

# Invariant subspace problem for positive L-weakly and M-weakly compact operators

Cevriye Tonyalı and Erdal Bayram

#### Abstract

In this paper, we show that positive L-weakly and M-weakly compact operators on some real Banach lattices have a non-trivial closed invariant subspace. Also, we prove that any positive L-weakly (or M-weakly) compact operator  $T: E \to E$  has a non-trivial closed invariant subspace if there exists a Dunford-Pettis operator  $S: E \to E$  satisfying  $0 \le T \le S$ , where E is Banach lattice.

**Key word and phrases:** Invariant subspace, L- and M-weakly compact operator, Polynomially L-weakly (M-weakly) compact operator, Dunford-Pettis operator.

## 1. Introduction

Bulk of the papers in Banach lattice theory concern the open problem every positive operator on a Banach lattice of dimension at least two has a non-trivial closed invariant subspace. The problem was solved for positive compact operators on Banach lattices [1], [7], [12].

Our objective in this work is to investigate whether or not every positive L-weakly and M-weakly operator on a real Banach lattice does posses a non-trivial closed invariant subspace. First, we will prove that every L-weakly compact operator on a Banach lattice without order continuous norm has a non-trivial closed invariant subspace. Also, we shall show that if E is a Banach lattice such that either E and E' has order continuous norm, then every bounded operator that commutes with a positive L-weakly (M-weakly) compact operator that on E has a non-trivial closed invariant subspace. Furthermore, we will investigate invariant subspaces of polynomially L-weakly (M-weakly) compact operators for Banach lattices without order continuous norm. Next, we will prove that every bounded operator that commutes with a positive M-weakly (or positive L-weakly) compact operator on a Banach lattice E has a non-trivial closed invariant subspace if it is dominated by a Dunford-Pettis operator. Also, we will see that any positive operator on a Banach lattice of which order dual has order continuous norm has a non-trivial closed invariant subspace if it is dominated by a Dunford-Pettis operator.

2000 AMS Mathematics Subject Classification: Primary 47A15, 46A40, 46B40; Secondary 47B33, 47B60, 46B42.

## 2. Main results

Throughout this paper, unless otherwise state, E will denote an infinite dimensional separable real Banach lattice with norm dual E' and all operators on Banach lattices will be assumed to be non-scalar and non-zero. In the rest of this article, by the term "an operator" between two Banach lattices, we shall mean "a linear norm bounded operator". We refer the reader to [5], [14] and [16] for any unexplained terms from Banach lattice theory and for further details on the theory of invariant subspaces see [1], [2], [15].

Recall that a non-empty bounded subset A of Banach lattice E is said to be L-weakly compact if  $||x_n|| \to 0$  for every disjoint sequence  $(x_n)$  in the solid hull of A. A bounded linear operator T from a Banach space X into E is called L-weakly compact if  $T(U_X)$  is L-weakly compact in E, where  $U_X$  denotes the closed unit ball of X. A bounded linear operator from E into X is M-weakly compact if  $||Tx_n|| \to 0$  as  $n \to \infty$  for every disjoint sequence  $(x_n)$  in  $U_E$ . That L-weakly compact and M-weakly compact operators are weakly compact operators was shown by P. Meyer-Nieberg [13]. It is known that

$$E^a = \{x \in E : \text{ every monoton sequence in } [0, |x|] \text{ is convergent}\}$$

is the maximal closed order ideal in E on which the induced norm is order continuous and it is known that any L-weakly compact subset is contained in  $E^a$  ([14], p. 92 and p. 212). Recall that a Banach lattice E is said to have an order continuous norm if  $x_{\alpha} \downarrow 0$  in E implies  $||x_{\alpha}|| \downarrow 0$ .

**Proposition 1** If E is a Banach lattice without order continuous norm, then every L-weakly compact operator  $T: E \to E$  has a non-trivial closed invariant ideal.

**Proof.** If E does not have order continuous norm,  $E^a \neq E$  since  $E^a$  has order continuous norm. Take any  $x \in E^a$  (we can suppose that  $||x|| \leq 1$  without loss of generality).  $T(U_E) \subset E^a$  since T is an L-weakly compact operator and every L-weakly compact subset is contained in  $E^a$ . Therefore  $T(x) \in E^a$  i.e. ,  $T(E^a) \subseteq E^a$ . If  $E^a = \{0\}$  then  $T(U_E) = \{0\}$  which implies that T = 0. Since we take T different from zero operator,  $E^a \neq \{0\}$ . Hence  $E^a$  is the invariant ideal for T which we are looking for.

Corollary 1 Let E be a Banach lattice without order continuous norm, let  $E^a \neq \{0\}$  and let  $T: E \to E$  be a non-scalar regular operator. If there exists some element  $0 < x_0 \in E^a$  and  $n \in \mathbb{N}$  such that  $T^n x_0 \neq 0$  and  $T^n: E \to E$  is an L-weakly compact operator, then every regular operator on E has a non-trivial invariant closed order ideal.

**Proof.** Assume that  $T^n: E \to E$  is an L-weakly compact operator for some  $n \in \mathbb{N}^+$  and  $S: E \to E$  is any regular operator. Since in  $\mathcal{L}^r(E)$ , the space of the regular operators on E, the L-weakly compact regular operators form closed two-sided ideal,  $S^mT^n: E \to E$  is an L-weakly compact operator for each  $m \in \mathbb{N}^+$ . Thus,  $S^mT^n(x_0) \in E^a$  for all  $m \in \mathbb{N}^+$ . Next, choose the closed order ideal W generated by

$$\{T^n x_0, ST^n x_0, S^2 T^n x_0, ..., S^m T^n x_0, ...\}.$$

Hence,  $S(W) \subseteq W$ , it follows that W is a non-trivial invariant closed order ideal for S.

The order ideal generated by an element  $0 < x \in E$  is precisely

$$I_x = \{ y \in E : \exists \lambda > 0 \text{ with } |y| \le \lambda x \}.$$

For every  $z \in I_x$ ,

$$||z||_{\infty} = \inf \{\lambda > 0; ||z| \le \lambda x \}$$

defines a norm on  $I_x$ . Thus,  $(I_x, \|\cdot\|_{\infty})$  is an AM-space and, moreover, its closed unit ball is the interval [-x, x], see [4], [5], [14].

**Theorem 1** If  $T: E \to E$  is a positive L-weakly compact operator on a Banach lattice E with order continuous norm, then the operator  $T^2$  is compact.

**Proof.** If  $T: E \to E$  is a positive L-weakly compact operator, then for each  $n \in \mathbb{N}^+$  there exists some  $0 < u_n \in E$  lying in the order ideal generated by T(E) satisfying

$$\left\| (|Tx| - u_n)^+ \right\| < n^{-1}$$

for all  $x \in U_E$  ([5], Th. 18.9, p. 313). From the identity  $|Tx| = |Tx| \wedge u_n + (|Tx| - u_n)^+$  we see that

$$T(U_E^+) \subseteq [0, u_n] + n^{-1}U_E$$
 (2.1)

for all  $n \in \mathbb{N}^+$ . Let  $0 < y = \sum_{n=1}^{\infty} \frac{1}{2^n \|u_n\|} u_n \in E^+$  and let  $I_y$  be the order ideal generated by y. The restriction  $T|_{I_y}: (I_y, \|\centerdot\|_{\infty}) \to E$  is a positive L-weakly compact operator, and  $(I_y, \|\centerdot\|_{\infty})^{'}$  is an AL-space [([5], Th. 18.11, p. 315). Thus, since  $I_y$  is an AM-space, it satisfies Dunford-Pettis property and so  $T|_{I_y}$  is a Dunford-Pettis operator by ([5], Theorems 19.4 and 19.6). Moreover we know that  $I_y^{'}$  is an AL-space with order continuous norm and E has order continuous norm by hypothesis, therefore,  $T|_{I_y}: I_y \to E$  is compact ([6], Theorem 2.12(2)ii). Let  $\alpha_n = 2^n \|u_n\|$  for every  $n \in \mathbb{N}^+$ . From the inequality  $u_n \leq \alpha_n y$  and (2.1) we obtain that

$$T^{2}(U_{E}^{+}) \subseteq T[0, u_{n}] + n^{-1} ||T|| U_{E} \subseteq \alpha_{n} T[0, y] + n^{-1} ||T|| U_{E}$$

and

$$T^{2}(U_{E}^{+}) \subseteq \alpha_{n}T[0, y] + n^{-1} ||T|| U_{E} = \alpha_{n} T|_{I_{y}}[0, y] + n^{-1} ||T|| U_{E}.$$

Since  $\{n^{-1} || T || U_E\}$  is a norm-neighborhood system at zero,  $T^2(U_E^+)$  is a norm-totally bounded set, from which it follows that the operator  $T^2$  is compact.

Corollary 2 Every L-weakly compact operator on a Banach lattice has a non-trivial closed invariant subspace.

As an immediate consequence of Theorem 1, we obtain the following result:

Corollary 3 If T is a positive M-weakly compact operator on a Banach lattice E such that  $E^{'}$  has order continuous norm, then  $T^2$  is compact.

**Proof.** It is enough to consider that T' is a positive L-weakly compact operator.

**Theorem 2** Let E and F be a Banach lattice and  $T: E \to F$  be a positive M-weakly compact operator. If F has order continuous norm, then the operator T is compact.

**Proof.** If  $T: E \to F$  is a positive M-weakly compact operator, then for each  $n \in \mathbb{N}^+$  there exists some  $0 < u_n \in E$  such that

$$\left\| T\left(|x| - u_n\right)^+ \right\| < n^{-1}$$

holds for all  $x \in U_E$  ([5], Th. 18.9, p.313).

Let  $y = \sum_{n=1}^{\infty} \frac{1}{2^n ||u_n||} u_n \in E^+$  and let  $I_y$  be the order ideal generated by y. It is clear that y is well defined. Since the operator  $T: E \to F$  is M-weakly compact, the operator  $T|_{I_y}: (I_y, \|\centerdot\|_{\infty}) \to F$  is M-weakly compact, and so  $T|_{I_y}$  is compact by Theorem 2.12. in [6]. Let  $\alpha_n$  be as mentioned in the proof of above theorem. From the inequality  $u_n \leq \alpha_n y$  and the identity  $|x| = |x| \wedge u_n + (|x| - u_n)^+$  we see that

$$T(U_E^+) \subseteq T[0, u_n] + n^{-1}U_F \subseteq \alpha_n T[0, y] + n^{-1}U_F.$$

Thus, we obtain that

$$T(U_E^+) \subseteq \alpha_n T[0, y] + n^{-1} U_F = \alpha_n T|_{I_y}[0, y] + n^{-1} U_F.$$

Moreover,  $T|_{I_y}[0,y] \subset F$  is a norm-totally bounded set since  $T|_{I_y}$  is a compact operator. Hence,  $T\left(U_E^+\right)$  is also a norm-totally bounded set because  $\left\{n^{-1}U_F\right\}$ ,  $n \in \mathbb{N}^+$  is a norm-neighborhood system at zero. Therefore, T is a compact operator, as desired.

Since the dual of an L-weakly compact operator is M-weakly compact, we can state the following result:

**Corollary 4** Let  $T: E \to F$  be a positive L-weakly compact operator between Banach lattices. If  $E^{'}$  has order continuous norm, then T is compact.

We obtain another consequence of Theorem 1 and 2:

Corollary 5 If E is a Banach lattice such that either E or  $E^{'}$  has order continuous norm, then every bounded operator that commutes with a positive L-weakly (positive M-weakly) compact operator on E has a non-trivial closed invariant subspace.

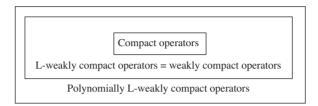
Let T be a bounded operator on a Banach lattice E. T is said to be a polynomially L-weakly (polynomially M-weakly) compact operator whenever there exists a non-zero polynomial p such that p(T) is L-weakly (M-weakly) compact. It is clear that every L-weakly compact operator on a Banach lattice is polynomially L-weakly compact, but sometimes the converse of this statement is false even for AL-spaces. The following example illustrates this point.

**Example 1** Define an operator  $T: L^1[0,1] \to L^1[0,1]$  by

$$Tf(x) := \begin{cases} 0 & \text{if } 0 \le x \le 1/2 \\ f(x - \frac{1}{2}) & \text{if } 1/2 < x \le 1, \end{cases}$$

then T is not weakly compact, but T is polynomially L-weakly compact since  $T^2 = 0$ .

The following diagram is held for all operators defined on AL-spaces.



Again, we will consider Banach lattices in different properties while we seek invariant subspaces for polynomially L-weakly compact operators.

**Theorem 3** Every polynomially L-weakly compact operator on a Banach lattice without order continuous norm has a non-trivial closed invariant subspace.

**Proof.** Let E be a Banach lattice without order continuous norm and  $T: E \to E$  be a polynomially L-weakly compact operator. Choose a non-zero polynomial  $p(t) = a_0 + a_1t + a_2t^2 + ... + a_{n-1}t^{n-1} + a_nt^n$  such that p(t) is L-weakly compact.

Assume that p(T) = 0 (In this case, there exists a non-zero element x in E such that p(T)(x) = 0). Let V denote the non-zero closed subspace generated by the set  $\{x, Tx, ..., T^{n-1}x\}$ . Since E is infinite dimensional, we have  $V \neq E$  and we can see easily that V is T-invariant.

Now suppose that  $p(T) \neq 0$ . Fix any non-zero vector  $x_0 \in E^a$  such that  $p(T)(x_0) \neq 0$ . Since p(T) is L-weakly compact, we have  $p(T)(E^a) \subset E^a$  by Prop.1. Moreover, for each  $k = 0, 1, 2..., T^k p(T)(E^a) = p(T)T^k(E^a) \subset E^a$  holds because of L-weakly compactness of  $p(T)T^k$ . Let V be the non-zero closed subspace generated by the set  $\{p(T)(x_0), Tp(T)(x_0), T^2p(T)(x_0), ..., T^kp(T)(x_0), ..., T^kp(T)(x_0), ...\} \subset E^a$ . Since E does not have order continuous norm, again we have  $V \neq E$ , and it can be seen that V is T-invariant.

**Remark 1** Not every operator p(T), where p is a polynomial, is positive when T is positive. Thus we cannot say that every polynomially L-weakly compact operator on a Banach lattice with order continuous norm has a non-trivial invariant subspace.

Let X, Y be Banach spaces and let E be a Banach lattice. A linear operator  $T: E \to X$  is called AM-compact if T[-x,x] is relatively compact for every  $x \in E^+$ . And, we say that  $T: X \to Y$  is a Dunford-Pettis operator whenever  $x_n \xrightarrow{w} 0$  in X implies  $\lim ||Tx_n|| = 0$  [5], [10], [11], [14]. The o-weakly compact operators have been characterized by P.G. Dodds [8]. Recall that a continuous operator  $T: E \to X$  is o - weakly compact whenever T[0,x] is a relatively weakly compact subset of X for each  $0 < x \in E$ . It is clear that every weakly compact operator is o-weakly compact.

### TONYALI, BAYRAM

**Theorem 4** Let E be a Banach lattice and  $T: E \to E$  be a positive M-weakly compact operator. If there exists a Dunford-Pettis operator  $S: E \to E$  such that  $0 \le T \le S$ , then the operator  $T^3$  is compact.

**Proof.** Assume that  $T: E \to E$  is a positive M-weakly compact operator and  $S: E \to E$  is a Dunford-Pettis operator satisfying  $0 \le T \le S$ . Thus,  $T^2: E \to E$  is a Dunford-Pettis operator by ([5], Cor. 19.15, p. 340). Moreover, the operator T is o-weakly compact because it is an M-weakly compact operator ([5], p. 311). Thus, T[0,x] is a relatively weakly compact set for every  $x \in E^+$ . Therefore,  $T^2(T[0,x]) = T^3[0,x]$  is a norm-totally bounded set for every  $x \in E^+$  since the Dunford-Pettis operator  $T^2$  carries relatively weakly compact subsets of E onto norm-totally bounded subsets of E ([5], Th. 19.3, p. 334). It follows that the M-weakly compact operator  $T^3$  is AM-compact. This implies that  $T^3$  is a compact operator ([14], Prop. 3.7.4, p.219).  $\Box$ 

**Corollary 6** Let E be a Banach lattice and  $T: E \to E$  be a positive M-weakly compact operator. If there exists a Dunford-Pettis operator  $S: E \to E$  such that  $0 \le T \le S$ , then every bounded operator that commutes with T has a non-trivial closed invariant subspace.

We can state a similar theorem to the previous theorem for L-weakly compact operators.

**Theorem 5** Let E be a Banach lattice and  $T: E \to E$  be a positive L-weakly compact operator. If there exists a Dunford-Pettis operator  $S: E \to E$  satisfying  $0 \le T \le S$ , then  $T^4$  is a compact operator.

**Proof.** We already known that  $T^2$  is a Dunford-Pettis operator and the operator T is o-weakly compact as mentioned in Theorem 4. Moreover, the Dunford-Pettis operator  $T^2$  carries the relatively weakly compact sets T[0,x] for each  $x \in E^+$  onto norm-totally bounded sets  $T^3[0,x]$ . Since the operator T is a L-weakly compact, for each  $\varepsilon > 0$  there exists some  $x_{\varepsilon} \in E^+$  such that

$$T\left(U_{E}^{+}\right)\subseteq\left[0,x_{\varepsilon}\right]+\varepsilon U_{E}.$$

Thus, we obtain that

$$T^{4}\left(U_{E}^{+}\right)\subseteq T^{3}\left[0,x_{\varepsilon}\right]+\varepsilon\left\Vert T\right\Vert ^{3}U_{E},$$

and so,  $T^{4}\left(U_{E}^{+}\right)$  is a norm-totally bounded set because  $\left\{ \varepsilon\left\Vert T\right\Vert ^{3}U_{E}\right\}$  is a base at zero.

Corollary 7 Let E be a Banach lattice and  $T: E \to E$  be a positive L-weakly compact operator. If there exists a Dunford-Pettis operator  $S: E \to E$  satisfying  $0 \le T \le S$ , then every bounded operator that commutes with T has a non-trivial closed invariant subspace.

## References

- [1] Abramovich, Y.A.; Aliprantis, C.D., An Invitation to Operator Theory, Graduate Texts in Math, American Math. Soc., Providence, R.I., (2002).
- [2] Abramovich, Y.A.; Aliprantis, C.D., Problems in Operator Theory, Graduate Texts in Math, Vol.51, American Math. Soc., Providence, R.I., (2002).

### TONYALI, BAYRAM

- [3] Aliprantis, C.D.; Burkinshaw, Dunford-Pettis operators on Banach lattices, Tras. Amer. Math. Soc., 274(1), 227-238, (1982).
- [4] Aliprantis, C.D.; Burkinshaw, O., Locally Solid Riesz Spaces, Academic Pres, New-York-London, (1978).
- [5] Aliprantis, C.D.; Burkinshaw, O., Positive Operators, Academic Press, New york-London, (1985).
- [6] Aqzzouz, B., Nouira, R.; Zraoula, L., About positive Dunford-Pettis operators on Banach lattices, Journal Of Math. Analysis And Appl., 324: 49-59, (2006).
- [7] Aronszajn, N.; Smith, K.T., Invariant subspaces of completely continuous operators, Ann. Of Math., 60, 345-350, (1954).
- [8] Dodds, P.G., o-weakly compact mappings of Riesz spaces, Trans. Amer. Math. Soc., 214, 389-402, (1975).
- [9] Dodds, P.G.; Fremlin, D.H., Compact operators in Banach lattices, Israel J. Math., 34, 287-320, (1979).
- [10] Dunford, N.; Pettis, P.J., Linear operations on summable functions, Trans. Amer. Math. Soc., 47, 323-392, (1940).
- [11] Grothendieck, A., Sur les applications lineaires faiblement compactes d'espaces du type C(K), Canad. J. Math., 5, 129-173, MR 15, 438, (1953).
- [12] Lomonosov, V.I., Invariant subspaces of the family of operators that commute with a completely continuous operator, Funktsional. Anal. i Prilozhen, 7, No:3, 55-56, (1973).
- [13] Meyer-Nieberg, P., Über klassen schwach kompakter operatoren in Banachverbänden, Math. Z., 138, 145-159, (1974).
- [14] Meyer-Nieberg, P., Banach Lattices, Springer-Verlag, Berlin-Heidelberg, (1991).
- [15] Radjavi, H.; Rosenthal, P., Invariant Subspaces, Edition, Dover, Mineola, New York, (2003).
- [16] Schaefer, H.H., Banach Lattices and Positive Operators, Springer-Verlag, Berlin, New York, (1974).

Cevriye TONYALI, Erdal BAYRAM
Department of Mathematics
Faculty of Science and Arts, Gazi Universty
Ankara-TURKEY
e-mail: bayramer@gmail.com

Received: 25.03.2009