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Universal inequalities and bounds for weighted eigenvalues of the
Schrödinger operator on the Heisenberg group

He-Jun Sun

Abstract

For a bounded domain Ω in the Heisenberg group �n , we investigate the Dirichlet weighted eigenvalue

problem of the Schrödinger operator −Δ�n +V , where Δ�n is the Kohn Laplacian and V is a nonnegative

potential. We establish a Yang-type inequality for eigenvalues of this problem. It contains the sharpest result

for Δ�n in [17] of Soufi, Harrel II and Ilias. Some estimates for upper bounds of higher order eigenvalues

and the gaps of any two consecutive eigenvalues are also derived. Our results are related to some previous

results for the Laplacian Δ and the Schrödinger operator −Δ+V on a domain in �n and other manifolds.
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1. Introduction

In 1956, Payne, Pólya and Weinberger [16] considered the Dirichlet Laplacian problem (also called the

fixed membrance problem) { − Δu = λu, in Ω,

u|∂Ω = 0,
(1.1)

and established an universal inequality for Ω ⊂ R
2 which is easily extended to Ω ⊂ R

n as the PPW inequality

λk+1 − λk ≤ 4
nk

k∑
r=1

λr. (1.2)

The work of Payne, Pólya, Weinberger and other mathematics provided us a precious wealth of results, and in
some sense, we still walk along the road which is illuminated by them. Hile and Protter [11], Yang [19] and
other mathematicians made their contributions in extending the PPW inequality. Namely, in 1980, Hile and
Protter [11] proved the HP inequality

k∑
r=1

λr

λk+1 − λr
≥ nk

4
. (1.3)
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In 1991, Yang [19] obtained (what is now known as) Yang’s first inequality,

k∑
r=1

(λk+1 − λr)2 ≤ 4
n

k∑
r=1

(λk+1 − λr)λr , (1.4)

and the Yang’s second inequality

λk+1 ≤ (1 +
4
n

)
1
k

k∑
r=1

λr . (1.5)

In 1997, Harrell and Stubbe [10] gave a new proof of Yang’s inequalities by using the commutator method. One

can find more discussions about the PPW, HP and Yang’s inequalities in [1, 2] of Ashbaugh.

Further research work have been done on some other manifolds or some more complicated operators. On
the one hand, the inequalities (1.2)–(1.5) for eigenvalues of problem (1.1) on Ω ⊂ R

n have been extended to some

Riemannian manifolds (see [3, 4, 5, 7, 9, 14]). On the other hand, some interesting inequalities for eigenvalues

of the Schrödinger operator have also been established. In 2002, Ashbaugh [2] considered the Dirichlet weighted
eigenvalue problem on Ω ⊂ R

n : { − Δu + V u = λρu, in Ω,

u|∂Ω = 0,
(1.6)

where V is a nonnegative potential, and ρ is a positive function continuous on Ω. He derived the Yang-type
inequalities (ρmax and ρmin denote the obvious quantities)

k∑
r=1

(λk+1 − λr)2 ≤ 4ρmax

nρmin

k∑
r=1

(λk+1 − λr)λr, (1.7)

and

λk+1 < (1 +
4ρmax

nρmin
)
1
k

k∑
r=1

λr . (1.8)

They are independent on the potential V . In fact, as one can see from the commutator method, all the results
about eigenvalues of −Δ are automatically generalizable to −Δ + V because [−Δ, G] = [−Δ + V, G] . In 2008,

Wang and Xia [18] proved

λk+1 ≤(1 +
2P

nQ
)
1
k

k∑
r=1

λr −
2V0

nQ

+
{[ 2P

nQ
(
1
k

k∑
r=1

λr −
V0

P
)
]2 − (1 +

4P

nQ
)
1
k

k∑
s=1

(λs −
1
k

k∑
r=1

λr)2
} 1

2

(1.9)

on a bounded domain in R
n , where V0 = min

x∈Ω
V (x), P = max

x∈Ω
ρ(x) and Q = min

x∈Ω
ρ(x). The reader can

refer to [18] for more results on a domain in an n-dimensinal unit sphere Sn(1), an n-dimensinal minimal

subanifold in Sm(1), a domain in a complex projective space CP n(4), a complex hypersurface in CP n+1(4),
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an n-dimensional homogenous space. In 2009, based on the work [8], Soufi, Harrel II and Ilias [17] used the

commutator method to derive a series of inequalities for eigenvalues of problem (1.6) on a submanifold of a
sphere, a submanifold of a projective space, etc. For example, on a closed Riemannian manifold M or a domain
in a Riemannian manifold M , they proved (suppose that X : M −→ R

m is an isometric immersion)

k∑
r=1

(λk+1 − λr)2 ≤ 4
n

k∑
r=1

(λk+1 − λr)
[
λr +

∫
M

(
|h|2
4

− V )u2
r

]
, (1.10)

where h denotes the mean curvature vector field of X .
Now we turn our attention to the eigenvalue problem of the Kohn Lapacian ΔHn on the Heisenberg

group H
n . ΔHn is one of the invariant differential operators on the nilpotent group H

n (see [12] of Jerison, [6]

of Folland and Stein). It dates from [13] and is also called sub-Laplacian. Let Λr be the r -th eigenvalue of the
following Dirichlet eigenvalue problem of the Kohn Lapacian on a bounded domain Ω in H

n :

{ − ΔHnu = Λu, in Ω,

u|∂Ω = 0.
(1.11)

In 2003, Niu and Zhang [15] proved the inequality

Λk+1 − Λk ≤ 2
nk

k∑
r=1

Λr, (1.12)

which is related to the PPW inequality (1.2). Still in [17], Soufi, Harrel II and Ilias used the commutator
method to establish a sharper inequality

k∑
r=1

(Λk+1 − Λr)2 ≤ 2
n

k∑
r=1

(Λk+1 − Λr)Λr, (1.13)

which is related to the Yang’s first inequality (1.4).

In this paper, we investigate the Dirichlet weighted eigenvalue problem of the Schrödinger operator
−ΔHn + V on H

n : { − ΔHnu + V u = Λρu, in Ω,

u|∂Ω = 0.
(1.14)

In Theorem 1 of Section 2, we prove the general inequality (2.2) for eigenvalues of problem (1.14) which

contains a positive constant γ . We follow different route from [17]. From the proof of Theorem 1, one can

easily find the reason why the coefficients in estimates for eigenvalues of problem (1.6) and problem (1.14) are

different. Then, we obtain a more explicit inequality (2.22) in Theorem 2. In fact, these two general inequalities

are equivalent (see Remark 1). In Section 3, by utilizing the general inequality in Theorem 2, we establish a

Yang-type inequality for eigenvalues of problem (1.14) (see Theorem 3). It contains the sharpest result (1.13)
for ΔHn . In Corollary 1-3, some estimates for upper bound of Λk+1 and the gaps of any two consecutive

eigenvalues are also given. Our results are related to (1.4), (1.5), (1.7)–(1.9) and (1.13) for Δ, −Δ + V and
ΔHn .
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2. Some general inequalities

The (2n +1)-dimensional Heisenberg group H
n is with coordinates (x, y, t) ∈ R

n ×R
n ×R and satisfies

non-commutative group law given by

(
x, y, t

)(
x′, y′, t′

)
=

(
x + x′, y + y′, t + t′ +

1
2
(〈x′, y〉Rn − 〈x, y′〉Rn)

)
,

where
(
x, y, t

)
and

(
x′, y′, t′

)
∈ R

n , and 〈·, ·〉 denotes the inner product in R
n . The Lie algebra Hn of H

n has

a basis
{Xj, Yj, T}, j = 1, · · · , n

formed by the 2n + 1 left-invariant vector fields

Xj =
∂

∂xj
+

yj

2
∂

∂t
, Yj =

∂

∂yj
− xj

2
∂

∂t
, T =

∂

∂t
.

The Kohn Laplacian ΔHn on the Heisenberg group H
n is defined by

ΔHn =
n∑

j=1

(X2
j + Y 2

j ). (2.1)

Theorem 1 Let Ω be a bounded domain in H
n . Denote by ur the r -th weighted orthonormal eigenfunction

of problem (1.14) corresponding to the eigenvalue Λr , r = 1, 2, · · · , k . Then we have

(1 − γ)
k∑

r=1

(Λk+1 − Λr)2
∫

Ω

u2
r ≤ 1

2γ

k∑
r=1

(Λk+1 − Λr)
∫

Ω

1
ρ
[(Xiur)2 + (Yiur)2], (2.2)

where the constant γ > 0 .

Proof. The eigenfunction ur satisfies

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− ΔHnur + V ur = Λrρur , in Ω,

ur|∂Ω = 0,∫
Ω

ρurus = δrs.

(2.3)

We define the trial functions

ϕrxi = xiur −
k∑

s=1

arsxius, for i = 1, · · · , n, and r = 1, · · · , k, (2.4)

where

arsxi =
∫

Ω

ρxiurus. (2.5)
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Then, it is easy to check that for i = 1, · · · , n , and r, s = 1, · · · , k ,

∫
Ω

ρϕrxius = 0. (2.6)

Hence, it yields to ∫
Ω

ρϕrxixiur =
∫

Ω

ρϕ2
rxi

. (2.7)

Substituting

−ΔHnϕrxi + V ϕrxi = −2Xiur + xiΛrρur −
k∑

s=1

arsxiΛsρus (2.8)

into the Rayleigh-Ritz formula

Λk+1 ≤
∫
Ω

ϕrxi(−ΔHnϕrxi + V ϕrxi)∫
Ω

ρϕ2
rxi

, (2.9)

we obtain

(Λk+1 − Λr)
∫

Ω

ρϕ2
rxi

≤ − 2
∫

Ω

xiurXiur + 2
k∑

s=1

arsxibrsxi

=
∫

Ω

u2
r + 2

k∑
s=1

arsxibrsxi ,

(2.10)

where

brsxi =
∫

Ω

usXiur = −
∫

Ω

urXius = −bsrxi .

Using integration by parts, and utilizing (2.8), we have

Λrarsxi =
∫

Ω

xius(−ΔHnur + V ur) = −2
∫

Ω

urXius + Λs

∫
Ω

ρxiurus

= − 2bsrxi + Λsarsxi .

(2.11)

It yields to
2brsxi = (Λr − Λs)arsxi . (2.12)

Substituting (2.12) into (2.10), we have

(Λk+1 − Λr)
∫

Ω

ρϕ2
rxi

≤
∫

Ω

u2
r +

k∑
s=1

(Λr − Λs)a2
rsxi

. (2.13)

By direct calculation, we have

−2
∫

Ω

ϕrxiXiur =
∫

Ω

u2
r +

k∑
s=1

(Λr − Λs)a2
rsxi

. (2.14)
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Noticing the weight function ρ , it follows from (2.6) and (2.7) that

− 2(Λk+1 − Λr)2
∫

Ω

ϕrxiXiur

= − 2(Λk+1 − Λr)2
∫

Ω

√
ρϕrxi (

1
√

ρ
Xiur −

√
ρ

k∑
s=1

brsxius)

≤γ(Λk+1 − Λr)3
∫

Ω

ρϕ2
rxi

+
Λk+1 − Λr

γ

[∫
Ω

1
ρ
(Xiur)2 −

k∑
s=1

b2
rsxi

]
,

(2.15)

where the constants γ > 0. Substituting (2.13) and (2.14) into (2.15), and taking sum on r from 1 to k , we
have

k∑
r=1

(Λk+1 − Λr)2
∫

Ω

u2
r + 2

k∑
r,s=1

(Λk+1 − Λr)2arsxibrsxi

≤γ

k∑
r=1

(Λk+1 − Λr)2
∫

Ω

u2
r +

1
γ

k∑
r=1

(Λk+1 − Λr)
∫

Ω

1
ρ
(Xiur)2

+ γ

k∑
r,s=1

(Λk+1 − Λr)2(Λr − Λs)a2
rsxi

− 1
γ

k∑
r,s=1

(Λk+1 − Λr)b2
rsxi

.

(2.16)

On the other hand, we define the trial functions

ϕryi = yiur −
k∑

s=1

arsyius, for i = 1, · · · , n, and r = 1, · · · , k, (2.17)

where

arsyi =
∫

Ω

ρyiurus. (2.18)

Then, similar to the proof of (2.16), we can obtain

k∑
r=1

(Λk+1 − Λr)2
∫

Ω

u2
r + 2

k∑
r,s=1

(Λk+1 − Λr)2arsyibrsyi

≤γ

k∑
r=1

(Λk+1 − Λr)2
∫

Ω

u2
r +

1
γ

k∑
r=1

(Λk+1 − Λr)
∫

Ω

1
ρ
(Yiur)2

+ γ

k∑
r,s=1

(Λk+1 − Λr)2(Λr − Λs)a2
rsyi

− 1
γ

k∑
r,s=1

(Λk+1 − Λr)b2
rsyi

,

(2.19)

where

brsyi =
∫

Ω

usYiur.
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Combining (2.16) and (2.19), and noticing that the following inequalities

−
k∑

r,s=1

(Λk+1 − Λr)(Λr − Λs)crsdrs =
k∑

r,s=1

(Λk+1 − Λr)2crsdrs, (2.20)

k∑
r,s=1

(Λk+1 − Λr)2(Λr − Λs)c2
rs = −

k∑
r,s=1

(Λk+1 − Λr)(Λr − Λs)2c2
rs (2.21)

hold, where crs = csr and drs = −dsr , we can eliminate the unwanted terms to obtain (2.2). �

Taking γ = 1
2

in (2.2), we can get a more explicit general inequality.

Theorem 2 Under the assumptions of Theorem 1, we have

k∑
r=1

(Λk+1 − Λr)2
∫

Ω

u2
r ≤2

k∑
r=1

(Λk+1 − Λr)
∫

Ω

1
ρ
[(Xiur)2 + (Yiur)2]. (2.22)

Remark 1 In fact, inequality (2.22) is equivalent to (2.2). Noticing that

[ k∑
r=1

(Λk+1 − Λr)2
∫

Ω

u2
r

]{ k∑
r=1

(Λk+1 − Λr)2
∫

Ω

u2
r

− 2
k∑

r=1

(Λk+1 − Λr)
∫

Ω

1
ρ
[(Xiur)2 + (Yiur)2]

}

is the discriminant of the quadratic polynomial of γ ,

[ k∑
r=1

(Λk+1 − Λr)2
∫

Ω

u2
r

]
γ2 −

[ k∑
r=1

(Λk+1 − Λr)2
∫

Ω

u2
r

]
γ

+
1
2

k∑
r=1

(Λk+1 − Λr)
∫

Ω

1
ρ
[(Xiur)2 + (Yiur)2],

we can deduce (2.2) from (2.22).

3. Some estimates for eigenvalues of −ΔHn + V

In this section, we give some estimates for eigenvalues of problem (1.14).

Theorem 3 Let Ω be a bounded domain in H
n . Denote by Λr the r -th eigenvalue of problem (1.14). Set

V0 = min
Ω

V , σ = (inf
Ω

ρ)−1 , τ = (sup
Ω

ρ)−1 . Then, we have

k∑
r=1

(Λk+1 − Λr)2 ≤ 2σ2

nτ2

k∑
r=1

(Λk+1 − Λr)(Λr − τV0). (3.1)
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Proof. According to the assumptions of Theorem 3, it is easy to find

0 < τ = τ

∫
Ω

ρu2
r ≤

∫
Ω

u2
r =

∫
Ω

ρu2
r

1
ρ
≤ σ

∫
Ω

ρu2
r = σ, (3.2)

and ∫
Ω

|∇Hnur |2 =
∫

Ω

ur(−ΔHnur) =
∫

Ω

ur(−ΔHnur + V ur) −
∫

Ω

V u2
r

≤Λr − τV0.

(3.3)

Taking sum on i from 1 to n in (2.22), we have

n

k∑
r=1

(Λk+1 − Λr)2
∫

Ω

u2
r ≤ 2

k∑
r=1

(Λk+1 − Λr)
∫

Ω

1
ρ
|∇Hnur|2. (3.4)

Utilizing (3.2) and (3.3), we derive (3.1). �

Remark 2 It is easy to find that our result (3.1) contains the sharpest result (1.13) for the Kohn Laplacian

ΔHn . Moreover, it is a Yang-type inequality which is related to the sharp results (1.4) and (1.7) for Δ and
−Δ + V .

Remark 3 Taking sum on i from 1 to n in (2.2), utilizing (3.2) and (3.3), we have

nτ

k∑
r=1

(Λk+1 − Λr)2

≤ σ

2γ

k∑
r=1

(Λk+1 − Λr)(Λr − τV0) + nσγ

k∑
r=1

(Λk+1 − Λr)2.

(3.5)

Then, putting

γ =
[
2n

k∑
r=1

(Λk+1 − Λr)2
]− 1

2
[ k∑

r=1

(Λk+1 − Λr)(Λr − τV0)
] 1

2

in (3.5), it also yields to (3.1).

(3.1) is a quadratic inequality. Solving it, we can obtain a more explicit inequality which give an universal

upper bound of the (k + 1)-th eigenvalue Λk+1 in terms of σ, τ , V0 and the first k eigenvalues.

Corollary 1 Under the assumptions of Theorem 3, we have

Λk+1 ≤(1 +
σ2

nτ2
)
1
k

k∑
r=1

Λr −
σ2V0

nτ

+
{[ σ2

nτ2
(
1
k

k∑
r=1

Λr − τV0)
]2 − (1 +

2σ2

nτ2
)
1
k

k∑
s=1

(Λs −
1
k

k∑
r=1

Λr)2
} 1

2

.

(3.6)
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Remark 4 The inequality (3.6) is related to the sharp result (1.9) for problem (1.6).

Using the Cauchy-Schwarz inequality, we derive a weaker, but more explicit upper bound of Λk+1 from

(3.6):

Corollary 2 Under the assumptions of Theorem 3, we have

Λk+1 ≤ (1 +
2σ2

nτ2
)
1
k

k∑
r=1

Λr −
2σ2

nτ
V0. (3.7)

At the same time, an explicit estimate on the gaps of any two consecutive eigenvalues of problem (1.14)
can be obtained.

Corollary 3 Under the assumptions of Theorem 3, we have

Λk+1 − Λk

≤2
{[ σ2

nτ2
(
1
k

k∑
r=1

Λr − τV0)
]2 − (1 +

2σ2

nτ2
)
1
k

k∑
s=1

(Λs −
1
k

k∑
r=1

Λr)2
} 1

2

.
(3.8)
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