# A note on weighted $A_{p}(G)$-modules 

Serap Öztop


#### Abstract

Let $G$ be a locally compact abelian group and $w$ be a weight function on $G$. In this paper, we show that the space $A_{p, w}(G)$ is a Banach module over the Figà-Talamanca Herz algebra $A_{p}(G)$ and study the multiplier space from $A_{p}(G)$ to $A_{p, w}(G)$.


Key Words: Multiplier, Order free, Essential, Banach module.

## 1. Introduction

Let $G$ be a locally compact abelian group with Haar measure, $w$ be a weight function on $G$ and $1<p<\infty$. The work of R. Spector [15] on $A_{p}(G)$ has motivated us to be interested in the structure theory of weighted $A_{p}(G)$ denoted by $A_{p, w}(G)$. We show that $A_{p, w}(G)$ is a Banach $A_{p}(G)$-module under pointwise multiplication and, as such, a fixed $v \in A_{p, w}(G)$ induces by multiplication an operator $T_{v}$ from $A_{p}(G)$ to $A_{p, w}(G)$ defined by $T_{v}(u)=u v$. Following the work of Friedberg [6] we show that the compact multiplier $T_{v}$ is trivial if G is a nondiscrete. We also study some multiplier problems from $A_{p}(G)$ to $A_{p, w}(G)$ spaces.

## 2. Preliminaries

Let $\left(A,\|\cdot\|_{A}\right)$ be a Banach algebra. A Banach space $\left(B,\|\cdot\|_{B}\right)$ is called a Banach $A$-module if there exists a continuous algebra representation $T$ of $A$ to $B L(B)$, the algebra of all continuous linear operators from $B$ to $B$, with $\left\|T_{a}\right\| \leq\|a\|_{A}$ and $T_{a_{1} \bullet a_{2}}=T_{a_{1}} \circ T_{a_{2}}$, where $\bullet$ is the multiplication on $A$. For $b \in B$, $T_{a}(b)$ is denoted by $a \bullet b$. Such a module is order-free if 0 is the only $b \in B$ for which $a \bullet b=0$ for all $a \in A$. A Banach $A$-module $B$ is called essential if the closed linear span of $A \bullet B$, called the essential part of $B$ and denoted by $B_{e}$, coincides with $B$. If the Banach algebra $\left(A,\|\cdot\|_{A}\right)$ contains a bounded approximate identity, i.e., a bounded net $\left(u_{\alpha}\right)_{\alpha \in I}$ such that $\lim _{\alpha}\left\|u_{\alpha} a-a\right\|_{A}=0$ for all $a \in A$, then a Banach $A$-module $B$ is essential if and only if $\lim _{\alpha}\left\|u_{\alpha} b-b\right\|_{B}=0$ for all $b \in B$ [3]. If $B$ is a Banach $A$-module, then

$$
\operatorname{Hom}_{A}(B)=\{T \in B L(B) \mid \forall a \in A, \forall b \in B, T(a \bullet b)=a \bullet T(b)\}
$$

[^0]
## ÖZTOP

is the space of all $A$-module homomorphisms. The elements of $\operatorname{Hom}_{A}(B)$ are traditionally called the multipliers from $B$ to $B$.

Let $G$ be a locally compact abelian group with Haar measure $d x$. A continuous function on $G$ satisfying $w(x) \geq 1, w(x+y) \leq w(x) w(y)$ for $x, y \in G$ is called a weight function. Then the space $L_{w}^{p}(G)=$ $\left\{f \mid f w \in L^{p}(G)\right\}, 1 \leq p<\infty$, is a Banach space on $G$ with the norm $\|f\|_{p, w}=\|f w\|_{p}$, and its dual space is $L_{w^{-1}}^{p^{\prime}}(G)$, where $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. Moreover, if $1<p<\infty$, then $L_{w}^{p}(G)$ is a reflexive Banach space. If $p=1$, $L_{w}^{1}(G)$ is a Banach algebra on $G$ with respect to convolution and contains a bounded approximate identity. It is called a Beurling algebra on $G[12]$. We know that $L_{w}^{p}(G)$ is an essential, order-free Banach $L_{w}^{1}(G)$-module with respect to convolution [11]. We denote by $C_{0}(G)$ the space of all continuous functions on $G$ vanishing at infinity, and by $C_{0, w}(G)$ the space of functions $f$ on $G$ such that $f w \in C_{0}(G)$. Throughout we assume that $w$ is even function, i.e., $w$ satisfies $w(x)=w(-x)$ for all $x \in G$.

The following is a classical technique of harmonic analysis.
Proposition 2.1 Let $f \in L_{w}^{p}(G)$ and $g \in L_{w^{-1}}^{p^{\prime}}(G)$, where $1<p<\infty$ and $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. Then $f * g \in C_{0, w^{-1}}(G)$ and

$$
\|f * g\|_{\infty, w^{-1}} \leq\|f\|_{p, w}\|g\|_{p^{\prime}, w^{-1}} .
$$

By Proposition 2.1, a bilinear map $b$ can be defined from $L_{w}^{p}(G) \times L_{w^{-1}}^{p^{\prime}}(G)$ into $C_{0, w^{-1}}(G)$ by

$$
b(f, g)=f^{\sim} * g, \quad f^{\sim}(x)=f(-x) \quad f \in L_{w}^{p}(G), \quad g \in L_{w^{-1}}^{p^{\prime}}(G)
$$

such that $\|b\| \leq 1$. Then $b$ lifts to a linear map $B$ from $L_{w}^{p}(G) \otimes_{\gamma} L_{w^{-1}}^{p^{\prime}}(G)$, the projective tensor product of $L_{w}^{p}(G)$ and $L_{w^{-1}}^{p^{\prime}}(G)$ considered as a Banach space, into $C_{0, w^{-1}}(G)$ such that $\|B\| \leq 1$ (see [1], [7] and [14]).

Definition 2.2 The range of $B$ consisting of all functions $v=\sum_{i=1}^{\infty} f_{i}^{\sim} * g_{i}$ on $G$ with $f_{i} \in L_{w}^{p}(G)$, $g_{i} \in L_{w^{-1}}^{p^{\prime}}(G)$ and $\sum_{i=1}^{\infty}\left\|f_{i}\right\|_{p, w}\left\|g_{i}\right\|_{p^{\prime}, w^{-1}}<\infty$ equipped with the norm

$$
\|v\|_{A_{p, w}}=\inf \left\{\sum_{i=1}^{\infty}\left\|f_{i}\right\|_{p, w}\left\|g_{i}\right\|_{p^{\prime}, w^{-1}} \mid v=\sum_{i=1}^{\infty} f_{i}^{\sim} * g_{i}\right\}
$$

will be denoted by $A_{p, w}(G)$.
The range $A_{p, w}(G)$ is a Banach space of functions on $G$ and can be viewed as a subspace of $C_{0, w^{-1}}(G)$. It can also be identified with the quotient Banach space of $L_{w}^{p}(G) \otimes_{\gamma} L_{w^{-1}}^{p^{\prime}}(G)$ with $K$, i.e.,

$$
A_{p, w}(G) \cong L_{w}^{p}(G) \otimes_{\gamma} L_{w-1}^{p^{\prime}}(G) / K,
$$

where $K$ is the kernel of the linear form $B$.
Since $L_{w}^{p}(G)$ is a reflexive Banach space and a Banach $L_{w}^{1}(G)$-module with respect to convolution, by [11] we have

$$
\operatorname{Hom}_{L_{w}^{1}(G)}\left(L_{w}^{p}(G)\right) \cong\left(L_{w}^{p}(G) \otimes_{\gamma} L_{w^{-1}}^{p^{\prime}}(G) / K\right)^{*} \cong K^{\perp} \cong\left(A_{p, w}(G)\right)^{*} .
$$

## ÖZTOP

Letting

$$
\operatorname{Hom}_{G}\left(L_{w}^{p}(G)\right)=\left\{T \in B L\left(L_{w}^{p}(G)\right) \mid \forall x \in G, T L_{x}=L_{x} T\right\},
$$

we obtain

$$
\operatorname{Hom}_{G}\left(L_{w}^{p}(G)\right)=\operatorname{Hom}_{L_{w}^{1}(G)}\left(L_{w}^{p}(G)\right) .
$$

Indeed, $T \in \operatorname{Hom}_{L_{w}^{1}(G)}\left(L_{w}^{p}(G)\right)$, and let $\left(u_{\alpha}\right)_{\alpha \in I}$ be an approximate identity of $L_{w}^{1}(G)$. Since $L_{w}^{p}(G)$ is an essential Banach $L_{w}^{1}(G)$-module, for $f \in L_{w}^{p}(G)$, we have

$$
\begin{aligned}
& T\left(L_{x} f\right)=\lim _{\alpha} T\left(u_{\alpha} * L_{x} f\right)=\lim _{\alpha}\left(\left(L_{x} u_{\alpha}\right) * T f\right), \\
& L_{x}(T f)=\lim _{\alpha} L_{x}\left(T\left(u_{\alpha} * f\right)\right)=\lim _{\alpha}\left(\left(L_{x} u_{\alpha}\right) * T f\right) .
\end{aligned}
$$

Hence $T \in \operatorname{Hom}_{G}\left(L_{w}^{p}(G)\right)$. Since $L_{w}^{p}(G)$ is an order-free Banach $L_{w}^{1}(G)$-module, it is easy to prove the converse. So we obtain

$$
\operatorname{Hom}_{G}\left(L_{w}^{p}(G)\right)=\operatorname{Hom}_{L_{w}^{1}(G)}\left(L_{w}^{p}(G)\right) \cong\left(A_{p, w}(G)\right)^{*} .
$$

Let $C_{c}(G)$ denote the space of continuous functions on $G$ with compact support. Since $C_{c}(G)$ is dense in $L_{w}^{p}(G)$ and in $L_{w^{-1}}^{p^{\prime}}(G)$, and the convolution of two functions with compact support has compact support, it follows that $C_{c}(G) \cap A_{p, w}(G)$ is dense in $A_{p, w}(G)$. Also $L_{w}^{p}(G)$ and $A_{p, w}(G)$ are essential Banach $L_{w}^{1}(G)-$ modules under convolution [11]. Hence, for every $v \in A_{p, w}(G)$ and $x \in G, x \rightarrow L_{x} v$ is a continuous function, where $L_{x} v(y)=v(y-x)$ for all $y \in G$.

## 3. $A_{p, w}(G)$ as a Banach $A_{p}(G)$-module

It is well known that the Banach algebra $A_{p}(G)$, called the Figà-Talamanca Herz algebra, has a bounded approximate identity, i.e., there exists $\left(e_{\alpha}\right)_{\alpha \in I} \subset A_{p}(G)$ such that $\left\|e_{\alpha}\right\|_{A_{p}} \leq 1$ and $\lim _{\alpha}\left\|e_{\alpha} u-u\right\|_{A_{p}}=0$ for all $u \in A_{p}(G)$ (see [4], [5], [8] and [15]).

Theorem 3.1 $A_{p, w}(G)$ is an essential, order-free Banach $A_{p}(G)$-module under pointwise multiplication.
Proof. Let us consider two functions $u=h^{\sim} * k$ and $v=f^{\sim} * g$, where $f, g, h, k \in C_{c}(G)$. Then

$$
\begin{aligned}
\|u\|_{A_{p}} & \leq\|h\|_{p}\|k\|_{p^{\prime}} \\
\|v\|_{A_{p, w}} & \leq\|f\|_{p, w}\|g\|_{p^{\prime}, w^{-1}} \\
u(x) & =\left(h^{\sim} * k\right)(x) \\
& =\int_{G} h(-x-z) k(-z) d z=\int_{G} h(-x-y-z) k(-y-z) d z \\
v(x) & =\left(f^{\sim} * g\right)(x) \\
& =\int_{G} f^{\sim}(x+y) g(-y) d y=\int_{G} f(-x-y) g(-y) d y
\end{aligned}
$$

$$
\begin{aligned}
(u v)(x) & =\int_{G} \int_{G} f(-x-y) g(-y) h(-x-y-z) k(-y-z) d y d z \\
& =\int_{G} A_{z}(x) d z,
\end{aligned}
$$

where $A_{z}=a_{z}^{\sim} * b_{z}$ and $a_{z}, b_{z} \in C_{c}(G)$ are given by $a_{z}(x)=f(x) h(x-z), b_{z}(x)=g(x) k(x-z)$. Since the mapping $z \rightarrow A_{z}$ is continuous from $G$ into $A_{p, w}(G)$, the integral $\int_{G} A_{z}(x) d z$ is in $A_{p, w}(G)$. By [12], it suffices to show that

$$
\int_{G}\left\|A_{z}\right\|_{A_{p, w}} d z \leq\|f\|_{p, w}\|g\|_{p^{\prime}, w^{-1}}\|h\|_{p}\|k\|_{p^{\prime}}
$$

It follows from the Hölder inequality that

$$
\begin{aligned}
\int_{G}\left\|A_{z}\right\|_{A_{p, w}} d z & \leq \int_{G}\left\|a_{z}\right\|_{p, w}\left\|b_{z}\right\|_{p^{\prime}, w^{-1}} d z \leq \\
& \leq\left(\int_{G}\left\|a_{z}\right\|_{p, w}^{p} d z\right)^{\frac{1}{p}}\left(\int_{G}\left\|b_{z}\right\|_{p^{\prime}, w^{-1}} d z\right)^{\frac{1}{p^{\prime}}} \\
= & \left(\int_{G}|f(x) w(x)|^{p} d x \int_{G}|h(x-z)|^{p} d z\right)^{\frac{1}{p}} . \\
& \left(\int_{G}\left|g(x) w^{-1}(x)\right|^{p^{\prime}} d x \int_{G}|k(x-z)|^{p^{\prime}} d z\right)^{\frac{1}{p^{\prime}}} \\
= & \|f\|_{p, w}\|g\|_{p^{\prime}, w^{-1}}\|h\|_{p}\|k\|_{p^{\prime}} .
\end{aligned}
$$

So we obtain that

$$
\|u v\|_{A_{p, w}} \leq\|u\|_{A_{p}}\|v\|_{A_{p, w}},
$$

where $u \in A_{p}(G), v \in A_{p, w}(G)$.
Since $C_{c}(G) \cap A_{p, w}(G)$ is dense in $A_{p, w}(G)$ and $A_{p}(G)$ has a bounded approximate identity, it follows that $A_{p, w}(G)$ is an essential Banach module and is order-free, i.e., if $v \in A_{p, w}(G)$ and $u v=0$ for all $u \in A_{p}(G)$, then $v=0$.

Remark 3.2 Since $A_{2}(G) \subset A_{r}(G) \subset A_{p}(G)$ for $1<p<r<2$ or for $2 \leq r<p<\infty, A_{p, w}(G)$ is also $A_{r}(G)$-module for $1<p<r \leq 2$ or for $2 \leq r<p<\infty$, that is, $A_{r}(G) A_{p, w}(G) \subset A_{p, w}(G)$.

In particular, for $r=2$, since $A_{2}(G)$ can be identified with $L^{1}(\hat{G})^{\wedge}=\mathcal{F}\left(L^{1}(\hat{G})\right)$, where $\mathcal{F}$ denotes the Fourier transform, $A_{p, w}(G)$ has the structure of an $L^{1}(\hat{G})$-module, and the action of $\varphi$ is given by $\varphi^{\wedge} h \in$ $A_{p, w}(G)$ for $\varphi \in L^{1}(\hat{G}), h \in A_{p, w}(G)$.

## ÖZTOP

4. Multipliers from $A_{p}(G)$ to $A_{p, w}(G)$

Proposition $4.1\left[\operatorname{Hom}_{A_{p}(G)}\left(A_{p}(G), A_{p, \omega}(G)\right)\right]_{e} \cong A_{p, \omega}(G)$.
Proof. Since $A_{p, \omega}(G)$ is an essential module, it follows from Theorem 4.5 in [13].

Proposition 4.2 If $G$ is compact, then $\operatorname{Hom}_{A_{p}(G)}\left(A_{p}(G), A_{p, \omega}(G)\right)$ is an essential $A_{p}(G)$-module.
Proof. Since $G$ is compact $A_{p, \omega}(G)=A_{p}(G)$ and $\operatorname{Hom}_{A_{p}(G)}\left(A_{p}(G), A_{p}(G)\right) \cong A_{p}(G)$ by Theorem 5.2 in [10]. Again, using Theorem 4.5 in [13], we get the result.

Since $A_{p, w}(G)$ is a Banach $A_{p}(G)$-module, in particular, a fixed $v \in A_{p, w}(G)$ induces a linear operator $T_{v}$ from $A_{p}(G)$ into $A_{p, w}(G)$ by means of

$$
T_{v}(u)=u v, \quad u \in A_{p}(G) .
$$

It is easy see that $T_{v}$ is a multiplier from $A_{p}(G)$ into $A_{p, w}(G)$.

Remark 4.3 Using the fact of the inclusion $A_{p, \omega}(G) \subset \operatorname{Hom}_{A_{p}(G)}\left(A_{p}(G), A_{p, \omega}(G)\right)$, we have the following result.

Proposition 4.4 $A_{p, \omega}(G)$ is dense in $\operatorname{Hom}_{A_{p}(G)}\left(A_{p}(G), A_{p, \omega}(G)\right)$ for the strong operator topology on $A_{p, \omega}(G)$. Proof. Let $\left(e_{\alpha}\right)_{\alpha \in I}$ be a bounded approximate identity for $A_{p}(G)$ and let $T \in \operatorname{Hom}_{A_{p}(G)}\left(A_{p}(G), A_{p, \omega}(G)\right)$. Put $u_{\alpha}=T\left(e_{\alpha}\right)$. Since $A_{p, \omega}(G)$ is an essential Banach $A_{p}(G)$ module for every $u \in A_{p}(G)$, we can write

$$
\left\|T_{u_{\alpha}}(u)-T(u)\right\|=\left\|u_{\alpha} u-T(u)\right\|=\left\|\left(T e_{\alpha}\right) u-T(u)\right\|=\left\|(T u) e_{\alpha}-T(u)\right\| \rightarrow 0 .
$$

for all $u \in A_{p}(G)$.

Theorem 4.5 If $G$ is a nondiscrete locally compact abelian group and $T_{v}: A_{p}(G) \rightarrow A_{p, w}(G)$ is a compact multiplier, then $T_{v}$ is trivial.

Proof. Let $V$ be an open set in $G$ whose closure is compact. As it is well known [9], for every $x \in V$, there exists $u \in A_{p}(G)$ such that 1) $\left.\left.u(x)=1 ; 2\right) \operatorname{supp} u \subset V ; 3\right)\|u\|_{A_{p}}=1$. Now assume that $v \neq 0$. Then there exists an open set $V$ with compact closure and $\delta>0$ such that $|v(x)| \geq \delta$ for all $x \in V$. Let $\left(V_{n}\right)$ be a sequence of disjoint open sets in $V$ such that the closure of any $V_{n}(n=1,2, \ldots)$ is compact. Choose a sequence $\left(x_{n}\right)$ such that $x_{n} \in V_{n}(n=1,2, \ldots)$. As we already noted above, there exists a sequence $\left(u_{n}\right)$ in $A_{p}(G)$ such that $u_{n}\left(x_{m}\right)=\delta_{n m}$ (here, $\delta_{n m}$ is the Kronecker symbol) and $\left\|u_{n}\right\|_{A_{p}}=1$.

## ÖZTOP

For $n \neq m$ we have

$$
\begin{aligned}
\left\|T_{v} u_{n}-T_{v} u_{m}\right\|_{A_{p, w}} & \geq\left\|v u_{n}-v u_{m}\right\|_{\infty, w^{-1}} \\
& \geq \sup _{k}\left(\left|v\left(x_{k}\right) u_{n}\left(x_{k}\right)-v\left(x_{k}\right) u_{m}\left(x_{k}\right)\right| \frac{1}{w\left(x_{k}\right)}\right) \\
& \geq \delta \inf \left\{\left.\frac{1}{w(x)} \right\rvert\, x \in \bar{V}\right\} \sup _{k}\left|u_{n}\left(x_{k}\right)-u_{m}\left(x_{k}\right)\right| \\
& =\inf \left\{\left.\frac{1}{w(x)} \right\rvert\, x \in \bar{V}\right\} .
\end{aligned}
$$

This contradicts compactness of $T_{v}$.

Let us note that we have the inclusion

$$
\operatorname{Hom}_{A_{p}(G)}\left(A_{p}(G), E\right) \subset \operatorname{Hom}_{A_{p}(G)}\left(A_{p}(G), A_{p, w}(G)\right)
$$

whenever $E$ is a Banach $A_{p}(G)$-module contained in $A_{p, w}(G)$. Using the method in [2], we get the following theorem.
Theorem 4.6 Let $E$ be a Banach $A_{p}(G)$-module contained in $A_{p, w}(G)$. If $T \in \operatorname{Hom}_{A_{p}(G)}\left(A_{p}(G), A_{p, w}(G)\right)$ such that the net $T\left(e_{a}\right)$ converges in $E$, where $\left(e_{\alpha}\right)_{\alpha \in I}$ is a bounded approximate identity of $A_{p}(G)$, then $T$ is a multiplier from $A_{p}(G)$ to $E$.

Proof. For $u \in A_{p}(G)$, consider $\left(x_{\alpha}\right)$ defined by $x_{\alpha}=e_{\alpha} u T\left(e_{\alpha}\right)$. Since $T \in \operatorname{Hom}_{A_{p}(G)}\left(A_{p}(G), A_{p, w}(G)\right)$, we have

$$
\begin{aligned}
\left\|x_{\alpha}-x_{\beta}\right\|_{E} & =\left\|e_{\alpha} u T\left(e_{\alpha}\right)-e_{\beta} u T\left(e_{\beta}\right)\right\|_{E} \\
& \leq\left\|e_{\alpha} u T\left(e_{\beta}\right)-e_{\beta} u T\left(e_{\beta}\right)\right\|_{E}+\left\|e_{\alpha} u T\left(e_{\alpha}\right)-e_{\alpha} u T\left(e_{\beta}\right)\right\|_{E} \\
& \leq\left\|e_{\alpha} u-e_{\beta} u\right\|_{A_{p}}\left\|T\left(e_{\beta}\right)\right\|_{E}+\left\|e_{\alpha} u\right\|_{A_{p}}\left\|T\left(e_{\alpha}\right)-T\left(e_{\beta}\right)\right\|_{E} \rightarrow 0,
\end{aligned}
$$

which shows that $\left(x_{\alpha}\right)$ is a Cauchy net in $E$. Hence for $u \in A_{p}(G)$, the net $x_{\alpha}=e_{\alpha} u T\left(e_{\alpha}\right)$ converges to an element $x$ in $E$. Now we want to show that $x$ is equal to $T u$ as an element in $A_{p, w}(G)$.

Let $h \in A_{p}(G)$. Then $h x_{\alpha}=\left(h e_{\alpha}\right)\left(u T\left(e_{\alpha}\right)\right)=\left(h e_{\alpha}\right)\left(T\left(u e_{\alpha}\right)\right) \rightarrow h T u$ in $A_{p, w}(G)$. On the other hand, since $x_{\alpha} \rightarrow x$ in $E$, we have $h x_{\alpha} \rightarrow h x$ in $A_{p, w}(G)$. Hence we have that $x=T u$.

It is easy to obtain the following corollary.
Corollary 4.7 Let $E$ be a Banach $A_{p}(G)$-module contained in $A_{p, w}(G)$ and let $A=\left\{T \in \operatorname{Hom}_{A_{p}(G)}\left(A_{p}(G), A_{p, w}(G)\right) \mid\left(T\left(e_{\alpha}\right)\right)\right.$ converges in $\left.E\right\}$, where $\left(e_{\alpha}\right)_{\alpha \in I}$ is a bounded approximate identity of $A_{p}(G)$. Then the multiplier space $\operatorname{Hom}_{A_{p}(G)}\left(A_{p}(G), E\right)$ is identified with the subspace $A$ of $\operatorname{Hom}_{A_{p}(G)}\left(A_{p}(G), A_{p, w}(G)\right)$.

Similarly, if we consider that $A_{p, w}(G)$ is a Banach $L_{w}^{1}(G)$-module under convolution, we get the following theorem.

Theorem 4.8 Let $E \subseteq A_{p, w}(G)$ two Banach $L_{w}^{1}(G)$-modules then $T \in \operatorname{Hom}_{L_{w}^{1}(G)}\left(L_{w}^{1}(G), A_{p, w}(G)\right)$ is a multiplier from $L_{w}^{1}(G)$ to $E$ if and only if $\left(T e_{\alpha}\right) \in E$ and $\sup _{\alpha}\left\|\left(T e_{\alpha}\right)\right\|_{E}<\infty$ where $\left(e_{\alpha}\right)_{\alpha \in I}$ is a bounded approximate identity of $L_{w}^{1}(G)$.

## Acknowledgement

The author would like to thank the referees for carefully reading the manuscript.

## References

[1] Bonsall, F.F., Duncan, J. : Complete Normed Algebras, Springer-Verlag, Berlin and New York, 1973.
[2] Datry, C., Muraz, G., Quek, T.S. and Yap, L.Y.H. : Homomorphismes de $L^{1}(G)$-modules, prépublication de l'Institut Fourier 76 (1987).
[3] Doran, R. S., Wichmann, J. : Approximate Identities and Factorization in Banach Modules, Lecture Notes in Mathematics 768, Springer-Verlag, Berlin and New York, 1979.
[4] Eymard, P. : L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math.France 92, 181-236 (1964).
[5] Figà-Talamanca, A. : Multipliers of p-integrable functions, Bull. Amer. Math. Soc. 70, 666-669 (1964).
[6] Friedberg, S.H. : Compact multipliers on Banach algebras, Proc. Amer. Math. Soc. 77 , 210 (1979).
[7] Grothendieck, A. : Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc.16, Providence, (1955).
[8] Herz, C. : The theory of p-spaces with an application to convolution operators, Trans. Amer. Math. Soc. 154, 69-82 (1971).
[9] Herz, C. : Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23, 91-123 (1973).
[10] Lai, H. and Chen, I.Harmonic analysis on the Fourier algebra $A_{1, p}(G)$, J. Austral. Math. Soc. (Series A)30, 438-452 (1981).
[11] Öztop, S. and Gürkanlı A. T. : Multipliers and tensor products of weighted $L^{p}$-spaces, Acta. Math. Sci. Ser. B 21, 41-49 (2001).
[12] Reiter, H. : Classical Harmonic Analysis and Locally Compact Groups, Oxford Univ. Press, 1968.
[13] Rieffel, M.A. : Induced Banach representations of Banach algebras and locally compact groups, J. Funct. Anal. 1, 443-491 (1967).
[14] Rieffel, M.A. : Multipliers and tensor products of $L^{p}$-spaces of locally compact groups, Studia Math. 33, 71-82 (1969).
[15] Spector, R. : Sur la structure locale des groupes abéliens localement compacts, Bull. Soc. Math. France, Mémoire 24 (1970).

Serap ÖZTOP
Received: 16.04.2009
İstanbul University, Faculty of Science,
Department of Mathematics,
34134 Vezneciler, İstanbul-TURKEY
e-mail: oztops@istanbul.edu.tr


[^0]:    2000 AMS Mathematics Subject Classification: Primary 43A20, 43A22, 43A15; Secondary 46L07, 46B50.

