s)f(u)∇s

)
+

∫ T

0
ϕq

(∫ T

τ
h(s)f(u)∇s

)
Δτ

> A′ ∑m−2
i=1 aiϕq

(∫ T

η h(s)ϕp(mu)Δs
)

+
∫ T

η ϕq

(∫ T

τ h(s)ϕp(mu)Δs
)

Δτ

≥ mη
T

‖u‖
(
A′ ∑m−2

i=1 aiϕq

(∫ T

η
h(s)Δs

)
+

∫ T

η
ϕq

(∫ T

τ
h(s)Δs

)
Δτ

)
≥ ‖u‖ .

(3.5)

If we let ΩH3 = {u ∈ E : ‖u‖ < H3} , then ‖Au‖ ≥ ‖u‖ for u ∈ P ∩ ∂ΩH3 .

Now, we consider f∞ = 0. By definition, there exists H ′
4 > 0 such that

f(u) ≤ ϕp(δ)ϕp(u) = ϕp(δu) for u ≥ H ′
4, (3.6)

where δ > 0 satisfies

δ
(
B

∑m−2
i=1 ai + T

)
ϕq

(∫ T

0
h(s)Δs

)
≤ 1. (3.7)

Suppose that f is bounded, then f(u) ≤ ϕp(K) for all u ∈ [0,∞) and some constant K > 0. Pick

H4 = max
{

2H3, K
(
B

∑m−2
i=1 ai + T

)
ϕq

(∫ T

0 h(s)Δs
)}

.

If u ∈ P with ‖u‖ = H4, then

‖Au‖ = supt∈[0,T ]T |Au| = Au(T )

≤ B
∑m−2

i=1 aiϕq

(∫ T

0
h(s)ϕp(K)Δs

)
+

∫ T

0
ϕq

(∫ T

τ
h(s)ϕp(K)∇s

)
Δτ

≤ K
(
B

∑m−2
i=1 ai + T

)
ϕq

(∫ T

0
h(s)Δs

)
≤ H4 = ‖u‖ .

Suppose that f is unbounded. From f ◦ u ∈ Crd([0, T ]T, [0, +∞)), we have f (u) ≤ C3 for u ∈ [0, C4] ,

here C3 and C4 are arbitrary positive constants. This implies that f (u) → +∞ if u → +∞ . Hence, it is

easy to know that there exists H4 ≥ max {2H3, H
′
4} such that f (u) ≤ f(H4) for u ∈ [0, H4]. If u ∈ P with

‖u‖ = H4, then by using (3.6) and (3.7), we have

‖Au‖ = Au(T )
≤ B

∑m−2
i=1 aiϕq

(∫ T

0
h(s)f(u)∇s

)
+

∫ T

0
ϕq

(∫ T

τ
h(s)f(u)∇s

)
Δτ

≤
(
B

∑m−2
i=1 ai + T

)
ϕq

(∫ T

0
h(s)f (H4)Δs

)
≤

(
B

∑m−2
i=1 ai + T

)
ϕq

(∫ T

0
h(s)ϕp(δH4)Δs

)
≤ δH4

(
B

∑m−2
i=1 ai + T

)
ϕq

(∫ T

0 h(s)Δs
)
≤ H4 = ‖u‖ .
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Consequently, in either case, if we take ΩH4 = {u ∈ E : ‖u‖ < H4} , then, for u ∈ P ∩ ∂ΩH4 , we have

‖Au‖ ≤ ‖u‖ . Thus, the condition (ii) of Lemma 2.5 is satisfied. Consequently, the problem (1.2) and (1.7) has

at least a single positive solution u in P ∩ (ΩH4\ΩH3) with H3 ≤ ‖u‖ ≤ H4. The proof is complete. �

For the problem (1.2) and (1.8), we have the following result.

Theorem 3.2 Problem (1.2) and (1.8) has at least one positive solution in the case i0 = 1 and i∞ = 1.

Proof. According to the operator A1 : P1 → E defined by (2.5), we can prove it by using the similar way of
proving Theorem 3.1. �

3.2. For the case i0 = 0 and i∞ = 0

In this subsection, we discuss the existence for the positive solutions of problems (1.2) and (1.7) or (1.8)
under i0 = 0 and i∞ = 0 .

First, we shall state and prove the following main result of problem (1.2) and (1.7).

Theorem 3.3 Suppose that the following conditions hold:

(i) there exists constant p′ > 0 such that f(u) ≤ ϕp(p′Λ1) for 0 ≤ u ≤ p′, where

Λ1 =
((

B
∑m−2

i=1 ai + T
)

ϕq

(∫ T

0
h(s)∇s

))−1

;

(ii) there exists constant q′ > 0 such that f(u) ≥ ϕp(q′Λ2) for u ∈
[

η
T q′, q′

]
, where

Λ2 =
((

A′ ∑m−2
i=1 ai + T − η

)
ϕq

(∫ T

η
h(s)∇s

))−1

,

furthermore, p′ �= q′.

Then problem (1.2) and (1.7) has at least one positive solution u such that ‖u‖ lies between p′ and q′.

Proof. Without loss of generality, we may assume that p′ < q′.

Let Ωp′ = {u ∈ E : ‖u‖ < p′} . For any u ∈ P ∩ ∂Ωp′ , in view of condition (i) , we have

‖Au‖ = supt∈[0,T ]T |Au| = Au(T )

≤ B
∑m−2

i=1 aiϕq

(∫ T

ξi
h(s)f(u)∇s

)
+

∫ T

0
ϕq

(∫ T

τ
h(s)f(u)∇s

)
Δτ

≤
(
B

∑m−2
i=1 ai + T

)
ϕq

(∫ T

0 h(s)ϕp(p′Λ1)Δs
)

= p′Λ1

(
B

∑m−2
i=1 ai + T

)
ϕq

(∫ T

0
h(s)Δs

)
= p′,

(3.8)

which yields

‖Au‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ωp′ . (3.9)
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Now, set Ωq′ = {u ∈ E : ‖u‖ < q′} . For u ∈ P ∩ ∂Ωq′ , Lemma 2.2 implies that η
T q′ ≤ u ≤ q′ for

t ∈ [η, T ]T. Hence, by condition (ii) we get

‖Au‖ = supt∈[0,T ]T |Au| = Au(T )

≥ A′ ∑m−2
i=1 aiϕq

(∫ T

ξi
h(s)f(u)∇s

)
+

∫ T

0 ϕq

(∫ T

τ h(s)f(u)∇s
)

Δτ

> A′ ∑m−2
i=1 aiϕq

(∫ T

η
h(s)f(u)∇s

)
+

∫ T

η
ϕq

(∫ T

η
h(s)f(u)∇s

)
Δτ

> q′Λ2

(
A′ ∑m−2

i=1 aiϕq

(∫ T

η
h(s)∇s

)
+ (T − η)ϕq

(∫ T

η
h(s)∇s

))
= q′.

So, if we take Ωq′ = {u ∈ E : ‖u‖ < q′} , then

‖Au‖ ≥ ‖u‖ , u ∈ P ∩ ∂Ωq′ . (3.10)

Consequently, in view of p′ < q′ , (3.9) and (3.10), it follows from Lemma 2.5 that problem (1.2) and (1.7) has

a positive solution u in P ∩ (Ωq′\Ωp′). The proof is complete. �

Now, in terms of the operator A1 : P1 → E defined by (2.5) and the method similar to proving Theorem

3.3, we consider the problem (1.2) and (1.8) and have the following result.

Theorem 3.4 Suppose that the following conditions hold:

(i) there exists constant p′1 > 0 such that f(u) ≤ ϕp(p′1Λ′
1) for 0 ≤ u ≤ p′1, where

Λ′
1 =

((
B

∑m−2
i=1 bi + T

)
ϕq

(∫ T

0
h(s)Δs

))−1

;

(ii) there exists constant q′1 > 0 such that f(u) ≥ ϕp(q′1Λ′
2) for u ∈

[
T−ξ

T q′1, q
′
1

]
, where

Λ′
2 =

((
A′ ∑m−2

i=1 bi + T − ξ
)

ϕq

(∫ ξ

0
h(s)∇s

))−1

,

furthermore, p′1 �= q′1.

Then problem (1.2) and (1.8) has at least one positive solution u such that ‖u‖ lies between p′1 and q′1.

3.3. For the case i0 = 1 and i∞ = 0 or i0 = 0 and i∞ = 1

In this subsection, under the conditions i0 = 1 and i∞ = 0 or i0 = 0 and i∞ = 1, we discuss the
existence of positive solutions of problem (1.2) and (1.7) or (1.8).

First, we consider the existence on positive solutions of problem (1.2) and (1.7).

Theorem 3.5 Suppose that f0 ∈ [0, ϕp (Λ1)) and f∞ ∈
(
ϕp

(
T
η
Λ2

)
,∞

)
hold. Then problem (1.2) and (1.7)

has at least one positive solution.

Proof. It is easy to see that under the assumptions, the conditions (i) and (ii) in Theorem 3.3 are satisfied.
So the proof is easy and we omit it here. �
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Theorem 3.6 Suppose that f0 ∈
(
ϕp

(
T
η Λ2

)
,∞

)
and f∞ ∈ [0, ϕp(Λ1)) hold. Then problem (1.2) and (1.7)

has at least one positive solution.

Proof. Firstly, let ε1 = f0 − ϕp

(
T
η Λ2

)
> 0, there exists a sufficiently small positive number q′ , which

satisfies
f(u)

ϕp(u) ≥ f0 − ε1 = ϕp

(
T
η Λ2

)
for u ∈ (0, q′].

Thus, if u ∈
[

η
T

q′, q′
]
, then we have

f(u) ≥ ϕp

(
T
η Λ2

)
ϕp(u) ≥ ϕp(Λ2q

′),

which implies that the condition (ii) in Theorem 3.3 holds.

Next, for ε2 = ϕp (Λ1) − f∞ > 0, there exists a sufficiently large p′′(> q′), which satisfies

f(u)
ϕp(u)

≤ f∞ + ε2 = ϕp (Λ1) for u ∈ [p′′,∞). (3.11)

We consider two cases:
Case (i) Assume that f is bounded, that is, f(u) ≤ ϕp(K1) for u ∈ [0,∞) and some constant K1 > 0.

If we take sufficiently large p′ such that p′ ≥ max{K1/Λ1, p
′′} , then

f(u) ≤ ϕp(K1) ≤ ϕp(Λ1p
′) for u ∈ [0, p′].

Consequently, from the above inequality, the condition (i) of Theorem 3.3 is true.

Case (ii) Assume that f is unbounded.

From f ◦ u ∈ Crd([0, T ]T, [0,∞)), we have p′ > p′′ such that f(u) ≤ f(p′) for u ∈ [0, p′]. Since p′ > p′′,

by (3.11), we get f(p′) ≤ ϕp(Λ1p
′), hence

f(u) ≤ f(p′) ≤ ϕp(Λ1p
′) for u ∈ [0, p′].

Thus, the condition (i) of Theorem 3.3 is fulfilled. The proof is complete. �

From Theorems 3.5 and 3.6, we have the following two results.

Corollary 3.7 Suppose that f0 = 0 and the condition (ii) in Theorem 3.3 hold. Then problem (1.2) and (1.7)
has at least one positive solution.

Corollary 3.8 Suppose that f∞ = 0 and the condition (ii) in Theorem 3.3 hold. Then problem (1.2) and (1.7)
has at least one positive solution.

Theorem 3.9 Suppose that f0 ∈ (0, ϕp (Λ1)) and f∞ = ∞ hold. Then problem (1.2) and (1.7) has at least

one positive solution.
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Proof. First, in view of f∞ = ∞, then by inequality (3.3), we have ‖Au‖ ≥ ‖u‖ for u ∈ P ∩ ∂ΩH2 . Next,

by f0 ∈ (0, ϕp (Λ1)) , for ε3 = ϕp (Λ1) − f0 > 0, there exists a sufficiently small p′ ∈ (0, H2) such that

f(u) ≤ (f0 + ε3)ϕp(u) = ϕp (Λ1u) ≤ ϕp(Λ1p
′) for u ∈ [0, p′],

which implies (i) of Theorem 3.3 holds, that is, (3.8) is true, hence, we obtain ‖Au‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ωp′ .

The result is obtained and the proof is complete. �

Theorem 3.10 Suppose that f0 = ∞ and f∞ ∈ (0, ϕp (Λ1)) hold. Then problem (1.2) and (1.7) has at least

one positive solution.

Proof. On the one hand, since f0 = ∞, by the inequality (3.5), one gets ‖Au‖ ≥ ‖u‖ , u ∈ P ∩ ∂ΩH3 .

On the other hand, since f∞ ∈ (0, ϕp (Λ1)) , from the technique similar to the second part of the proof in

Theorem 3.6, one obtains that the condition (i) of Theorem 3.3 is satisfied, that is, inequality (3.8) holds, one

has ‖Au‖ ≤ ‖u‖ , u ∈ P ∩ ∂Ωp′ , where p′ > H3. Hence, problem (1.2) and (1.7) has at least one positive

solution, the proof is complete. �

From Theorems 3.9 and 3.10, respectively, it is easy to obtain the following two corollaries.

Corollary 3.11 Assume that f∞ = ∞ and the condition (i) in Theorem 3.3 hold. Then problem (1.2) and

(1.7) has at least one positive solution.

Corollary 3.12 Assume that f0 = ∞ and the condition (i) in Theorem 3.3 hold. Then problem (1.2) and (1.7)
has at least one positive solution.

Now, in view of the operator A1 : P1 → E defined by (2.5), we consider the problem (1.2) and (1.8)
and obtain the following results. the methods are similar to those of proving theorems 3.3, 3.4 by a slight
modifications and due to the limited space we omit the proof. In the following, Λ′

1 and Λ′
2 defined as in

Theorem 3.4.

Theorem 3.13 Suppose that f0 ∈ [0, ϕp (Λ′
1)) and f∞ ∈

(
ϕp

(
T

T−ξ
Λ′

2

)
,∞

)
hold. Then problem (1.2) and

(1.8) has at least one positive solution.

Theorem 3.14 Suppose that f0 ∈
(
ϕp

(
T

T−ξ
Λ′

2

)
,∞

)
and f∞ ∈ [0, ϕp(Λ′

1)) hold. Then problem (1.2) and (1.8)

has at least one positive solution.

Corollary 3.15 Suppose that f0 = 0 and the condition (ii) in Theorem 3.4 hold. Then problem (1.2) and (1.8)
has at least one positive solution.

Corollary 3.16 Suppose that f∞ = 0 and the condition (ii) in Theorem 3.4 hold. Then problem (1.2) and

(1.8) has at least one positive solution.
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Theorem 3.17 Suppose that f0 ∈ (0, ϕp (Λ′
1)) and f∞ = ∞ hold. Then problem (1.2) and (1.8) has at least

one positive solution.

Theorem 3.18 Suppose that f0 = ∞ and f∞ ∈ (0, ϕp (Λ′
1)) hold. Then problem (1.2) and (1.8) has at least

one positive solution.

Corollary 3.19 Assume that f∞ = ∞ and the condition (i) in Theorem 3.4 hold. Then problem (1.2) and

(1.8) has at least one positive solution.

Corollary 3.20 Assume that f0 = ∞ and the condition (i) in Theorem 3.4 hold. Then problem (1.2) and (1.8)
has at least one positive solution.

3.4. For the case i0 = 0 and i∞ = 2 or i0 = 2 and i∞ = 0

In this subsection, under i0 = 0 and i∞ = 2 or i0 = 2 and i∞ = 0, we study the existence of multiple
positive solutions for problems (1.2) and (1.7) or (1.8).

We first consider the problem (1.2) and (1.7). By combining the proof of Theorems 3.1 and 3.3, it is easy
to prove the following two theorems.

Theorem 3.21 Suppose that i0 = 0 and i∞ = 2 and the condition (i) of Theorem 3.3 hold, then problem (1.2)

and (1.7) has at least two positive solutions u1, u2 ∈ P such that 0 < ‖u1‖ < p′ < ‖u2‖ .

Theorem 3.22 Suppose that i0 = 2 and i∞ = 0 and the condition (ii) of Theorem 3.3 hold, then problem (1.2)

and (1.7) has at least two positive solutions u1, u2 ∈ P such that 0 < ‖u1‖ < q′ < ‖u2‖ .

Now, we consider the existence of solution to problem (1.2) and (1.8). According to the completely
continuous operator A1 , we can get the following results by using the same reasoning as the proof of Theorems
3.21, 3.22, respectively.

Theorem 3.23 Suppose that i0 = 0 and i∞ = 2 and the condition (i) of Theorem 3.4 hold, then problem (1.2)

and (1.8) has at least two positive solutions u1, u2 ∈ P such that 0 < ‖u1‖ < p′1 < ‖u2‖ .

Theorem 3.24 Suppose that i0 = 2 and i∞ = 0 and the condition (ii) of Theorem 3.4 hold, then problem (1.2)

and (1.8) has at least two positive solutions u1, u2 ∈ P such that 0 < ‖u1‖ < q′1 < ‖u2‖ .

4. Triple solutions

In the previous section, we have obtained some results for existence of positive solutions of problems (1.2)

and (1.7) or (1.8). In this section, we will further discuss the existence of positive solutions of problems (1.2)

and (1.7) or (1.8) by using two different methods. We will give a comparison of this two different methods in
the latter part of this section.
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For the notational convenience, we denote

Mξ =
(
B

∑m−2
i=1 ai + η

)
ϕq

(∫ T

0
h(s)∇s

)
, Nξ =

(
A′ ∑m−2

i=1 ai + η
)

ϕq

(∫ T

η
h(s)∇s

)
,

Lξ =
(
B

∑m−2
i=1 ai + r

)
ϕq

(∫ T

0
h(s)∇s

)
, M ′

ξ =
(
B

∑m−2
i=1 bi + T − ξ

)
ϕq

(∫ T

0
h(s)∇s

)
,

Wξ =
(
B

∑m−2
i=1 ai + T

)
ϕq

(∫ T

0
h(s)∇s

)
, N ′

ξ =
(
A′ ∑m−2

i=1 bi + T − ξ
)

ϕq

(∫ ξ

0
h(s)∇s

)
,

L′
ξ =

(
B

∑m−2
i=1 bi + T − l

)
ϕq

(∫ T

0
h(s)∇s

)
, Qξ =

(
B

∑m−2
i=1 bi + T

)
ϕq

(∫ T

0
h(s)∇s

)
.

4.1. The generalized Avery and Henderson fixed-point theorem

In this subsection, in view of the generalized Avery and Henderson fixed-point theorem due to Ren et al.
[28], the existence criteria for at least three positive and arbitrary odd positive solutions of problems (1.2) and

(1.7 ) or (1.8) are established.

For u ∈ P, we define the nonnegative, increasing, continuous functionals γ2, β2 and α2 by

γ2(u) = max
t∈[0,η]T

u = u(η), β2(u) = min
t∈[η,T ]T

u = u(η), α2(u) = max
t∈[0,r]T

u = u(r).

It is obvious that γ2(u) = β2(u) ≤ α2(u) for each u ∈ P. By Lemma 2.2, one obtains ‖u‖ ≤ T
η
u(η) =

T
η γ2(u) for all u ∈ P.

We now present the results in this subsection.

Theorem 4.1 Suppose that there are positive numbers a′, b′, c′ such that a′ < r
T b′ <

rNξ

TMξ
c′. In addition, f(u)

satisfies the following conditions:

(i) f(u) < ϕp

(
c′

Mξ

)
for 0 ≤ u ≤ T

η
c′;

(ii) f(u) > ϕp

(
b′

Nξ

)
for b′ ≤ u ≤ T

η b′;

(iii) f(u) < ϕp

(
a′

Lξ

)
for 0 ≤ u ≤ T

r a′.

Then problem (1.2) and (1.7) has at least three positive solutions u1 , u2 and u3 such that

0 < maxt∈[0,r]T u1 < a′ < maxt∈[0,r]T u2 with
mint∈[η,T ]T u2 < b′ < mint∈[η,T ]T u3 and maxt∈[0,η]T u3 < c′.

Proof. By the definition of completely continuous operator A and its properties, it suffices to show that all

the conditions of Lemma 2.6 hold with respect to A. It is easy to obtain that A : P (γ2, c) → P.

First, we verify that if u ∈ ∂P (γ2, c
′), then γ2(Au) < c′ .

If u ∈ ∂P (γ2, c
′), then γ2(u) = maxt∈[0,η]T u = u(η) = c′. Lemma 2.2 implies that ‖u‖ ≤ T

η u(η) = T
η c′,

we have 0 ≤ u ≤ T
η c′, t ∈ [0, T ]T.

Thus, by the condition (i), one has

γ2(Au) = Au(η)
≤ B

∑m−2
i=1 aiϕq

(∫ T

ξi
h(s)f(u)∇s

)
+

∫ η

0
ϕq

(∫ T

τ
h(s)f(u)∇s

)
Δτ

≤
(
B

∑m−2
i=1 ai + η

)
ϕq

(∫ T

0 h(s)f(u)∇s
)

< c′

Mξ

(
B

∑m−2
i=1 ai + η

)
ϕq

(∫ T

0 h(s)∇s
)

= c′.
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Second, we show that β2(Au) > b′ for u ∈ ∂P (β2, b
′).

If we choose u ∈ ∂P (β2, b
′), then β2(u) = mint∈[η,T ]T u = u(η) = b′. In view of Lemma 2.2, we have

‖u‖ ≤ T
η u(η) = T

η b′. So b′ ≤ u ≤ T
η b′, t ∈ [η, T ]T. Using the condition (ii), we get

β2(Au) = (Au)(η) ≥
(
A′ ∑m−2

i=1 ai + η
)

ϕq

(∫ T

η
h(s)f(u)∇s

)
>

(
A′ ∑m−2

i=1 ai + η
)

ϕq

(∫ T

η h(s)ϕp

(
b′

Nξ

)
∇s

)
= b′

Nξ

(
A′ ∑m−2

i=1 ai + η
)

ϕq

(∫ T

η
h(s)∇s

)
= b′.

Finally, we prove that P (α2, a
′) �= ∅ and α2(Au) < a′ for all u ∈ ∂P (α2, a

′).

In fact, the constant function a′

2 ∈ P (α2, a
′). Moreover, for u ∈ ∂P (α2, a

′), we have α2(u) = maxt∈[0,r]T u =

u(r) = a′, which implies 0 ≤ u ≤ a′ for t ∈ [0, r]T. In view of Lemma 2.2, we have u ≤ ‖u‖ ≤ T
r u(r) = T

r r′.

Hence 0 ≤ u ≤ T
r
a′, t ∈ [0, T ]T. By using assumption (iii), one has

α2(Au) = (Au)(r)
<

(
B

∑m−2
i=1 ai + r

)
ϕq

(∫ T

0 h(s)ϕp

(
a′

Lξ

)
∇s

)
= a′

Lξ

(
B

∑m−2
i=1 ai + r

)
ϕq

(∫ T

0
h(s)∇s

)
= a′.

Thus, all the conditions in Lemma 2.6 are satisfied. From (S1) and (S2), we have, the solutions of problem (1.2)

and (1.7) does not vanish identically on any closed subinterval of [0, T ]
T
. Consequently, problem (1.2) and (1.7)

has at least three positive solutions u1 , u2 and u3 belonging to P (γ2, c′), and satisfying

0 < maxt∈[0,r]T u1 < a′ < maxt∈[0,r]T u2 with
mint∈[η,T ]T u2 < b′ < mint∈[η,T ]T u3 and maxt∈[0,η]T u3 < c′.

The proof is complete. �

From Theorem 4.1, we see that, when assumptions (i), (ii) and (iii) are imposed appropriately on f, we

can prove the existence of an arbitrary odd number of positive solutions for the problem (1.2) and (1.7).

Theorem 4.2 Suppose that there are positive numbers a′
si

, b′si
, c′si

such that

a′
s1

< r
T b′s1

<
rNξ

TMξ
c′s1

< a′
s2

< r
T b′s2

<
rNξ

TMξ
c′s2

< a′
s3

< . . . < a′
sn

, n ∈ N,

here i = 1, 2, . . . , n. In addition, f(u) satisfies the following conditions:

(i) f(u) < ϕp

(
c′si

Mξ

)
for 0 ≤ u ≤ T

η c′si
;

(ii) f(u) > ϕp

(
b′si

Nξ

)
for b′si

≤ u ≤ T
η
b′si

;

(iii) f(u) < ϕp

(
a′

si

Lξ

)
for 0 ≤ u ≤ T

r a′
si

.

Then problem (1.2) and (1.7) has at least 2n + 1 positive solutions.
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Proof. When i = 1, it is clear that Theorem 4.1 holds. Then we can obtain at least three positive solutions
u1, u2 and u3 satisfying

0 ≤ maxt∈[0,r]T u1 < a′
s1

< maxt∈[0,r]T u2 with
mint∈[η,T ]T u2 < b′s1

< mint∈[η,T ]T u3 and maxt∈[0,η]T u3 < c′s1
.

Following this way, we finish the proof by induction. The proof is complete. �

Denote Lθ =
(
A′ ∑m−2

i=1 ai + r
)

ϕq

(∫ T

r
h(s)∇s

)
. Using Lemma 2.7, it is easy to have the following

results.

Theorem 4.3 Suppose that there are positive numbers a′, b′, c′ such that a′ < Lθ

Mξ
b′ < ηLθ

TMξ
c′. In addition,

f(u) satisfies the following conditions:

(i) f(u) > ϕp

(
c′

Nξ

)
for c′ ≤ u ≤ T

η c′;

(ii) f(u) < ϕp

(
b′

Mξ

)
for 0 ≤ u ≤ T

η b′;

(iii) f(u) > ϕp

(
a′

Lθ

)
for a′ ≤ u ≤ T

r a′.

Then problem (1.2) and (1.7) has at least three positive solutions u1 , u2 and u3 such that

0 < maxt∈[0,r]T u1 < a′ < maxt∈[0,r]T u2 with
mint∈[η,T ]T u2 < b′ < mint∈[η,T ]T u3 and maxt∈[0,η]T u3 < c′.

From Theorem 4.3, we can obtain Theorem 4.4 and Corollary 4.5.

Theorem 4.4 Suppose that there are positive numbers a′
λi

, b′λi
, c′λi

such that

a′
λ1

< Lθ

Mξ
b′λ1

< ηLθ

TNξ
c′λ1

< a′
λ2

< Lθ

Mξ
b′λ2

< ηLθ

TNξ
c′λ2

< a′
λ3

< . . . < a′
λn

, n ∈ N,

here i = 1, 2, . . . , n. In addition, f(u) satisfies the following conditions:

(i) f(u) > ϕp

(
c′λi

Nξ

)
for c′λi

≤ u ≤ T
η
c′λi

;

(ii) f(u) < ϕp

(
b′λi

Mξ

)
for 0 ≤ u ≤ T

η b′λi
;

(iii) f(u) > ϕp

(
a′

λi

Lθ

)
for a′

λi
≤ u ≤ T

r a′
λi

.

Then problem (1.2) and (1.7) has at least 2n + 1 positive solutions.

Corollary 4.5 Assume that f satisfies conditions

(i) f0 = ∞, f∞ = ∞;

(ii) there exists c0 > 0 such that f(u) < ϕp

(
η

MξT
c0

)
for 0 ≤ u ≤ c0.

Then problem (1.2) and (1.7) has at least three positive solutions.
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Proof. First, by the condition (ii), let b′ = η
T c0, one gets

f(u) < ϕp

(
b′

Mξ

)
for 0 ≤ u ≤ T

η
b′,

which implies that (ii) of Theorem 4.3 holds.

Second, choose K3 sufficiently large to satisfy

K3Lθ = K3

(
A′ ∑m−2

i=1 ai + r
)

ϕq

(∫ T

r
h(s)∇s

)
> 1. (4.1)

Since f0 = ∞, there exists r1 > 0 sufficiently small such that,

f(u) ≥ ϕp(K3)ϕp(u) = ϕp(K3u) for 0 ≤ u ≤ r1. (4.2)

Without loss of generality, suppose r1 ≤ LθT
Mξr b′. Choose a′ > 0 such that a′ < r

T r1. For a′ ≤ u ≤ T
r a′, we have

u ≤ r1 and a′ < Lθ

Mξ
b′. Thus, by (4.1) and (4.2), we have

f(u) ≥ ϕp(K3u) ≥ ϕp(K3a
′) > ϕp

(
a′

Lθ

)
for a′ ≤ u ≤ T

r
a′,

this implies that (iii) of Theorem 4.3 is true.

Third, choose K2 sufficiently large such that

K2Nξ = K2

(
A′ ∑m−2

i=1 ai + η
)

ϕq

(∫ T

η h(s)∇s
)

> 1.

Since f∞ = ∞, there exists r2 > 0 sufficiently large such that,

f(u) ≥ ϕp(K2)ϕp(u) = ϕp(K2u) for u ≥ r2.

Without loss of generality, suppose r2 > T
η
b′. Choose c′ = r2. Then

f(u) ≥ ϕp(K2u) ≥ ϕp(K2c
′) > ϕp

(
c′

Nξ

)
for c′ ≤ u ≤ T

η
c′,

which means that (i) of Theorem 4.3 holds.

From above analysis, we get 0 < a′ < Lθ

Mξ
b′ < ηLθ

TMξ
c′, then, all conditions in Theorem 4.3 are satisfied.

Hence, problem (1.2) and (1.7) has at least three positive solutions. �

In terms of Theorem 4.1, we also have the following corollary.

Corollary 4.6 Assume that f satisfies conditions

(i) f0 = 0, f∞ = 0;

(ii) there exists c0 > 0 such that f(u) > ϕp

(
η

NξT
c0

)
for η

T
c0 ≤ u ≤ c0.

Then problem (1.2) and (1.7) has at least three positive solutions.
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In the following, we consider the problem (1.2) and (1.8).

For u ∈ P1, we define the nonnegative, increasing, continuous functionals γ3, β3 and α3 by

γ3(u) = max
t∈[ξ,T ]T

u = u(ξ), β3(u) = min
t∈[0,ξ]T

u = u(ξ), α3(u) = max
t∈[l,T ]T

u = u(l).

In view of completely continuous operator A1 defined on P1 , it is easy to obtain the following results by
using the similar techniques to those of considering (1.2) and (1.7).

Theorem 4.7 Suppose that there are positive numbers a′, b′, c′ such that a′ < T−l
T b′ <

(T−l)N′
ξ

TM ′
ξ

c′. In addition,

f(u) satisfies the following conditions:

(i) f(u) < ϕp

(
c′

M ′
ξ

)
for 0 ≤ u ≤ T

T−ξ
c′;

(ii) f(u) > ϕp

(
b′

N′
ξ

)
for b′ ≤ u ≤ T

T−ξ b′;

(iii) f(u) < ϕp

(
a′

L′
ξ

)
for 0 ≤ u ≤ T

T−la
′.

Then problem (1.2) and (1.8) has at least three positive solutions u1 , u2 and u3 such that

0 < maxt∈[l,T ]T u1 < a′ < maxt∈[l,T ]T u2 with
mint∈[0,ξ]T u2 < b′ < mint∈[0,ξ]T u3 and maxt∈[ξ,T ]T u3 < c′.

Theorem 4.8 Suppose that there are positive numbers a′
hi

, b′hi
, c′hi

such that

a′
h1

< T−l
T b′h1

<
(T−l)N′

ξ

TM ′
ξ

c′h1
< a′

h2
< T−l

T b′h2
<

(T−l)N′
ξ

TM ′
ξ

c′h2
< a′

h3
< . . . < a′

hn
, n ∈ N,

here i = 1, 2, . . . , n. In addition, f(u) satisfies the following conditions:

(i) f(u) < ϕp

(
c′hi

M ′
ξ

)
for 0 ≤ u ≤ T

T−ξ c′hi
;

(ii) f(u) > ϕp

(
b′hi

N′
ξ

)
for b′hi

≤ u ≤ T
T−ξ b′hi

;

(iii) f(u) < ϕp

(
a′

hi

L′
ξ

)
for 0 ≤ u ≤ T

T−la
′
hi

;

Then problem (1.2) and (1.8) has at least 2n + 1 positive solutions.

Let L′
θ =

(
A′ ∑m−2

i=1 bi + T − l
)

ϕq

(∫ l

0
h(s)∇s

)
, we also have the following theorem.

Theorem 4.9 Suppose that there are positive numbers a′, b′, c′ such that a′ <
L′

θ

M ′
ξ
b′ <

(T−ξ)L′
θ

TM ′
ξ

c′. In addition,

f(u) satisfies the following conditions:

(i) f(u) > ϕp

(
c′

N′
ξ

)
for c′ ≤ u ≤ T

T−ξ c′;

(ii) f(u) < ϕp

(
b′

M ′
ξ

)
for 0 ≤ u ≤ T

T−ξ b′;

238



SU

(iii) f(u) > ϕp

(
a′

L′
θ

)
for a′ ≤ u ≤ T

T−la
′.

Then problem (1.2) and (1.8) has at least three positive solutions u1 , u2 and u3 such that

0 < maxt∈[l,T ]T u1 < a′ < maxt∈[l,T ]T u2 with
mint∈[0,ξ]T u2 < b′ < mint∈[0,ξ]T u3 and maxt∈[ξ,T ]T u3 < c′.

Theorem 4.10 Suppose that there are positive numbers a′
θi

, b′θi
, c′θi

such that

a′
θ1

<
L′

θ

M ′
ξ
b′θ1

<
(T−ξ)L′

θ

TM ′
ξ

c′θ1
< a′

θ2
<

L′
θ

M ′
ξ
b′θ2

<
(T−ξ)L′

θ

TM ′
ξ

c′θ2
< a′

θ3
< . . . < a′

θn
, n ∈ N,

here i = 1, 2, . . . , n. In addition, f(u) satisfies the following conditions:

(i) f(u) > ϕp

(
c′θi

N′
ξ

)
for c′θi

≤ u ≤ T
T−ξ c′θi

;

(ii) f(u) < ϕp

(
b′θi

M ′
ξ

)
for 0 ≤ u ≤ T

T−ξ
b′θi

;

(iii) f(u) > ϕp

(
a′

θi

L′
θ

)
for a′

θi
≤ u ≤ T

T−la
′
θi

.

Then problem (1.2) and (1.8) has at least 2n + 1 positive solutions.

Corollary 4.11 Assume that f satisfies conditions

(i) f0 = 0, f∞ = 0;

(ii) there exists c0 > 0 such that

f(u) > ϕp

(
T−ξ
N′

ξT
c0

)
for T−ξ

T
c0 ≤ u ≤ c0.

Then problem (1.2) and (1.8) has at least three positive solutions.

Corollary 4.12 Assume that f satisfies conditions

(i) f0 = ∞, f∞ = ∞;

(ii) there exists c0 > 0 such that f(u) < ϕp

(
T−ξ
MξT c0

)
for 0 ≤ u ≤ c0.

Then problem (1.2) and (1.8) has at least three positive solutions.

4.2. The Avery-Peterson fixed point theorem

In this subsection, the existence criteria for at least three positive and arbitrary odd positive solutions of
problems (1.2) and (1.7) or (1.8) are established by the Avery-Peterson fixed point theorem [7].

Define the nonnegative continuous convex functionals φ and β , nonnegative continuous concave func-
tional λ, and nonnegative continuous functional ϕ respectively on P by

φ(u) = maxt∈[0,T ]
T
u = u(T ), β(u) = maxt∈[r,T ]

Tκ
|uΔ| = |uΔ(r)|,

λ(u) = ϕ(u) = mint∈[η,T ]
T
u = u(η).

Now, we list and prove the results in this subsection.
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Theorem 4.13 Suppose that there exist constants a∗, b∗, d∗ such that 0 < a∗ < η
T b∗ <

ηNξ

TWξ
d∗. In addition,

suppose that Wξ > ϕq

(∫ T

η h(s)∇s
)

holds, f satisfies the following conditions:

(i) f(u) ≤ ϕp

(
d∗

Wξ

)
, 0 ≤ u ≤ d∗;

(ii) f(u) > ϕp

(
b∗

Nξ

)
, b∗ ≤ u ≤ d∗;

(iii) f(u) < ϕp

(
a∗

Mξ

)
, 0 ≤ u ≤ T

η a∗.

Then problem (1.2) and (1.7) has at least three positive solutions u1, u2, u3 such that

‖xi‖ ≤ d∗ for i=1,2,3, b∗ < mint∈[η,T ]
T
u1, a∗ < mint∈[η,T ]

T
u2

and mint∈[η,T ]
T
u2 < b∗ with mint∈[η,T ]

T
u3 < a∗.

Proof. By the definition of completely continuous operator A and its properties, it suffices to show that all
the conditions of Lemma 2.8 hold with respect to A.

For all u ∈ P, λ(u) = ϕ(u) = u(η) and ‖u‖ = u(T ) = φ(u). Hence, the condition (2.6) is satisfied.

First, we show that A : P (φ, d∗) → P (φ, d∗).

For any u ∈ P (φ, d∗), in view of φ(u) = ‖u‖ ≤ d∗ and the assumption (i), one has

‖Au‖ = Au(T )
≤ B

∑m−2
i=1 aiϕq

(∫ T

ξi
h(s)f(u)∇s

)
+

∫ T

0
ϕq

(∫ T

0
h(s)f(u)∇s

)
Δτ

≤
(
B

∑m−2
i=1 ai + T

)
ϕq

(∫ T

0
h(s)ϕp( d∗

Wξ
)∇s

)
= d∗

Wξ

(
B

∑m−2
i=1 ai + T

)
ϕq

(∫ T

0
h(s)Δs

)
= d∗.

From above analysis, it remains to show that (i)–(iii) of Lemma 2.8 hold.

Second, we verify that condition (i) of Lemma 2.8 holds, let u ≡ kb∗ with k = Wξ

Nξ
. From the definitions

of Nξ, Wξ and β(u), respectively, it is easy to see that u = kb∗ > b∗ and β(u) = 0 < kb∗ . In addition, in view

of b∗ <
Nξ

Wξ
d∗ , we have φ(u) = kb∗ < d∗. Thus

{u ∈ P (φ, β, λ, b∗, kb∗, d∗) : λ(x) > b∗} �= ∅.

For any u ∈ P (φ, β, λ, b∗, kb∗, d∗), then we get b∗ ≤ u ≤ d∗ for all t ∈ [η, T ]T , hence, by the assumption (ii),
we have

λ(Au) = Au(η)
>

(
A′ ∑m−2

i=1 ai + η
)

ϕq

(∫ T

η
h(s)ϕp( b∗

Nξ
)∇s

)
= b∗

Nξ

(
A′ ∑m−2

i=1 ai + η
)

ϕq

(∫ T

η
h(s)Δs

)
= b∗.

Third, we prove that the condition (ii) of Lemma 2.8 holds. For any u ∈ P (φ, λ, b∗, d∗) with β(Au) >

kb∗, that is, β(Au) =
∣∣(Au)Δ(r)

∣∣ = ϕq

(∫ T

r h(s)f(u(s))∇s
)

> kb∗. So, in view of k = Wξ

Nξ
and Wξ >
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ϕq

(∫ T

η
h(s)∇s

)
, one has

λ(Au) = Au(η)
≥ A′ ∑m−2

i=1 aiϕq

(∫ T

ξi
h(s)f(u)∇s

)
+

∫ η

0
ϕq

(∫ T

τ
h(s)f(u)∇s

)
Δτ

>
(
A′ ∑m−2

i=1 ai + η
)

ϕq

(∫ T

r h(s)f(u)∇s
)

>
(
A′ ∑m−2

i=1 ai + η
)

kb∗ > b∗.

Finally, we check condition (iii) of Lemma 2.8. Clearly, since ϕ(0) = 0 < a∗, we have 0 /∈ R(φ, ϕ, a∗, d∗).

If u ∈ R(φ, ϕ, a∗, d∗) with ϕ(u) = mint∈[η,T ]
T
u = u(η) = a∗, then, Lemma 2.2 implies that ‖u‖ ≤ T

η
u(η) = T

η
a∗.

This yields 0 ≤ u ≤ T
η a∗ for all t ∈ [0, T ]

T
. Hence, by assumption (iii), we have

λ(Au) = Au(η)
≤ B

∑m−2
i=1 aiϕq

(∫ T

ξi
h(s)f(u)∇s

)
+

∫ η

0 ϕq

(∫ T

0 h(s)f(u)∇s
)

Δτ

<
(
B

∑m−2
i=1 ai + η

)
ϕq

(∫ T

0
h(s)ϕp( a∗

Mξ
)∇s

)
= a∗

Mξ

(
B

∑m−2
i=1 ai + η

)
ϕq

(∫ T

0
h(s)Δs

)
= a∗.

Consequently, all the conditions of Lemma 2.8 are satisfied. The proof is completed.

We remark that the condition (i) in Theorem 4.13 can be replaced by the following condition (i’):

limu→∞
f(u)

ϕp(u) ≤ ϕp

(
1

Wξ

)
,

which is a special case of (i).

Corollary 4.14 If the condition (i) in Theorem 4.13 is replaced by (i’), then the conclusion of Theorem 4.13
also holds.
Proof. By Theorem 4.13, we only need to prove that (i’) implies that (i) holds, that is, if (i’) holds, then

there is a number d∗ ≥ max
{

a∗TWξ

ηNξ
,

Wξ

Nξ
b∗

}
such that f(u) ≤ ϕp

(
d∗

Wξ

)
for u ∈ [0, d∗].

Suppose on the contrary that for any d∗ ≥ max
{

a∗TWξ

ηNξ
,

Wξ

Nξ
b∗

}
, there exists uc ∈ [0, d∗] such that

f(uc) > ϕp

(
d∗

Wξ

)
. Hence, if we choose c′n > max

{
a∗TWξ

ηNξ
,

Wξ

Nξ
b∗

}
(n = 1, 2, . . .) with c′n → ∞, then there exist

un ∈ [0, c′n] such that

f(un) > ϕp

(
c′n
Wξ

)
, (4.3)

and so
limn→∞ f(un) = ∞. (4.4)

Since the condition (i’) holds, then there exists τ > 0 such that

f(u) ≤ ϕp

(
u

Wξ

)
, u > τ. (4.5)

Hence, we have un ≤ τ. Otherwise, if un > τ, then it follows from (4.5) that

f(un) ≤ ϕp

(
un

Wξ

)
≤ ϕp

(
c′n
Wξ

)
,
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which contradicts (4.3).

Let W = maxu∈[0,τ]T f(u), then f(un) ≤ W (n = 1, 2, . . .), which also contradicts (4.4). The proof is

complete. �

Theorem 4.15 Suppose that there exist constants a∗
i , b

∗
i , d

∗
i such that

0 < a∗
1 <

η

T
b∗1 <

ηNξ

TWξ
d∗
1 < a∗

2 <
η

T
b∗2 <

ηNξ

TWξ
d∗
2 < a∗

3 < . . . < a∗
n, n ∈ N,

here i = 1, 2, . . . , n. In addition, suppose that Wξ > ϕq

(∫ T

η h(s)∇s
)

holds, f satisfies the following conditions:

(i) f(u) < ϕp

(
d∗

i

Wξ

)
, 0 ≤ u ≤ d∗

i ;

(ii) f(u) > ϕp

(
b∗i
Nξ

)
, b∗i ≤ u ≤ d∗

i ;

(iii) f(u) < ϕp

(
a∗

i

Mξ

)
, 0 ≤ u ≤ T

η a∗
i .

Then problem (1.2) and (1.7) has at least 2n + 1 positive solutions.

Proof. Similar to the proof of Theorem 4.2; we omit it here. �

In the following, we deal with problem (1.2) and (1.8), we define the nonnegative continuous convex
functionals φ1 and β1 , nonnegative continuous concave functional λ1, and nonnegative continuous functional
ϕ1 respectively, on P1 by

φ1(u) = maxt∈[0,T ]
T
u = ‖u‖, β1(u) = mint∈[0,l]

Tκ |uΔ| = |uΔ(l)|,
λ1(u) = ϕ1(u) = mint∈[0,ξ]

T
u = u(ξ).

Again, we use Lemma 2.8 to study the existence of solutions of problem (1.2) and (1.8). In view of

operator A1 defined on P1 , similar to those techniques of considering problem (1.2) and (1.7), we have the

following results of problem (1.2) and (1.8).

Theorem 4.16 Assume that there exist constant a∗
s, b

∗
s, d

∗
s such that 0 < a∗

s < T−ξ
T b∗s <

(T−ξ)N′
ξ

TQξ
d∗

s , In addition,

suppose that Qξ > ϕq

(∫ ξ

0 h(s)∇s
)

holds, f satisfies the following conditions:

(i) f(u) ≤ ϕp

(
d∗

s

Qξ

)
, 0 ≤ u ≤ d∗

s;

(ii) f(u) > ϕp

(
b∗s
N′

ξ

)
, b∗s ≤ u ≤ d∗

s;

(iii) f(u) < ϕp

(
a∗

s

M ′
ξ

)
, 0 ≤ u ≤ Ta∗

s

T−ξ .

Then problem (1.2) and (1.8) has at least three positive solutions u1, u2, u3 such that

‖xi‖ ≤ d∗
s for i=1,2,3, b∗s < mint∈[l,T ]

T
u1, a∗

s < mint∈[0,ξ]T u2

and mint∈[l,T ]
T
u2 < b∗s with mint∈[0,ξ]T u3 < a∗

s.
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�

Note that the condition (i) in Theorem 4.16 can be replaced by the following condition (i”):

limu→∞
f(u)

ϕp(u) ≤ ϕp

(
1

Qξ

)
,

which is a special case of (i).

Corollary 4.17 If the condition (i) in Theorem 4.16 is replaced by (i”), then the conclusion of Theorem 4.16
also holds.

Theorem 4.18 Suppose that there exist constants a∗
si

, b∗si
, d∗

si
such that

0 < a∗
s1

< T−ξ
T b∗s1

<
(T−ξ)N′

ξ

TQξ
d∗

s1
< a∗

s2
< T−ξ

T b∗s2
<

(T−ξ)N′
ξ

TQξ
d∗

s2
< a∗

s3
< . . . < a∗

sn
, n ∈ N,

here i − 1, 2, . . . , n. In addition, suppose that Qξ > ϕq

(∫ ξ

0
h(s)∇s

)
holds, f satisfies the following conditions:

(i) f(u) < ϕp

(
d∗

si

Qξ

)
, 0 ≤ u ≤ d∗

si
;

(ii) f(u) > ϕp

(
b∗si

N′
ξ

)
, b∗si

≤ u ≤ d∗
si

;

(iii) f(u) < ϕp

(
a∗

si

M ′
ξ

)
, 0 ≤ u ≤ Ta∗

si

T−ξ .

Then problem (1.2) and (1.8) has at least 2n + 1 positive solutions.

Recall the methods mentioned above. We note that these two methods have their own advantages
respectively. In the following, we show the differences of these two methods from two aspects.

From the viewpoint of the obtained solution position and local properties, by using method one, we only
get some local properties of solutions, however, the position of solutions is not determined. For method two,
we not only get some local properties of solutions but also give the position of all solutions, with regard to
some subsets of the cone. In addition, by using these two different methods, the local properties of obtained
solutions are obviously different. Hence, it is convenient for us to comprehensively comprehend the solutions of
the models by using these two different techniques.

From the viewpoint of the satisfied conditions, we take Theorem 4.1 and Theorem 4.13 as examples to
illustrate. Under the same parameters conditions, the f(u) of (i) in Theorem 4.1 has the wider range than the

f(u) of (i) in Theorem 4.13, and the region of f(u) in (iii) of Theorem 4.13 is wider than that of Theorem 4.1.

5. Examples

In this section, we present two simple examples to illustrate our result. In addition, these two examples
show the differences of the two methods in Section 4.

Example 5.1 Let

T =
{(

1
3

)N0
}
∪

{
0, 1

10 , 3
20 , 157

1000 ,
1
5 , 23

100 , 3
10 , 31

100 , 33
100

}
∪

[
1
3 , 1

2

]
,
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here N0 = {1, 2, 3, . . . , }.
Consider the following boundary value problem with p = 5 and k ∈ N0.

(
ϕp

(
uΔ

))∇ +
∑7

k=0 tk(ρ(t))7−kf(u) = 0, t ∈
[
0, 1

3

]
T

,
u(0) − 10−3

(
uΔ

(
1
81

)
+ uΔ

(
1
5

))
= 0, uΔ(1

3
) = 0,

(5.1)

where

f(u) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2 × 107, 0 ≤ u ≤ 3,
5.4054× 1011u − 1.6216× 1012, 3 ≤ u ≤ 40,
2 × 1013, 40 ≤ u ≤ 80,
1.5748× 1011u + 7.4016× 1012, 80 ≤ u ≤ 334,
6 × 1013, u ≥ 334.

If h(t) =
∑7

k=0 tk(ρ(t))7−k, then by Exercise 1.23 in [10], we have (t8)∇ =
∑7

k=0 tk(ρ(t))7−k.

It is obvious that ξ2 = η = 1
5 , A = B = 10−3 and a1 = a2 = 1. Choose r = 23

100 , direct

calculation shows that Nξ =
(
2 × 10−3 + 1

5

) (∫ 1
3
1
5

∑7
k=0 tk(ρ(t))7−k∇t

)1
4 ≈ 0.02235, by a similar way, we have

Mξ ≈ 2.2444× 10−2, Lξ ≈ 2.5778× 10−2 and Wξ ≈ 3.7259× 10−2.

If we take a′ = 2, b′ = 40, c′ = 200, then 0 < a′ < r
T b′ <

rNξ

TMξ
c′,

f(u) = 2 × 1013 > 1.0089× 1013 = ϕ5

(
b′

Mξ

)
for 40 ≤ u ≤ Tb′

η
= 66.667,

f(u) < 6.4122× 1015 ≈ ϕ5

(
c′

Nξ

)
for 0 ≤ u ≤ Tc′

η = 400,

f(u) = 2 × 107 < 3.6235× 107 ≈ ϕ5

(
a′

Lξ

)
for 0 ≤ u ≤ Ta′

r = 2.8986.

Therefore, all the conditions of Theorem 4.1 are satisfied. By Theorem 4.1, we see that the boundary
value problem (5.1) has at least three positive solutions u1, u2 and u3 such that

0 < maxt∈[0, 23
100 ]

T

u1 < 2 < maxt∈[0, 23
100 ]

T

u2 with

mint∈[ 1
5 ,13 ]T

u2 < 40 < mint∈[ 1
5 , 1

3 ]T

u3 and maxt∈[0,15 ]T u3 < 200.

However, ϕq

(∫ 1
3
1
5

h(s)Δs
)

≈ 0.1106 > Wξ ≈ 3.7259 × 10−2, hence, the existence of positive solutions of

boundary value problem (5.1) is not obtained by using Theorem 4.13.

Example 5.2 Let

T =
{

2 −
(

1
3

)N0
}
∪

{
0, 1

8 , 1
4 , 1

3 , 1
2 , 1, 5

4 , 3
2 , 7

4 , 2, 21
10 , 23

10 , 12
5

}
∪

[
1
10 , 1

9

]
.

Consider the following boundary value problem

(
ϕp

(
uΔ

))∇ +
∑7

k=0 tk(ρ(t))7−kf(u) = 0, t ∈ [0, 2]
T

,
u(0) − 2

(
uΔ

(
1
4

)
+ uΔ (1)

)
= 0, uΔ(2) = 0.

(5.2)
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Let ε be an arbitrary small positive number, a∗, b∗ and d∗ be arbitrary positive numbers with a∗ < b∗ < d∗ ,
and

f(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

max
{

ϕp

(
a∗

20

)
− ε, ϕp

(
a∗

22

)
+ ε

}
, 0 ≤ u ≤ 2a∗,

k(u), 2a∗ ≤ u ≤ b∗,

ϕp

(
b∗

19.98

)
+ ε, b∗ ≤ u ≤ d∗,

r(u), d∗ ≤ u ≤ 2d∗,

ϕp

(
b∗

20

)
− ε, u ≥ 2d∗,

here k(u) and p(u) satisfy k (2a∗) = max
{
ϕp

(
a∗

20

)
− ε, ϕp

(
a∗

22

)
+ ε

}
, k(b∗) = ϕp

(
b∗

19.98

)
+ ε, r(d∗) =

ϕp

(
b∗

19.98

)
+ ε, r(2d∗) = ϕp

(
b∗

20

)
− ε, (kΔ(u))Δ = 0, (rΔ(u))Δ = 0.

It is obvious that ξ2 = η = 1, A = B = 2 and a1 = a2 = 1. Choose r = 3
2
, direct calculation shows

that Nξ = 5
(∫ 2

1

∑7
k=0 tk(ρ(t))7−k∇t

)1
4 ≈ 19.98, by a similar way, we have Mξ = 20, Lξ = 22, Wξ = 24 and

Wξ = 24 > 4 ≈ ϕq

(∫ 2

1
h(t)Δt

)
.

If we take a∗, b∗ and d∗ satisfy 0 < a∗ < 1
2b∗ <

Nξ

2Wξ
d∗ = 19.98

48 d∗.

It is obvious that (i), (ii) and (iii) in Theorem 4.13 are satisfied. By Theorem 4.13, we see that the

boundary value problem (5.2) has at least three positive solutions u1, u2 and u3 such that

‖xi‖ ≤ d∗ for i=1,2,3, b∗ < mint∈[1,2]
T
u1, a∗ < mint∈[1,2]

T
u2

and mint∈[1,2]
T
u2 < b∗ with mint∈[1,2]

T
u3 < a∗.

However, for arbitrary positive numbers a∗, b∗, d∗ with a∗ < b∗ < d∗ , the condition (iii) of Theorem 4.1

is not satisfied. Therefore, Theorem 4.1 is not fit to study the boundary value problem (5.2).

Acknowledgment

The author is very grateful to the anonymous referees for their helpful comments and suggestions.

References

[1] Agarwal, R.P., Bohner, M. and Li, W.T.: Nonoscilation and oscillation theory for functional differential equations,

Pure Appl. Math. S. 267, Marcel Dekker, 2004.

[2] Agarwal, R.P., Bohner,M. and Rehak, P.: Half-linear dynamic equations, Nonlinear Anal. Appl.: to V. Lakshmikan-

tham on his 80th birthday, vol. 1, Kluwer Acad. Publ. Dordrecht, 1-57 (2003).

[3] Anderson, D.R.: Solutions to second-order three-point problems on time scales, J. Differ. Equations Appl. 8, 673-688

(2002).

[4] Aulbach, B. and Neidhart, L.: Integration on measure chains, In proceedings of the sixth international conference

on difference equations, CRC, Boca Raton, FL, 239-252 (2004).

245



SU

[5] Avery, R.I., Chyan, C.J. and Henderson, J.: Twin solutions of boundary value problems for ordinary differential

equations and finite difference equations, Comput. Math. Appl. 42, 695-704 (2001).

[6] Avery, R.I. and Henderson, J.: Two positive fixed points of nonlinear operator on ordered Banach spaces, Comm.

Appl. Nonlinear Anal. 8, 27-36 (2001).

[7] Avery, R.I. and Peterson, A.: Three positive fixed points of nonlinear operators on ordered Banach spaces, Comput.

Math. Appl. 42, 313-422 (2001).

[8] Avery, R.I.: A generalization of the Leggett-Williams fixed point theorem, MSR Hot-Line. 2, 9-14 (1999).

[9] Bohner, M. and Peterson, A.: Advances in dynamic equations on time scales, Birkhauser Boston, 2003.

[10] Bohner, M. and Peterson, A.: Dynamic equations on time scales: an introduction with applications, Birkhauser

Boston, MA, 2001.

[11] Guo, D. and Lakshmikantham, V.: Nonlinear problems in abstract cones, Academic press, San Diego, CA, 1988.

[12] He, Z.: Double positive solutions of three-point boundary value problems for p-Laplacian dynamic equations on

time scales, J. Comput. Appl. Math. 182, 304-315 (2005).

[13] He, Z.: Double positive solutions of three-point boundary value problems for p-Laplacian difference equations, Z.

Anal. Anwendungen 24, 305-315 (2005).

[14] He, Z.: On the existence of positive solutions of p-Laplacian difference equation, J. Comput. Appl. Math. 161,

193-201 (2003).

[15] He, Z. and Li L.: Triple positive solutions for the one-dimensional p-Laplacian dynamic equations on time scales,

Math. Comput. Modelling 45, 68-79 (2007).

[16] He, Z. and Jiang, X.: Multiple positive solutions of boundary value problems for p-Laplacian dynamic equations

on time scales, J. Math. Anal. Appl. 321, 911-920 (2006).

[17] Hilger, S.: Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. Thesis, Universität

Würzburg, (1988).

[18] Hong, S.: Triple positive solutions of three-point boundary value problem for p-Laplacian dynamic equations on

time scales, J. Comput. Appl. Math. 206, 967-976 (2007).

[19] Jamieson, V. and Spedding, V.: Taming nature’s numbers, the global science and technology weekly, New Scientist,

2404, 28-31 (2003).

[20] Jones M.A., Song,B. and Thomas, D.M.: Controlling wound healing through debridement, Math. Comput. Mod-

elling 40, 1057-1064 (2004).

[21] Krasnosel’skii, M.: Positive solutions of operator equations, Noordhoff, Groningen (1964).

[22] Lakshmikantham, V., Sivasundaram, S. and Kaymakcalan, B.: Dynamic systems on measure chains, Kluwer

Academic Publishers, Boston, 1996.

246



SU

[23] Leggett, R. and Williams, L.: Multiple positive fixed points of nonlinear operators on ordered Banach spaces,

Indiana Univ. Math. J. 28, 673-688 (1979).

[24] Li, C. and Ge, W.: Positive solutions of one-dimensional p-Laplacian singular Sturm-Liouville boundary value

problems, Math. Appl. 15, 13-17 (2002).

[25] Liu, Y. and Ge, W.: Multiple positive solutions to a three-point boundary value problems with p-Laplacian, J.

Math. Anal. Appl. 277, 293-302 (2003).

[26] Liu, Y. and Ge, W.: Twin positive solutions of boundary value problems for finite difference equations with p-

Laplacian, J. Math. Anal. Appl. 278, 551-561 (2003).
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