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Products of multiplication, composition and differentiation between
weighted Bergman-Nevanlinna and Bloch-type spaces

Ajay K. Sharma

Abstract

Let ϕ and ψ be holomorphic maps on � such that ϕ(�) ⊂ � . Let Cϕ, Mψ and D be the composition,

multiplication and differentiation operators, respectively. In this paper, we consider linear operators induced

by products of these operators from Bergman-Nevanlinna spaces Aβ
N to Bloch-type spaces. In fact, we prove

that these operators map Aβ
N compactly into Bloch-type spaces if and only if they map Aβ

N boundedly into

these spaces.

Key word and phrases: Composition operator, Multiplication operator, Differentiation operator, Bergman

space, Bloch space, Growth space.

1. Introduction

Let D be the open unit disk in the complex plane C and H(D) be the algebra of all functions holomorphic

on D. Let dA(z) =
1
π

dxdy =
1
π

rdrdθ be the normalized area measure on D. For each β ∈ (−1,∞), we set

dνβ(z) = (β+1)(1−|z|2)βdA(z), z ∈ D . Then dνβ is a probability measure on D. For 0 < p < ∞ the weighted

Bergman space Ap
β is defined as

Ap
β =

{
f ∈ H(D) : ||f ||Ap

β
=

(∫
D

|f(z)|pdνβ(z)
)1/p

< ∞
}
.

Note that ||f ||Ap
β

is a norm only if 1 ≤ p < ∞ . When 0 < p < 1, Ap
β is a an F-space with respect to the

translation invariant metric defined by dβ
p (f, g) = ||f − g||Ap

β
. The weighted Bergman-Nevanlinna class Aβ

N is

defined by

Aβ
N =

{
f ∈ H(D) :

∫
D

log+ |f(z)|dνβ(z) < ∞
}
,

where

log+ x =
{ log x if x ≥ 1

0 if x < 1.
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The space Aβ
N appears in the limit as p → 0 of the weighted Bergman space Ap

β in the sense of

lim
p→0

tp − 1
p

= log t, 0 < t < ∞ .

The Bergman-Nevanlinna space Aβ
N contains all the Bergman spaces Ap

β . Obviously, the inequalities

log+ x ≤ log(1 + x) ≤ 1 + log+ x, x ≥ 0 (1.1)

imply that f ∈ Aβ
N if and only if

||f ||Aβ
N

=
∫

D

log(1 + |f(z)|)dνβ(z) < ∞.

Of course, we are abusing the term norm since ||f ||Aβ
N

fails to satisfy the properties of norm, but in this case

(f, g) → ||f − g||Aβ
N

defines a translation invariant metric on Aβ
N and this turns Aβ

N into a complete metric

space. Also, by the subharmonicity of log(1 + |f(z)|), we have

log(1 + |f(z)|) ≤ Cβ

||f ||Aβ
N

(1 − |z|2)β+2
, z ∈ D (1.2)

for all f ∈ Aβ
N . In particular, (1.2) tells us that if fn → f in Aβ

N , then fn → f locally uniformly. Here, locally

uniform convergence refers to the uniform convergence on every compact subset of D. For general background

on weighted Bergman spaces Ap
β and weighted Bergman-Nevanlinna spaces Aβ

N one may consult [3], [9] and

references therein.
Let α > 0. A function f holomorphic in D is in α -Bloch space Bα if

sup
z∈D

(1 − |z|2)α|f ′(z)| < ∞

and in the little α -Bloch Space Bα
0 if

lim
|z|→1

(1 − |z|2)α|f ′(z)| = 0.

For f ∈ Bα define

||f ||Bα = |f(0)| + sup
z∈D

(1 − |z|2)α|f ′(z)|.

With this norm Bα is a Banach space and the little α -Bloch Space Bα
0 is a closed subspace of the α -Bloch

Space. Note that B1 = B, the usual Bloch space.

For any α > 0, the space A−α consists of analytic functions f in D such that

||f ||A−α = sup{(1 − |z|2)α|f(z)| : z ∈ D} < ∞.

Each A−α is a non-separable Banach space with the norm defined above and contains all bounded analytic

functions on D. The closure in A−α of the set of polynomials will be denoted by A−α
0 , which is a separable

Banach space and consists of exactly those functions f in A−α with

lim
|z|→1−

(1 − |z|2)α|f(z)| = 0.
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If α > 1, it is known that f ∈ Bα if and only if f ∈ A−(α−1) or the antiderivative of f is in Bα−1. As

0 < α < 1, the space Bα = Lip1−α, the analytic Lipschitz space which contains analytic functions f on D

satisfying

|f(z) − f(w)| ≤ C|z − w|1−α

for any z, w ∈ D. A good source for such spaces and their connection to Lipschitz spaces is [10]. See also [2]

and [5].

Let ϕ be a holomorphic self-map on D. The composition operator Cϕ induced by ϕ is defined by

Cϕf = f ◦ ϕ for f ∈ H(D). The study of composition operators lie at the interface of analytic functions

and operator theory. By the Littlewood subordination theorem every holomorphic self-map ϕ of D induces a
bounded composition operator on Hardy and Bergman spaces while the boundedness on Bloch space follows by
Schwarz-Pick Lemma.

For a fixed ψ ∈ H(D), define the linear operator

ψCϕf = ψ(f ◦ ϕ), f ∈ H(D).

The operator ψCϕ is known as the weighted composition operator. The weighted composition operator is a

generalization of the composition operator Cϕ defined by Cϕf = f ◦ ϕ and the multiplication operator Mψ

defined by Mψf = ψf. Composition and weighted composition operators have gained increasing recognition
during the last three decades, mainly due to the fact that they provide–just as, for example, Hankel and Toeplitz
operators–ways and means to link classical function theory to functional analysis and operator theory. For gen-
eral background on composition operators, we refer to [1], [7] and references therein.

Let D be the differentiation operator defined by

Df = f ′, f ∈ H(D).

Hibschweiler and Portnoy [4] defined the linear operators DCϕ and CϕD and investigated the boundedness and

compactness of these operators between Bergman spaces using Carleson-type measures. S. Ohno [6] discussed
boundedness and compactness of CϕD between Hardy spaces. We can define products of these operators in

the following six ways:

(MψCϕDf)(z) = ψ(z)f ′(ϕ(z)),

(MψDCϕf)(z) = ψ(z)ϕ′(z)f ′(ϕ(z)),

(CϕMψDf)(z) = ψ(ϕ(z))f ′(ϕ(z)),

(DMψCϕf)(z) = ψ′(z)f(ϕ(z)) + ψ(z)ϕ′(z)f ′(ϕ(z)),

(CϕDMψf)(z) = ψ′(ϕ(z))f(ϕ(z)) + ψ(ϕ(z))f ′(ϕ(z))

and
(DCϕMψf)(z) = ψ′(ϕ(z))f(ϕ(z))ϕ′ (z) + ψ(ϕ(z))f ′(ϕ(z))ϕ′(z)

for z ∈ D and f ∈ H(D). X. Zhu in [11] have considered triple operators defined above from weighted Bergman
spaces to Bers spaces.
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In this paper, we study the boundedness and compactness of these operators from weighted Bergman-
Nevanlinna to Bloch-type spaces. Note that the operator MψCϕD induces many known operators. If ψ(z) = 1,

then MψCϕD = CϕD which was studied in [4] and [6]. When ψ(z) = ϕ′(z), then we get the operator DCϕ,

which was also studied in [4]. If we put ϕ(z) = z, then MψCϕD = MψD, that is product of differentiation

operator and multiplication operator. Also note that MψDCϕ = Mψϕ′CϕD and CϕMψD = Mψ◦ϕCϕD. Thus

the corresponding characterizations of boundedness and compactness of MψDCϕ and CϕMψD can be obtained

by replacing ψ respectively by ψϕ′ and ψ ◦ ϕ in the results stated for MψCϕD. Also, the operator DMψCϕ

induces many known operators. If ψ(z) = 1, then DMψCϕ = DCϕ. When ϕ(z) = z, then DMψCϕ = DMψ .

Throughout this paper, constants are denoted by C, they are positive and not necessary the same at each
occurrence.

2. Boundedness and compactness

In this section, we characterize the boundedness and compactness of operators induced by products of
composition, multiplication and differentiation from weighted Bergman-Nevanlinna to Bloch-type spaces. A

subset E of Aβ
N is bounded if it is bounded for the defining F-norm ‖.‖Aβ

N
. Given a Banach space Y, we say

that a linear map T : Aβ
N → Y is bounded if T (E) ⊂ Y is bounded for every bounded subset E of Aβ

N . In

addition, we say that T is compact if T (E) ⊂ Y is relatively compact for every bounded set E ⊂ Aβ
N .

The following criterion for compactness is a useful tool to us and it follows from standard arguments, for
example, to those outlined in Proposition 3.11 of [1].

Lemma 2.1 Let β ∈ (−1,∞) and Y = Bα, Bα
0 , A−α or A−α

0 . Let T : Aβ
N → Y be any one of the operators

defined in the introduction. Then T : Aβ
N → Y is compact if and only if for any sequence {fn} in Aβ

N with

sup
n

‖fn‖Aβ
N

= M < ∞ and which converges to zero locally uniformly on D, we have limn→∞ ‖Tfn‖Y → 0 in Y.

Theorem 2.2 Let α > 0, β > −1, ψ ∈ H(D) and ϕ be a holomorphic self-map of D. Then the following are
equivalent:

(i) MψCϕD maps Aβ
N boundedly into A−α.

(ii) MψCϕD maps Aβ
N compactly into A−α.

(iii) For all c > 0,

lim
|ϕ(z)|→1

(1 − |z|2)α|ψ(z)|
1 − |ϕ(z)|2 exp

[ c

(1 − |ϕ(z)|2)β+2

]
= 0

and ψ ∈ A−α.

Proof. It suffices to check two implications: (i) ⇒ (iii) and (iii) ⇒ (ii).

(i) ⇒ (iii). Suppose (i) holds. By taking f(z) = z in Aβ
N , we get ψ ∈ A−α. Fix z0 ∈ D. For c > 0 and

w = ϕ(z0), consider the function

fw(z) = exp
{ c(1 − |w|2)β+2

(1 − wz)2(β+2)

}
.
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Using (1.1), we have

‖fw‖Aβ
N

≤ 1 + c

∫
D

(1 − |w|2)β+2

|1 − wz|2(β+2)
dνβ(z) = 1 + c.

Since MψCϕD maps Aβ
N boundedly into A−α and

f ′
w(z) =

2(β + 2)cw(1 − |w|2)β+2

(1 − wz)2(β+2)+1
exp

[ c(1 − |w|2)β+2

(1 − wz)2(β+2)

]
,

there is a constant N > 0 depending only on c and β such that

N ≥ (1 − |z0|2)α|ψ(z0)||f ′
w(ϕ(z0))|

= (1 − |z0|2)α 2(β + 2)c|ϕ(z0)||ψ(z0)|
(1 − |ϕ(z0)|2)β+3

exp
[ c(1 − |w|2)β+2

(1 − |ϕ(z0)|2)2(β+2)

]
.

That is,

(1 − |z0|2)α|ψ(z0)|
1 − |ϕ(z0)|2

exp
[ c

(1 − |ϕ(z0)|2)β+2

]
≤ N(1 − |ϕ(z0)|2)β+2

2(β + 2)c|ϕ(z0)|
.

Taking lim
|ϕ(z0)|→1

on both sides of above inequality, we get (iii).

(iii) ⇒ (ii). Assume that (iii) is valid for all c > 0. Note that if f ∈ Aβ
N , then by (1.1) and Cauchy integral

formula for derivatives, we have

(1 − |z|2)|f ′(z)| ≤ 2
π

∫
∂D

|f(z +
1
2
(1 − |z|)ζ)||dζ|

≤ exp
[ Cβ‖f‖Aβ

N

(1 − |z|2)β+2

]
.

Choose any sequence {fn} in Aβ
N such that ‖fn‖Aβ

N
≤ M and fn → 0 locally uniformly on D. By Lemma

2.1, it is sufficient to show that ||MψCϕDfn||A−α → 0 as n → ∞. For r ∈ (0, 1), we have

sup
|ϕ(z)|≤r

(1 − |z|2)α|MψCϕDfn(z)| = sup
|ϕ(z)|≤r

(1 − |z|2)α|ψ(z)||f ′
n(ϕ(z))|

≤ A sup
|ϕ(z)|≤r

|f ′
n(ϕ(z))| → 0

as n → ∞, where A = supz∈D
(1 − |z|2)α|ψ(z)| < ∞. On the other hand, whenever r → 1, we have

sup
|ϕ(z)|>r

(1 − |z|2)α|MψCϕDfn(z)|

≤ sup
|ϕ(z)|>r

(1 − |z|2)α|ψ(z)|
(1 − |ϕ(z)|2) exp

[ Cβ

(1 − |ϕ(z)|2)β+2

]
→ 0.
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Combining the above estimates, we see that ‖MψCϕDfn‖A−α → 0 as n → ∞. This completes the proof.
�

Corollary 2.3 Let α > 0, β > −1 and ϕ be a holomorphic self-map of D. Then the following are equivalent:

(i) CϕD maps Aβ
N boundedly into A−α.

(ii) CϕD maps Aβ
N compactly into A−α.

(iii) For all c > 0,

lim
|ϕ(z)|→1

(1 − |z|2)α

1 − |ϕ(z)|2 exp
[ c

(1 − |ϕ(z)|2)β+2

]
= 0.

Corollary 2.4. Let α > 0, β > −1 and ϕ be a holomorphic self-map of D. Then the following are equivalent:

(i) DCϕ maps Aβ
N boundedly into A−α.

(ii) DCϕ maps Aβ
N compactly into A−α.

(iii) For all c > 0

lim
|ϕ(z)|→1

(1 − |z|2)α|ϕ′(z)|
1 − |ϕ(z)|2 exp

[ c

(1 − |ϕ(z)|2)β+2

]
= 0

and ϕ′ ∈ A−α.

Proof. Since DCϕ = Mϕ′CϕD, the result follows by replacing ψ by ϕ′ in Theorem 2.2. �

Corollary 2.5 Let α > 0, β > −1 and ψ ∈ H(D). Then the following are equivalent:

(i) MψD maps Aβ
N boundedly into A−α.

(ii) MψD maps Aβ
N compactly into A−α.

(iii) ψ ≡ 0.

Proof. We only need to prove that (i) ⇒ (iii). Since MψD = MϕCϕD, where ϕ(z) = z, so by Theorem 2.2

MψD maps Aβ
N boundedly into A−α if and only if for every c > 0

lim
|z|→1

(1 − |z|2)α−1|ψ(z)| exp
[ c

(1 − |z|2)β+2

]
= 0

and ψ ∈ A−α, which is possible only if ψ = 0. �

Theorem 2.6 Let α > 0, β > −1, ψ ∈ H(D) and ϕ be a holomorphic self-map of D. Then the following are
equivalent:

(i) ψCϕ maps Aβ
N boundedly into A−α.
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(ii) ψCϕ maps Aβ
N compactly into A−α.

(iii) For all c > 0,

lim
|ϕ(z)|→1

(1 − |z|2)α|ψ(z)| exp
[ c

(1 − |ϕ(z)|2)β+2

]
= 0

and ψ ∈ A−α.

Proof. It suffices to check only two implications: (i) ⇒ (iii) and (iii) ⇒ (ii).

(i) ⇒ (iii). Suppose (i) holds. By taking f(z) = 1, the constant function 1 in Aβ
N , we get ψ ∈ A−α. Fix

z0 ∈ D and c > 0 and let w = ϕ(z0). Consider the function

fw(z) =
( 1 − |w|2

(1 − wz)2
)β+2

exp
{ c(1 − |w|2)β+2

(1 − wz)2(β+2)

}
.

Using (1.1) and the inequalities, log (1 + x) ≤ x and

log (1 + xy) ≤ log (1 + x) + log (1 + y) for x, y ≥ 0,

we have

log(1 + |fw(z)|) ≤ log
[
1 +

( 1 − |w|2
|1− wz|2

)β+2]
+ 1 +

{c(1 − |w|2)β+2

|1 − wz|2(β+2)

}

≤ 1 + (1 + c)
( 1 − |w|2
|1 − wz|2

)β+2

,

so

‖fw‖Aβ
N
≤ 1 + (1 + c)

∫
D

( 1 − |w|2
|1 − wz|2

)β+2

dνβ(z) = 2 + c.

Since ψCϕ maps Aβ
N boundedly into A−α, there is a constant M > 0 such that

M ≥ (1 − |z0|2)α|ψ(z0)||fw(ϕ(z0))|

=
(1 − |z0|2)α|ψ(z0)|
(1 − |ϕ(z0)|2)β+2

exp
[ c

(1 − |ϕ(z0)|2)β+2

]
.

That is,

(1 − |z0|2)α|ψ(z0)| exp
{ c

(1 − |ϕ(z0)|2)β+2

}
≤ M(1− |ϕ(z0)|2)β+2 .

Taking the limit lim
|ϕ(z0)|→1

on both sides of the above inequality, we get (iii).

(iii) ⇒ (ii). Assume that (iii) is valid for all c > 0. Using the estimate

|f(z)| ≤ exp
{ Cβ‖f‖Aβ

N

(1 − |z|2)β+2

}

and proceeding as in Theorem 2.2, we get (ii). �

Corollary 2.7 Let α > 0, β > −1 and ϕ be a holomorphic self-map of D. Then the following are equivalent:
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(i) Cϕ maps Aβ
N boundedly into A−α.

(ii) Cϕ maps Aβ
N compactly into A−α.

(iii) lim
|ϕ(z)|→1

(1 − |z|2)α exp
[ c

(1 − |ϕ(z)|2)β+2

]
= 0.

Corollary 2.8 Let α > 0, β > −1 and ψ ∈ H(D). Then the following are equivalent:

(i) Mψ maps Aβ
N boundedly into A−α.

(ii) Mψ maps Aβ
N compactly into A−α.

(iii) ψ ≡ 0.

Proof. The proof follows on same lines as the proof of Corollary 2.5. We omit the details. �

Lemma 2.9 Let α > 0, β > −1, ψ ∈ H(D) and ϕ be a holomorphic self-map of D. Then the following are
equivalent:

(i) For all c > 0,

lim
|z|→1

(1 − |z|2)α|ψ(z)|
1 − |ϕ(z)|2 exp

[ c

(1 − |ϕ(z)|2)β+2

]
= 0. (2.1)

(ii) For all c > 0,

lim
|ϕ(z)|→1

(1 − |z|2)α|ψ(z)|
1 − |ϕ(z)|2 exp

[ c

(1 − |ϕ(z)|2)β+2

]
= 0 (2.2)

and ψ ∈ A−α
0 .

Proof. (i) ⇒ (ii) Suppose that (i) holds. Then

(1 − |z|2)α|ψ(z)| ≤ c
(1 − |z|2)α|ψ(z)|

1 − |ϕ(z)|2 exp
[ c

(1 − |ϕ(z)|2)β+2

]
→ 0

as |z| → 1. Hence ψ ∈ A−α
0 . If |ϕ(z)| → 1, then |z| → 1, from which it follows that

lim
|ϕ(z)|→1

(1 − |z|2)α|ψ(z)|
1 − |ϕ(z)|2 exp

[ c

(1 − |ϕ(z)|2)β+2

]
= 0.

(ii) ⇒ (i) Suppose that (ii) holds, but (2.1) is not true for some c > 0, then there are c0 and ε0 and a

sequence {zn} tending to ∂D such that

(1 − |zn|2)α|ψ(zn)|
1 − |ϕ(zn)|2 exp

[ c0

(1 − |ϕ(zn)|2)β+2

]
≥ ε0. (2.3)

Since ψ ∈ A−α
0 , (2.3) indicates that {zn} has a subsequence {znk} with |ϕ(znk)| → 1. Thus (2.2) produces the

following limit:

(1 − |znk |2)α|ψ(znk)|
1 − |ϕ(znk)|2 exp

[ c

(1 − |ϕ(znk)|2)β+2

]
→ 0,
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which contradicts (2.3). Hence we are done. �

Theorem 2.10 Let α > 0, β > −1, ψ ∈ H(D) and ϕ be a holomorphic self-map of D. Then the following are
equivalent:

(i) MψCϕD maps Aβ
N boundedly into A−α

0 .

(ii) MψCϕD maps Aβ
N compactly into A−α

0 .

(iii) For all c > 0,

lim
|z|→1

(1 − |z|2)α|ψ(z)|
1 − |ϕ(z)|2 exp

[ c

(1 − |ϕ(z)|2)β+2

]
= 0.

Proof. It suffices to check two implications: (i) ⇒ (iii) and (iii) ⇒ (ii). Using the same test functions as
in Theorem 2.2 we see that

lim
|ϕ(z)|→1

(1 − |z|2)α|ψ(z)|
1 − |ϕ(z)|2 exp

[ c

(1 − |ϕ(z)|2)β+2

]
= 0.

Again, since MψCϕD maps A0
β boundedly into A−α

0 , so by taking f(z) = z in A0
β, we have ψ ∈ A−α

0 and

hence by Lemma 2.9, we have (iii).

(iii) ⇒ (ii). The proof follows on same lines as the proof of the corresponding case of Theorem 2.2. So
we omit the details. �

Corollary 2.11 Let α > 0, β > −1 and ϕ be a holomorphic self-map of D. Then the following are equivalent:

(i) CϕD maps Aβ
N boundedly into A−α

0 .

(ii) CϕD maps Aβ
N compactly into A−α

0 .

(iii) For all c > 0,

lim
|z|→1

(1 − |z|2)α

1 − |ϕ(z)|2 exp
[ c

(1 − |ϕ(z)|2)β+2

]
= 0.

Corollary 2.12 Let α > 0, β > −1 and ϕ be a holomorphic self-map of D. Then the following are equivalent:

(i) DCϕ maps Aβ
N boundedly into A−α

0 .

(ii) DCϕ maps Aβ
N compactly into A−α

0 .

(iii) For all c > 0,

lim
|z|→1

(1 − |z|2)α|ϕ′(z)|
1 − |ϕ(z)|2 exp

[ c

(1 − |ϕ(z)|2)β+2

]
= 0.

Corollary 2.13 Let α > 0, β > −1 and ψ ∈ H(D). Then the following are equivalent:
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(i) MψD maps Aβ
N boundedly into A−α

0 .

(ii) MψD maps Aβ
N compactly into A−α

0 .

(iii) ψ ≡ 0.

Theorem 2.14 Let α > 0, β > −1, ψ ∈ H(D) and ϕ be a holomorphic self-map of D. Then the following are
equivalent:

(i) ψCϕ maps Aβ
N boundedly into A−α

0 .

(ii) ψCϕ maps Aβ
N compactly into A−α

0 .

(iii) For all c > 0,

lim
|ϕ(z)|→1

(1 − |z|2)α|ψ(z)| exp
[ c

(1 − |ϕ(z)|2)β+2

]
= 0

and ψ ∈ A−α
0 .

(iv) For all c > 0,

lim
|z|→1

(1 − |z|2)α|ψ(z)| exp
[ c

(1 − |ϕ(z)|2)β+2

]
= 0.

Proof. That (iii) and (iv) are equivalent follows on the same lines as the proof of Lemma 2.9, whereas the

proof of the implications (i) ⇒ (iii) and (iii) ⇒ (ii) follows on the same lines as the proof of Theorem 2.10.
We omit the details. �

Corollary 2.15 Let α > 0, β > −1 and ϕ be a holomorphic self-map of D. Then the following are equivalent:

(i) Cϕ maps Aβ
N boundedly into A−α

0 .

(ii) Cϕ maps Aβ
N compactly into A−α

0 .

(iii) For all c > 0,

lim
|z|→1

(1 − |z|2)α exp
[ c

(1 − |ϕ(z)|2)β+2

]
= 0.

The above result was recently proved by Xiao in [8].

Corollary 2.16 Let α > 0, β > −1 and ψ ∈ H(D). Then the following are equivalent:

(i) Mψ maps Aβ
N boundedly into A−α

0 .

(ii) Mψ maps Aβ
N compactly into A−α

0 .

(iii) ψ ≡ 0.

Theorem 2.17 Let α > 0, β > −1, ψ ∈ H(D) and ϕ be a holomorphic self-map of D. Then the following are
equivalent:
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(i) DMψCϕ maps Aβ
N boundedly into A−α.

(ii) DMψCϕ maps Aβ
N compactly into A−α.

(iii) For all c > 0,

lim
|ϕ(z)|→1

(1 − |z|2)α|ψ′(z)| exp[
c

(1− |ϕ(z)|2)β+2
] = 0,

lim
|ϕ(z)|→1

(1 − |z|2)α|ψ(z)ϕ′(z)|
(1 − |ϕ(z)|2) exp[

c

(1 − |ϕ(z)|2)β+2
] = 0,

ψ′ ∈ A−α and ψϕ′ ∈ A−α.

Proof. Suppose (i) holds. By taking f(z) = c, a constant function in Aβ
N , we get ψ′ ∈ A−α. Again by

taking f(z) = z in Aβ
N , we get

sup
z∈D

(1 − |z|2)α|ψ′(z)ϕ(z) + ψ(z)ϕ′(z)| < ∞.

Since ψ′ ∈ A−α and |ϕ(z)| < 1, we get

sup
z∈D

(1 − |z|2)α|ψ(z)ϕ′(z)| < ∞.

For c > 0 and λ ∈ D, consider the function

fλ(z) =
{ (1 − |ϕ(λ)|2)2(β+2)

3(1 − ϕ(λ)z)3(β+2)
− 1

2
(

1 − |ϕ(λ)|2

(1 − ϕ(λ)z)2
)β+2

}

exp
[
6c

{1
2
(

1 − |ϕ(λ)|2

(1 − ϕ(λ)z)2
)β+2 − 1

3
(1 − |ϕ(λ)|2)2(β+2)

(1 − ϕ(λ)z)3(β+2)

}]
.

It can be shown that every fλ ∈ Aβ
N and ‖fλ‖Aβ

N
≤ M for some M > 0.

Moreover,

fλ(ϕ(λ)) =
−1
6

1
(1 − |ϕ(λ)|2)β+2

exp
[ c

(1 − |ϕ(λ)|2)β+2

]
.

Also

f ′
λ(z) =

[{ (1 − |ϕ(λ)|2)2(β+2)

(1 − ϕ(λ)z)3(β+2)+1
− (1 − |ϕ(λ)|2)β+2

(1 − ϕ(λ)z)2(β+2)+1

}
(β + 2)(ϕ(λ)).

+6c(β + 2)(ϕ(λ))
{ (1 − |ϕ(λ)|2)β+2

(1 − ϕ(λ)z)2(β+2)+1
− (1 − |ϕ(λ)|2)2(β+2)

(1 − ϕ(λ)z)3(β+2)+1

}

{ (1 − |ϕ(λ)|2)2(β+2)

3(1 − ϕ(λ)z)3(β+2)
− 1

2

( 1 − |ϕ(λ)|2

(1 − ϕ(λ)z)2

)β+2}]

exp
[
6c

{1
2
(

1 − |ϕ(λ)|2

(1 − ϕ(λ)z)2
)β+2 − 1

3
(1 − |ϕ(λ)|2)2(β+2)

(1 − ϕ(λ)z)3(β+2)

}]
.
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Moreover,

f ′
λ(ϕ(λ)) = 0.

Since DMψCϕ maps A0
β boundedly into A−α, we can find some M0 > 0 such that

M0 ≥ (1 − |λ|2)α|ψ′(λ)fλ(ϕ(λ)) + ψ(λ)ϕ′(λ)f ′
λ(ϕ(λ))|

=
(1 − |λ|2)α|ψ′(λ)|
(1 − |ϕ(λ)|2)β+2

exp[
c

(1− |ϕ(λ)|2)β+2
]

and so

(1 − |λ|2)α|ψ′(λ)| exp
[ c

(1 − |ϕ(λ)|2)β+2

]
≤ M0(1 − |ϕ(λ)|2)β+2 .

Taking lim
|ϕ(λ)|→1

on both sides of the above inequality we get

lim
|ϕ(λ)|→1

(1 − |λ|2)α|ψ′(λ)| exp
[ c

(1 − |ϕ(λ)|2)β+2

]
= 0.

Now consider the function

gλ(z) = (z − ϕ(λ))
( 1 − |ϕ(λ)|2

(1 − ϕ(λ)z)2

)β+2

exp
[
6c

{1
2

( 1 − |ϕ(λ)|2

(1 − ϕ(λ)z)2

)β+2

−1
3

(1 − |ϕ(λ)|2)2(β+2)

(1 − ϕ(λ)z)3(β+2)

}]
.

It can be shown that every gλ ∈ Aβ
N and ‖gλ‖Aβ

N
≤ M for some M > 0.

Moreover,

gλ(ϕ(λ)) = 0.

Also,

g′λ(z) =
[( 1 − |ϕ(λ)|2

(1 − ϕ(λ)z)2

)β+2

+ (z − ϕ(λ))(2β + 4)
(1 − |ϕ(λ)|2)β+2

(1 − ϕ(λ)z)2(β+2)+1
(ϕ(λ))

+
{

6c (z − ϕ(λ))(β + 2)
(1 − |ϕ(λ)|2)β+2

(1 − ϕ(λ)z)2(β+2)
(ϕ(λ))

}

{ (1 − |ϕ(λ)|2)β+2

(1 − ϕ(λ)z)2(β+2)+1
− (1 − |ϕ(λ)|2)2(β+2)

(1 − ϕ(λ)z)3(β+2)

}]

exp
[
6c

{1
2

( 1 − |ϕ(λ)|2

(1 − ϕ(λ)z)2

)β+2

− 1
3

(1 − |ϕ(λ)|2)2(β+2)

(1 − ϕ(λ)z)3(β+2)

}]
.

Moreover,

g′λ(ϕ(λ)) =
1

(1 − |ϕ(λ)|2)β+2
exp

[ c

(1 − |ϕ(λ)|2)β+2

]
.
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Since DMψCϕ maps A0
β boundedly into A−α, we can find some constant M1 > 0 such that

M1 ≥ (1 − |λ|2)α|ψ′(λ)gλ(ϕ(λ)) + ψ(λ)ϕ′(λ)g′λ(ϕ(λ))|

=
(1 − |λ|2)α|ψ(λ)ϕ′(λ)|

(1 − |ϕ(λ)|2)β+2
exp

[ c

(1 − |ϕ(λ)|2)β+2

]

and so
(1 − |λ|2)α|ψ(λ)ϕ′(λ)|

(1 − |ϕ(λ)|2) exp
[ c

(1 − |ϕ(λ)|2)β+2

]
≤ M1(1 − |ϕ(λ)|2)β+1 .

Taking lim
|ϕ(λ)|→1

on both sides of the above inequality we get

lim
|ϕ(λ)|→1

(1 − |λ|2)α|ψ(λ)ϕ′(λ)|
(1 − |ϕ(λ)|2) exp

[ c

(1 − |ϕ(λ)|2)β+2

]
= 0.

Assume that the conditions in (iii) are valid for all c > 0. Note that if f ∈ A0
β , then by (1.2) and Cauchy

integral formula for derivatives

(1 − |z|2)|f ′(z)| ≤ 2
π

∫
∂D

|f(z +
1
2
(1 − |z|)ζ)||dζ|

≤ exp
[ Cβ‖fw‖Aβ

N

(1 − |z|2)β+2

]
.

Choose a sequence {fn} in Aβ
N such that ‖fn‖Aβ

N
≤ M ′ and fn → 0 locally uniformly on D. Then for each

r ∈ (0, 1)

sup
|ϕ(z)|≤r

(1 − |z|2)α|ψ′(z)fn(ϕ(z)) + ψ(z)ϕ′(z)f ′
n(ϕ(z))|

≤ A sup
|ϕ(z)|≤r

|fn(ϕ(z))| + B sup
|ϕ(z)|≤r

|f ′
n(ϕ(z))| → 0 as n → ∞,

where A = supz∈D
(1 − |z|2)α|ψ′(z)| < ∞ and B = supz∈D

(1 − |z|2)α|ψ(z)ϕ′(z)| < ∞. On the other hand,

whenever r → 1, we have

sup
|ϕ(z)|>r

(1 − |z|2)α|DMψCϕfn(z)|

≤ sup
|ϕ(z)|>r

(1 − |z|2)α|ψ′(z)| exp[
C ′

β

(1 − |ϕ(z)|2)β+2
]

+ sup
|ϕ(z)|>r

(1 − |z|2)α|ψ(z)ϕ′(z)|
(1 − |ϕ(z)|2) exp[

Cβ

(1 − |ϕ(z)|2)β+2
] → 0 as r → 1.

Combining the above estimates, we see that

‖DMψCϕfn‖A−α → 0 as n → ∞.
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Thus by Lemma 2.1, (ii) follows. �

Corollary 2.18 Let α > 0, β > −1 and ψ ∈ H(D). Then the following are equivalent:

(i) DMψ maps Aβ
N compactly into A−α.

(ii) DMψ maps Aβ
N boundedly into A−α.

(iii) ψ ≡ 0.

Corollary 2.19 Let α > 0, β > −1, ψ ∈ H(D) and ϕ be a holomorphic self-map of D. Then the following
are equivalent:

(i) ψCϕ maps Aβ
N boundedly into Bα.

(ii) ψCϕ maps Aβ
N compactly into Bα.

(iii) For all c > 0,

lim
|ϕ(z)|→1

(1 − |z|2)α|ψ′(z)| exp
[ c

(1 − |ϕ(z)|2)β+2

]
= 0,

lim
|ϕ(z)|→1

(1 − |z|2)α|ψ(z)ϕ′(z)|
1 − |ϕ(z)|2 exp

[ c

(1 − |ϕ(z)|2)β+2

]
= 0,

ψ ∈ Bα and supz∈D
(1 − |z|2)α|ψ(z)ϕ′(z)| < ∞.

Corollary 2.20 Let α > 0, β > −1 and ϕ be a holomorphic self-map of D. Then the following are equivalent:

(i) Cϕ maps Aβ
N boundedly into Bα.

(ii) Cϕ maps Aβ
N compactly into Bα.

(iii) For all c > 0,

lim
|z|→1

(1 − |z|2)α|ϕ′(z)|
1 − |ϕ(z)|2 exp

[ c

(1 − |ϕ(z)|2)β+2

]
= 0.

Corollary 2.21 Let α > 0, β > −1, ψ ∈ H(D) and ϕ be a holomorphic self-map of D. Then the following
are equivalent:

(i) DMψCϕ maps Aβ
N boundedly into A−α

0 .

(ii) DMψCϕ maps Aβ
N compactly into A−α

0 .

(iii) For all c > 0,

lim
|ϕ(z)|→1

(1 − |z|2)α|ψ′(z)| exp
[ c

(1 − |ϕ(z)|2)β+2

]
= 0,
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lim
|ϕ(z)|→1

(1 − |z|2)α|ψ(z)ϕ′(z)|
(1 − |ϕ(z)|2) exp

[ c

(1 − |ϕ(z)|2)β+2

]
= 0,

ψ′ ∈ A−α
0 and lim|z|→1(1 − |z|2)α|ψ(z)ϕ′(z)| = 0.

(iv) For all c > 0,

lim
|z|→1

(1 − |z|2)α|ψ′(z)| exp
[ c

(1 − |ϕ(z)|2)β+2

]
= 0

and

lim
|z|→1

(1 − |z|2)α|ψ(z)ϕ′(z)|
(1 − |ϕ(z)|2) exp

[ c

(1 − |ϕ(z)|2)β+2

]
= 0.

The equivalence of the above implications can be proved on the same lines as the proof of Theorem 2.10
and Lemma 2.9. We omit the details.

Routine calculations yield the following theorems.

Theorem 2.22 Let α > 0, β > −1, ψ ∈ H(D) and ϕ be a holomorphic self-map of D. Then the following are
equivalent:

(i) CϕDMψ maps Aβ
N boundedly into A−α.

(ii) CϕDMψ maps Aβ
N compactly into A−α.

(iii) For all c > 0,

lim
|ϕ(z)|→1

(1 − |z|2)α|ψ′(ϕ(z))| exp
[ c

(1 − |ϕ(z)|2)β+2

]
= 0,

lim
|ϕ(z)|→1

(1 − |z|2)α|ψ(ϕ(z))|
1 − |ϕ(z)|2 exp

[ c

(1 − |ϕ(z)|2)β+2

]
= 0,

ψ′ ◦ ϕ ∈ A−α and ψ ◦ ϕ ∈ A−α.

Theorem 2.23 Let α > 0, β > −1, ψ ∈ H(D) and ϕ be a holomorphic self-map of D. Then the following are
equivalent:

(i) CϕDMψ maps Aβ
N boundedly into A−α

0 .

(ii) CϕDMψ maps Aβ
N compactly into A−α

0 .

(iii) For all c > 0,

lim
|ϕ(z)|→1

(1 − |z|2)α|ψ′(ϕ(z))| exp
[ c

(1 − |ϕ(z)|2)β+2

]
= 0,

lim
|ϕ(z)|→1

(1 − |z|2)α|ψ(ϕ(z))|
1 − |ϕ(z)|2 exp

[ c

(1 − |ϕ(z)|2)β+2

]
= 0,

ψ′ ◦ ϕ ∈ A−α
0 and ψ ◦ ϕ ∈ A−α

0 .

(iv) For all c > 0,

lim
|z|→1

(1 − |z|2)α|ψ′(ϕ(z))| exp
[ c

(1 − |ϕ(z)|2)β+2

]
= 0,
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and

lim
|z|→1

(1 − |z|2)α|ψ(ϕ(z))|
1 − |ϕ(z)|2 exp

[ c

(1 − |ϕ(z)|2)β+2

]
= 0.

Theorem 2.24 Let α > 0, β > −1, ψ ∈ H(D) and ϕ be a holomorphic self-map of D. Then the following are
equivalent:

(i) DCϕMψ maps Aβ
N boundedly into A−α.

(ii) DCϕMψ maps Aβ
N compactly into A−α.

(iii) For all c > 0,

lim
|ϕ(z)|→1

(1 − |z|2)α|ψ′(ϕ(z))ϕ′(z)| exp
[ c

(1 − |ϕ(z)|2)β+2

]
= 0,

lim
|ϕ(z)|→1

(1 − |z|2)α|ψ(ϕ(z))ϕ′(z)|
1 − |ϕ(z)|2 exp

[ c

(1 − |ϕ(z)|2)β+2

]
= 0,

ϕ′(ψ′ ◦ ϕ) ∈ A−α and ϕ′(ψ ◦ ϕ) ∈ A−α.

Theorem 2.25 Let α > 0, β > −1, ψ ∈ H(D) and ϕ be a holomorphic self-map of D. Then the following are
equivalent:

(i) DCϕMψ maps Aβ
N boundedly into A−α

0 .

(ii) DCϕMψ maps Aβ
N compactly into A−α

0 .

(iii) For all c > 0,

lim
|ϕ(z)|→1

(1 − |z|2)α|ψ′(ϕ(z))ϕ′(z)| exp
[ c

(1 − |ϕ(z)|2)β+2

]
= 0,

lim
|ϕ(z)|→1

(1 − |z|2)α|ψ(ϕ(z))ϕ′(z)|
1 − |ϕ(z)|2 exp

[ c

(1 − |ϕ(z)|2)β+2

]
= 0,

ϕ′(ψ′ ◦ ϕ) ∈ A−α
0 and ϕ′(ψ ◦ ϕ) ∈ A−α

0 .

(iv) For all c > 0,

lim
|z|→1

(1 − |z|2)α|ψ′(ϕ(z))ϕ′(z)| exp
[ c

(1 − |ϕ(z)|2)β+2

]
= 0,

and

lim
|z|→1

(1 − |z|2)α|ψ(ϕ(z))ϕ′(z)|
1 − |ϕ(z)|2 exp

[ c

(1 − |ϕ(z)|2)β+2

]
= 0.
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[5] Kaptanoğlu, H. T. and Tülü, S.: Weighted Bloch, Lipschitz, Zygmund, Bers, and Growth spaces of the ball:

Bergman projections and characterizations, Taiwanese J. Math. (2009), to appear.

[6] Ohno, S.: Products of composition and differentiation between Hardy spaces, Bull. Austral. Math. Soc. 73, 235-243

(2006).

[7] Shapiro, J. H.: Composition operators and classical function theory, Springer-Verlag, New York 1993.

[8] Xiao, J.: Composition operators: Nα to the Bloch space to Qβ , Studia Math. 139, 245-260 (2000).

[9] Zhu, K.: Operator theory in function spaces, New York, Marcel Dekker 1990.

[10] Zhu, K.: Spaces of holomorphic functions in the unit ball, New York, Springer 2005.

[11] Zhu, X.: Products of differentiation, composition and multiplication from Bergman type spaces to Bers spaces,

Integral Transforms Spec. Funct. 18, 223-231 (2007).

Ajay K. SHARMA
School of Mathematics,
Shri Mata Vaishno Devi University,
Kakryal, Katra-182320,
Jammu and Kashmir-INDIA
e-mail: aksju 76@yahoo.com

Received: 18.06.2008

291


