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A Fredholm alternative-like result on power bounded operators

Ali Ülger, Onur Yavuz

Abstract

Let X be a complex Banach space and T : X → X be a power bounded operator, i.e., supn≥0 ‖Tn‖ < ∞ .

We write B(X) for the Banach algebra of all bounded linear operators on X . We prove that the space

Ran(I − T ) is closed if and only if there exist a projection θ ∈ B(X) and an invertible operator R ∈ B(X)

such that I − T = θR = Rθ . This paper also contains some consequences of this result.

1. Introduction

Let X be a complex Banach space. It is well known that for every compact operator K : X → K , the
range of the operator I − K is closed. However, we cannot expect this to hold for an arbitrary bounded linear
operator T : X → X . So it is natural to ask when the range of the operator I − T is closed. In this paper, we
answer this problem for power bounded operators by proving that, for a power bounded operator T , the range
of the operator I − T is closed if and only if I − T can be written as a product of two commuting operators θ

and R where θ is an idempotent and R is invertible. We also present some consequences of this result and it
is essentially self-contained.

2. Main results

Let T : X → X be a power bounded operator on X . If we renorm X with the norm |||x||| :=

supn≥0 ‖Tnx‖ , then T becomes a contraction on X with this new norm, that is, ‖T‖ ≤ 1. For that reason we

will work with a fixed contraction operator T . Clearly all of the results presented below are valid for power
bounded operators. We will denote by B(X) the Banach algebra of all bounded linear operators on X , and by

B(X∗) the Banach algebra of all bounded linear operators on the dual space X∗ . Note that one can identify

B(X∗) with the dual space of the projective tensor space X∗⊗̂X [1, p. 230, Corollary 2]. So it carries a weak∗

topology. The natural duality between the spaces B(X∗) and X∗⊗̂X is given by 〈B, f ⊗ x〉 = 〈B(f), x〉 for

every operator B ∈ B(X∗), every functional f ∈ X∗ , and every vector x ∈ X .

We start with the following observation which will be used in the proof of our main theorem.

Lemma 2.1 Let T ∈ B(X) and assume that Ran(T ) is closed. Then the following are equivalent:
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1. Ker(T ∗) = Ker(T ∗2
) .

2. Ran(T 2) = Ran(T ) .

Proof. (1)⇒(2): Since

Ran(T )⊥ = Ker(T ∗) = Ker(T ∗2
) = Ran(T 2)⊥

and Ran(T ) is closed, we have Ran(T 2) = Ran(T ) by Hahn-Banach Theorem.

(2)⇒(1): We have

Ker(T ∗2) = Ran(T 2)
⊥

and Ker(T ∗) = Ran(T )⊥.

As Ran(T )⊥ = Ran(T 2)
⊥

, it follows that Ker(T ∗) = Ker(T ∗2). �

The following lemma is proved in ([3], p. 69) for nonexpansive (not necessarily linear) mappings. One can also

find a proof of this result in the monograph [2, Lemma 9.4].

Lemma 2.2 Let T ∈ B(X) be a contraction and Sλ = λI +(1−λ)T for 0 < λ < 1 . Then limn→∞ ‖Sn+1
λ (x)−

Sn
λ (x)‖ = 0 for every x ∈ X .

The following results, which will be needed for the proof of Theorem 2.9, follow without much difficulty from
the preceding lemma.

Lemma 2.3 Let T ∈ B(X) be a contraction. Then

Ker(I − T ) ∩ Ran(I − T ) = {0} .

Proof. Let S = S 1
2

= I+T
2 . Then the range and the kernel of the operator I − S coincide with those of

I − T . Let y ∈ Ker(I − S) ∩ Ran(I − S). Since (I − S)(y) = 0, that is, S(y) = y , we have Sn(y) = y for

every n . We have (I − S)(x) = y for some x ∈ X , that is, y = x− S(x). By applying the operator Sn to this

equality we get y = Snx − Sn+1x . By the previous lemma, ‖Snx − Sn+1x‖ converges to 0 as n → ∞ , which

implies that y = 0. So Ker(I − S) ∩ Ran(I − S) = {0} . Thus, Ker(I − T ) ∩ Ran(I − T ) = {0}. �

Lemma 2.4 Let T : X → X be a contraction. Then,

Ker(I − T ∗) = Ker((I − T ∗)2) .

Proof. By Lemma 2.3, we have Ker (I − T ∗) ∩ Ran (I − T ∗) = {0} . Let x ∈ Ker((I − T ∗)2). Then

the element y = (I − T ∗)(x) is in the intersection of the spaces Ker(I − T ∗) and Ran(I − T ∗), which is trivial.

Hence x ∈ Ker(I −T ∗), which implies that Ker(I −T ∗)2 ⊆ Ker(I −T ∗). The other inclusion is always true. �

The following lemma will be needed in the proof of Theorem 2.6.

Lemma 2.5 Let (Rα) be a bounded net in B(X∗) . Then we have the following:
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1. The net (Rα) converges to R ∈ B(X∗) in the weak∗ topology if and only if 〈Rα(f), x〉 converges to

〈R(f), x〉 for every x ∈ X and f ∈ X∗.

2. If (Rα) converges to R in the weak∗ topology, then (Rα ◦ Q) converges to R ◦ Q in the weak∗ topology

for every operator Q ∈ B(X∗) .

3. If (Rα) converges to R in the weak∗ topology, then (L∗ ◦ Rα) converges to L∗ ◦ R for every operator

L ∈ B(X) .

Proof. Assertion (1) follows from the fact that the net (Rα) is bounded and the set of atomic tensors f ⊗ x

are total in the space X∗⊗̂X . Assertions (2) and (3) follow, respectively, from the identities

〈Rα ◦ Q, f ⊗ x〉 = 〈Rα, Q(f) ⊗ x〉.

〈L∗ ◦ Rα, f ⊗ x〉 = 〈(L∗ ◦ Rα)(f), x〉 = 〈Rα(f), L(x)〉 = 〈Rα, f ⊗ L(x)〉.
�

The next result shows that for a power bounded operator T ∈ B(X), the kernel of the operator I−T ∗ is always
complemented in X∗ .

Theorem 2.6 Let T ∈ B(X) be a contraction. Then there exists a projection P ∈ B(X∗) whose range is

Ker(I − T ∗) and whose kernel contains Ran(I − T ∗).

Proof. Let S = I+T
2 . Since ‖S‖ ≤ 1, the set {S∗n

: n ≥ 0} is bounded. So by Alaoglu theorem, the

sequence (S∗n

) has a convergent subnet (S∗ni ) that converges to an operator P in (B(X∗), w∗). By Lemma

2.2, we have 〈S∗n+1
f − S∗n

f, x〉 → 0 for every f ∈ X∗ and x ∈ X . This, together with the fact that P is the

weak∗ limit of the net (S∗ni ), implies that

P ◦ S∗ = S∗ ◦ P = P.

Then S∗ni ◦ P = P for every ni . So, passing again to the limit in (B(X∗), w∗) and using Lemma 2.5, we get

P 2 = P . This proves that every cluster point of the sequence (S∗n) is a projection. As S∗ = I+T∗

2 , we also

have
T ∗ ◦ P = P ◦ T ∗ = P.

So Ran(P ) ⊆ Ker(I − T ∗). On the other hand, for f ∈ Ker ( I − T ∗ ), we have T ∗(f) = f , so S∗(f) = f .

Hence S∗ni
f = f , which implies that P (f) = f . Hence Ran(P ) = Ker(I − T ∗). To prove the inclusion

Ran(I − T ∗) ⊆ Ker(P ), let f ∈ X∗ be an arbitrary element and g = f − T ∗ ( f ). Then, we have

P (g) = (P ◦ T ∗)(f) = 0. Hence Ran(I − T ∗) ⊆ Ker(P ). �

As an important corollary of this theorem we present the following result.

Corollary 2.7 Let T be a power bounded operator and S = I+T
2 . Then

1. Ran(I − T ) = X if and only if Sn(x) → 0 weakly for every x ∈ X .

2. Ran(I − T ) = X if and only if ‖Sn‖ → 0 .
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Proof. (1): First assume that 〈Snx, f〉 → 0 for every x ∈ X and f ∈ X∗ . Then 〈x, S∗nf〉 → 0 for every

x ∈ X and f ∈ X∗ , that is, the sequence (S∗n) converges to 0 in the weak∗ topology of B(X∗). Then

the projection P obtained in Theorem 2.6 is trivial, which in turn implies that Ker(I − T ∗) = {0} . Thus,

Ran(I − T ) = X .

Conversely, if Ran(I − T ) = X , then, since every weak∗ cluster point of the sequence (S∗n) is a projection on

Ker(I − T ∗), the only weak∗ cluster point of the sequence (S∗n) is 0. This implies that the sequence (S∗n)

itself converges to 0 in the weak∗ topology since the sequence (S∗n) is bounded.

(2): We first note that by a result by Katznelson-Tzafriri [5, Theorem 1], we have σ(S) ∩ {z ∈ C :

|z| = 1} ⊆ {1} . Note also that by Lemma 2.3, the operator (I − T ) is invertible if and only if it is onto. Thus,

Ran(I − T ) = X ⇔ 1 �∈ σ(T ) ⇔ 1 �∈ σ(S)

⇔ σ(S) ∩ {z ∈ C : |z| = 1} = ∅

⇔ ‖Sn‖ → 0.

�

The following corollary, which is of independent interest, will be needed for the proof of our main theorem.

Corollary 2.8 Let T ∈ B(X) be a contraction and assume that Ran(I − T ∗) is closed. Then Ran((I − T ∗)2)
is also closed.
Proof. By Lemma 331 of [4, p.274], it is enough to prove that the space Ran(I − T ∗) + Ker(I − T ∗) is

closed. Let ((I − T ∗)(fn) + gn) be a sequence in Ran(I − T ∗) + Ker(I − T ∗) that converges to f ∈ X∗ .

Let P denote the projection obtained in Theorem 2.6. Since Ran ( I − T ∗ ) is a subset of Ker(P ), we have

P ((I−T )∗(fn)+gn) = Pgn → Pf . As Ker(I−T ∗) = Ran(P ), the sequence (gn) converges to P (f). Thus, the

sequence (I−T )∗(fn) converges to f−P (f) which must be in Ran(I−T ∗), as the space Ran(I−T ∗) is closed. �

We can now prove the main result of this paper.

Theorem 2.9 Let T ∈ B(X) be a contraction. Then Ran(I−T ) is closed if and only if there exist a projection

θ ∈ B(X) and an invertible operator R ∈ B(X) such that I − T = θ ◦ R = R ◦ θ .

Proof. Assume that the space Ran(I−T ) is closed. Then the space Ran(I−T ∗) is closed as well. Therefore,

by Corollary 2.8, the space Ran((I − T ∗)2) is also closed, which in turn implies that the space Ran((I − T )2)

is closed. Note that Ker(I − T ∗) = Ker((I − T ∗)2) by Lemma 2.4. Hence, it follows from Lemma 2.1 that the

range of the operator (I −T )2 coincides with the range of the operator I −T . So for every x ∈ X , there exists

y ∈ X such that (I − T )(x) = (I − T )2(y). Thus x − (I − T )y is in Ker(I − T ), which, together with Lemma

2.3, proves that Ran(I − T ) ⊕ Ker(I − T ) = X . Now, define R : X → X as follows:

R(z + y) = (I − T )(z) + y where z ∈ Ran(I − T ) and y ∈ Ker(I − T ).

The mapping R is well-defined, linear, and bounded. We claim that it is invertible. To see that it is onto, let
x = z + y ∈ X , where z ∈ Ran ( I − T ) and y ∈ Ker(I − T ). Then z = (I − T )w for some w ∈ X .
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So R(w + y) = x . Now, to see that it is one-to-one, let x = z + y ∈ Ker(R), where z ∈ Ran(I − T ) and

y ∈ Ker(I −T ). Then (I −T )(z) = −y . Thus (I −T )(z) = y = 0 since the only point in the intersection of the

spaces Ker(I −T ) and Ran(I −T ) is 0. This also implies that z is in the intersection of the spaces Ker(I −T )

and Ran(I − T ), and so it is 0 as well. Hence x = z + y = 0. Let θ be the projection with range Ran(I − T )

and kernel Ker(I − T ). Then I − T = R ◦ θ = θ ◦ R . The reverse implication is clear. �

The following corollary, which is reminiscent of the Fredholm Alternative, is an immediate consequence
of the preceding theorem.

Corollary 2.10 Let T ∈ B(X) be a contraction and assume that Ran(I−T ) is closed. Then dim(Ker(I−T )) =

codim(Ran(I − T )) .

We will prove below an analogue of Theorem 2.9 for the operator algebra B(X). In what follows we will denote

by R(I−T ) the operator defined on B(X) by R(I−T )(A) = A ◦ (I − T ), and we will denote by B(X) ◦ (I − T )

its image.

Corollary 2.11 Let T ∈ B(X) be a contraction and assume that Ran(I − T ) is closed. Then B(X) =

Ker(R(I−T )) ⊕ B(X) ◦ (I − T ) .

Proof. By Theorem 2.9, we have I − T = θ ◦ R , where θ is a bounded projection and R is an invertible
operator in B(X). Consider the operator

Θ : B(X) → B(X)

A �→ A ◦ θ,

which is a bounded projection on B(X). Using the decomposition I − T = R ◦ θ , one can easily see that

Ran(Θ) = B(X) ◦ (I − T ) and Ker(Θ) = Ker(R(I−T )). �

Let A(T ) be the norm closed subalgebra of B(X) generated by an operator T ∈ B(X) and the identity
operator I , which is clearly a commutative Banach algebra. The proof of the preceding corollary also shows
that the following holds.

Corollary 2.12 Let T ∈ B(X) be a contraction. Then the ideal A(T ) ◦ (I − T ) is closed in A(T ) if and only
if the range of the operator I − T is closed in X .
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