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Abstract

In this paper, we show that positive L -weakly and M -weakly compact operators on some real Banach

lattices have a non-trivial closed invariant subspace. Also, we prove that any positive L -weakly (or M -

weakly) compact operator T : E → E has a non-trivial closed invariant subspace if there exists a Dunford-

Pettis operator S : E → E satisfying 0 ≤ T ≤ S , where E is Banach lattice.
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1. Introduction

Bulk of the papers in Banach lattice theory concern the open problem every positive operator on a Banach
lattice of dimension at least two has a non-trivial closed invariant subspace. The problem was solved for positive
compact operators on Banach lattices [1], [7], [12].

Our objective in this work is to investigate whether or not every positive L-weakly and M -weakly
operator on a real Banach lattice does posses a non-trivial closed invariant subspace. First, we will prove
that every L-weakly compact operator on a Banach lattice without order continuous norm has a non-trivial

closed invariant subspace. Also, we shall show that if E is a Banach lattice such that either E and E
′

has
order continuous norm, then every bounded operator that commutes with a positive L-weakly (M -weakly)
compact operator that on E has a non-trivial closed invariant subspace. Furthermore, we will investigate
invariant subspaces of polynomially L-weakly (M -weakly) compact operators for Banach lattices without order
continuous norm. Next, we will prove that every bounded operator that commutes with a positive M -weakly
(or positive L-weakly) compact operator on a Banach lattice E has a non-trivial closed invariant subspace if
it is dominated by a Dunford-Pettis operator. Also, we will see that any positive operator on a Banach lattice
of which order dual has order continuous norm has a non-trivial closed invariant subspace if it is dominated by
a Dunford-Pettis operator.
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2. Main results

Throughout this paper, unless otherwise state, E will denote an infinite dimensional separable real

Banach lattice with norm dual E
′

and all operators on Banach lattices will be assumed to be non-scalar and
non-zero. In the rest of this article, by the term “an operator” between two Banach lattices, we shall mean “a
linear norm bounded operator”. We refer the reader to [5], [14] and [16] for any unexplained terms from Banach

lattice theory and for further details on the theory of invariant subspaces see [1], [2], [15].

Recall that a non-empty bounded subset A of Banach lattice E is said to be L-weakly compact if
‖xn‖ → 0 for every disjoint sequence (xn) in the solid hull of A . A bounded linear operator T from a Banach

space X into E is called L-weakly compact if T (UX) is L-weakly compact in E , where UX denotes the closed

unit ball of X . A bounded linear operator from E into X is M -weakly compact if ‖Txn‖ → 0 as n → ∞
for every disjoint sequence (xn) in UE . That L-weakly compact and M -weakly compact operators are weakly

compact operators was shown by P. Meyer-Nieberg [13]. It is known that

Ea = {x ∈ E : every monoton sequence in [0, |x|] is convergent}

is the maximal closed order ideal in E on which the induced norm is order continuous and it is known that any
L-weakly compact subset is contained in Ea ([14], p. 92 and p. 212). Recall that a Banach lattice E is said

to have an order continuous norm if xα ↓ 0 in E implies ‖xα‖ ↓ 0.

Proposition 1 If E is a Banach lattice without order continuous norm, then every L-weakly compact operator
T : E → E has a non-trivial closed invariant ideal.
Proof. If E does not have order continuous norm, Ea �= E since Ea has order continuous norm. Take any
x ∈ Ea (we can suppose that ‖x‖ ≤ 1 without loss of generality). T (UE) ⊂ Ea since T is an L-weakly compact

operator and every L-weakly compact subset is contained in Ea . Therefore T (x) ∈ Ea i.e. , T (Ea) ⊆ Ea .

If Ea = {0} then T (UE) = {0} which implies that T = 0. Since we take T different from zero operator,

Ea �= {0}. Hence Ea is the invariant ideal for T which we are looking for. �

Corollary 1 Let E be a Banach lattice without order continuous norm, let Ea �= {0} and let T : E → E be
a non-scalar regular operator. If there exists some element 0 < x0 ∈ Ea and n ∈ N such that Tnx0 �= 0 and
Tn : E → E is an L-weakly compact operator, then every regular operator on E has a non-trivial invariant
closed order ideal.

Proof. Assume that Tn : E → E is an L-weakly compact operator for some n ∈ N
+ and S : E → E is

any regular operator. Since in Lr(E),the space of the regular operators on E , the L-weakly compact regular

operators form closed two-sided ideal, SmTn : E → E is an L-weakly compact operator for each m ∈ N
+ .

Thus, SmTn (x0) ∈ Ea for all m ∈ N
+ . Next, choose the closed order ideal W generated by

{
Tnx0, STnx0, S

2Tnx0, ..., S
mTnx0, ...

}
.

Hence, S (W ) ⊆ W , it follows that W is a non-trivial invariant closed order ideal for S . �
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The order ideal generated by an element 0 < x ∈ E is precisely

Ix = {y ∈ E : ∃ λ > 0 with |y| ≤ λx} .

For every z ∈ Ix ,
‖z‖∞ = inf {λ > 0; |z| ≤ λx}

defines a norm on Ix . Thus, (Ix, ‖�‖∞) is an AM -space and, moreover, its closed unit ball is the interval

[−x, x] , see [4],[5],[14].

Theorem 1 If T : E → E is a positive L-weakly compact operator on a Banach lattice E with order continuous

norm, then the operator T 2 is compact.

Proof. If T : E → E is a positive L-weakly compact operator, then for each n ∈ N
+ there exists some

0 < un ∈ E lying in the order ideal generated by T (E) satisfying

∥∥∥(|Tx| − un)+
∥∥∥ < n−1

for all x ∈ UE ([5], Th. 18.9, p. 313). From the identity |Tx| = |Tx| ∧ un + (|Tx| − un)+ we see that

T
(
U+

E

)
⊆ [0, un] + n−1UE (2.1)

for all n ∈ N
+ . Let 0 < y =

∑∞
n=1

1
2n‖un‖un ∈ E+ and let Iy be the order ideal generated by y . The

restriction T |Iy
: (Iy , ‖�‖∞) → E is a positive L-weakly compact operator, and (Iy , ‖�‖∞)

′
is an AL-space

[([5], Th. 18.11, p. 315). Thus, since Iy is an AM -space, it satisfies Dunford-Pettis property and so T |Iy
is

a Dunford-Pettis operator by ([5], Theorems 19.4 and 19.6). Moreover we know that I
′

y is an AL-space with

order continuous norm and E has order contiuous norm by hypothesis, therefore, T |Iy
: Iy → E is compact

([6], Theorem 2.12(2)ii). Let αn = 2n ‖un‖ for every n ∈ N
+ . From the inequality un ≤ αny and (2.1) we

obtain that
T 2

(
U+

E

)
⊆ T [0, un] + n−1 ‖T‖UE ⊆ αnT [0, y] + n−1 ‖T‖UE

and
T 2

(
U+

E

)
⊆ αnT [0, y] + n−1 ‖T‖UE = αn T |Iy

[0, y] + n−1 ‖T‖UE .

Since
{
n−1 ‖T‖UE

}
is a norm-neighborhood system at zero, T 2

(
U+

E

)
is a norm-totally bounded set, from

which it follows that the operator T 2 is compact. �

Corollary 2 Every L-weakly compact operator on a Banach lattice has a non-trivial closed invariant subspace.

As an immediate consequence of Theorem 1, we obtain the following result:

Corollary 3 If T is a positive M -weakly compact operator on a Banach lattice E such that E
′

has order

continuous norm, then T 2 is compact.
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Proof. It is enough to consider that T
′

is a positive L-weakly compact operator. �

Theorem 2 Let E and F be a Banach lattice and T : E → F be a positive M -weakly compact operator. If
F has order continuous norm, then the operator T is compact.

Proof. If T : E → F is a positive M -weakly compact operator, then for each n ∈ N
+ there exists some

0 < un ∈ E such that ∥∥∥T (|x| − un)+
∥∥∥ < n−1

holds for all x ∈ UE ([5], Th. 18.9, p.313).

Let y =
∑∞

n=1
1

2n‖un‖un ∈ E+ and let Iy be the order ideal generated by y . It is clear that y is

well defined. Since the operator T : E → F is M -weakly compact, the operator T |Iy
: (Iy, ‖�‖∞) → F is

M -weakly compact, and so T |Iy
is compact by Theorem 2.12. in [6]. Let αn be as mentioned in the proof of

above theorem. From the inequality un ≤ αny and the identity |x| = |x| ∧ un + (|x| − un)+ we see that

T
(
U+

E

)
⊆ T [0, un] + n−1UF ⊆ αnT [0, y] + n−1UF .

Thus, we obtain that

T
(
U+

E

)
⊆ αnT [0, y] + n−1UF = αn T |Iy

[0, y] + n−1UF .

Moreover, T |Iy
[0, y] ⊂ F is a norm-totally bounded set since T |Iy

is a compact operator. Hence, T
(
U+

E

)
is

also a norm-totally bounded set because
{
n−1UF

}
, n ∈ N

+ is a norm-neighborhood system at zero. Therefore,

T is a compact operator, as desired. �

Since the dual of an L-weakly compact operator is M -weakly compact, we can state the following result:

Corollary 4 Let T : E → F be a positive L-weakly compact operator between Banach lattices. If E
′

has order
continuous norm, then T is compact.

We obtain anohter consequence of Theorem 1 and 2:

Corollary 5 If E is a Banach lattice such that either E or E
′

has order contiuous norm, then every bounded
operator that commutes with a positive L-weakly (positive M -weakly) compact operator on E has a non-trivial
closed invariant subspace.

Let T be a bounded operator on a Banach lattice E . T is said to be a polynomially L-weakly

(polynomially M -weakly) compact operator whenever there exists a non-zero polynomial p such that p(T )

is L-weakly (M -weakly) compact. It is clear that every L-weakly compact operator on a Banach lattice is
polynomially L-weakly compact, but sometimes the converse of this statement is false even for AL-spaces. The
following example illustrates this point.
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Example 1 Define an operator T : L1 [0, 1] → L1 [0, 1] by

Tf (x) :=
{

0 if 0 ≤ x ≤ 1/2
f

(
x − 1

2

)
if 1/2 < x ≤ 1,

then T is not weakly compact, but T is polynomially L-weakly compact since T 2 = 0.

The following diagram is held for all operators defined on AL-spaces.

Compact operators

L-weakly compact operators = weakly compact operators

Polynomially L-weakly compact operators

Again, we will consider Banach lattices in different properties while we seek invariant subspaces for
polynomially L-weakly compact operators.

Theorem 3 Every polynomially L-weakly compact operator on a Banach lattice without order continuous norm
has a non-trivial closed invariant subspace.

Proof. Let E be a Banach lattice without order continuous norm and T : E → E be a polynomially

L-weakly compact operator. Choose a non-zero polynomial p (t) = a0 + a1t + a2t
2 + ...+ an−1t

n−1 + antn such

that p (t) is L-weakly compact.

Assume that p (T ) = 0 (In this case, there exists a non-zero element x in E such that p (T ) (x) = 0).

Let V denote the non-zero closed subspace generated by the set
{
x, Tx, ..., Tn−1x

}
. Since E is infinite

dimensional, we have V �= E and we can see easily that V is T -invariant.

Now suppose that p (T ) �= 0. Fix any non-zero vector x0 ∈ Ea such that p (T ) (x0) �= 0.

Since p (T ) is L-weakly compact, we have p (T ) (Ea) ⊂ Ea by Prop.1. Moreover, for each k = 0, 1, 2... ,

T kp (T ) (Ea) = p (T )T k (Ea) ⊂ Ea holds because of L-weakly compactness of p (T )T k . Let V be the non-

zero closed subspace generated by the set
{
p (T ) (x0) , Tp (T ) (x0) , T 2p (T ) (x0) , ..., T kp (T ) (x0) , ...

}
⊂ Ea .

Since E does not have order continuous norm, again we have V �= E , and it can be seen that V is T -invariant.
�

Remark 1 Not every operator p (T ) , where p is a polynomial, is positive when T is positive. Thus we cannot
say that every polynomially L-weakly compact operator on a Banach lattice with order continuous norm has a
non-trivial invariant subspace.

Let X, Y be Banach spaces and let E be a Banach lattice. A linear operator T : E → X is called AM -

compact if T [−x, x] is relatively compact for every x ∈ E+ . And, we say that T : X → Y is a Dunford -Pettis

operator whenever xn
w→ 0 in X implies lim‖Txn‖ = 0 [5], [10], [11], [14]. The o-weakly compact operators

have been characterized by P.G. Dodds [8]. Recall that a continuous operator T : E → X is o − weakly

compact whenever T [0, x] is a relatively weakly compact subset of X for each 0 < x ∈ E . It is clear that every
weakly compact operator is o-weakly compact.
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Theorem 4 Let E be a Banach lattice and T : E → E be a positive M -weakly compact operator. If there

exists a Dunford-Pettis operator S : E → E such that 0 ≤ T ≤ S , then the operator T 3 is compact.

Proof. Assume that T : E → E is a positive M -weakly compact operator and S : E → E is a Dunford-

Pettis operator satisfying 0 ≤ T ≤ S . Thus, T 2 : E → E is a Dunford-Pettis operator by ([5], Cor. 19.15,

p. 340). Moreover, the operator T is o-weakly compact because it is an M -weakly compact operator ([5], p.

311). Thus, T [0, x] is a relatively weakly compact set for every x ∈ E+ . Therefore, T 2 (T [0, x]) = T 3 [0, x] is a

norm-totally bounded set for every x ∈ E+ since the Dunford-Pettis operator T 2 carries relatively weakly com-
pact subsets of E onto norm-totally bounded subsets of E ([5], Th. 19.3, p. 334). It follows that the M -weakly

compact operator T 3 is AM -compact. This implies that T 3 is a compact operator ([14], Prop. 3.7.4, p.219). �

Corollary 6 Let E be a Banach lattice and T : E → E be a positive M -weakly compact operator. If there
exists a Dunford-Pettis operator S : E → E such that 0 ≤ T ≤ S , then every bounded operator that commutes
with T has a non-trivial closed invariant subspace.

We can state a similar theorem to the previous theorem for L-weakly compact operators.

Theorem 5 Let E be a Banach lattice and T : E → E be a positive L-weakly compact operator. If there exists

a Dunford-Pettis operator S : E → E satisfying 0 ≤ T ≤ S , then T 4 is a compact operator.

Proof. We already known that T 2 is a Dunford-Pettis operator and the operator T is o-weakly compact

as mentioned in Theorem 4. Moreover, the Dunford-Pettis operator T 2 carries the relatively weakly compact

sets T [0, x] for each x ∈ E+ onto norm-totally bounded sets T 3 [0, x]. Since the operator T is a L-weakly

compact, for each ε > 0 there exists some xε ∈ E+ such that

T
(
U+

E

)
⊆ [0, xε] + εUE .

Thus, we obtain that

T 4
(
U+

E

)
⊆ T 3 [0, xε] + ε ‖T‖3 UE ,

and so, T 4
(
U+

E

)
is a norm-totally bounded set because

{
ε ‖T‖3 UE

}
is a base at zero. �

Corollary 7 Let E be a Banach lattice and T : E → E be a positive L-weakly compact operator. If there
exists a Dunford-Pettis operator S : E → E satisfying 0 ≤ T ≤ S , then every bounded operator that commutes
with T has a non-trivial closed invariant subspace.
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