A Fredholm alternative-like result on power bounded operators

Ali Ülger, Onur Yavuz

Abstract

Let X be a complex Banach space and $T: X \rightarrow X$ be a power bounded operator, i.e., $\sup _{n \geq 0}\left\|T^{n}\right\|<\infty$. We write $\mathcal{B}(X)$ for the Banach algebra of all bounded linear operators on X. We prove that the space $\operatorname{Ran}(I-T)$ is closed if and only if there exist a projection $\theta \in \mathcal{B}(X)$ and an invertible operator $R \in \mathcal{B}(X)$ such that $I-T=\theta R=R \theta$. This paper also contains some consequences of this result.

1. Introduction

Let X be a complex Banach space. It is well known that for every compact operator $K: X \rightarrow K$, the range of the operator $I-K$ is closed. However, we cannot expect this to hold for an arbitrary bounded linear operator $T: X \rightarrow X$. So it is natural to ask when the range of the operator $I-T$ is closed. In this paper, we answer this problem for power bounded operators by proving that, for a power bounded operator T, the range of the operator $I-T$ is closed if and only if $I-T$ can be written as a product of two commuting operators θ and R where θ is an idempotent and R is invertible. We also present some consequences of this result and it is essentially self-contained.

2. Main results

Let $T: X \rightarrow X$ be a power bounded operator on X. If we renorm X with the norm $\||x|\|:=$ $\sup _{n \geq 0}\left\|T^{n} x\right\|$, then T becomes a contraction on X with this new norm, that is, $\|T\| \leq 1$. For that reason we will work with a fixed contraction operator T. Clearly all of the results presented below are valid for power bounded operators. We will denote by $\mathcal{B}(X)$ the Banach algebra of all bounded linear operators on X, and by $\mathcal{B}\left(X^{*}\right)$ the Banach algebra of all bounded linear operators on the dual space X^{*}. Note that one can identify $\mathcal{B}\left(X^{*}\right)$ with the dual space of the projective tensor space $X^{*} \hat{\otimes} X[1$, p. 230, Corollary 2$]$. So it carries a weak ${ }^{*}$ topology. The natural duality between the spaces $B\left(X^{*}\right)$ and $X^{*} \hat{\otimes} X$ is given by $\langle B, f \otimes x\rangle=\langle B(f), x\rangle$ for every operator $B \in \mathcal{B}\left(X^{*}\right)$, every functional $f \in X^{*}$, and every vector $x \in X$.

We start with the following observation which will be used in the proof of our main theorem.
Lemma 2.1 Let $T \in \mathcal{B}(X)$ and assume that $\operatorname{Ran}(T)$ is closed. Then the following are equivalent:

[^0]
ÜLGER, YAVUZ

1. $\operatorname{Ker}\left(T^{*}\right)=\operatorname{Ker}\left(T^{*^{2}}\right)$.
2. $\overline{\operatorname{Ran}\left(T^{2}\right)}=\operatorname{Ran}(T)$.

Proof. $(1) \Rightarrow(2)$: Since

$$
\operatorname{Ran}(T)^{\perp}=\operatorname{Ker}\left(T^{*}\right)=\operatorname{Ker}\left(T^{*^{2}}\right)=\operatorname{Ran}\left(T^{2}\right)^{\perp}
$$

and $\operatorname{Ran}(T)$ is closed, we have $\overline{\operatorname{Ran}\left(T^{2}\right)}=\operatorname{Ran}(T)$ by Hahn-Banach Theorem.
$(2) \Rightarrow(1)$: We have

$$
\operatorname{Ker}\left(T^{* 2}\right)=\overline{\operatorname{Ran}\left(T^{2}\right)}{ }^{\perp} \quad \text { and } \quad \operatorname{Ker}\left(T^{*}\right)=\operatorname{Ran}(T)^{\perp} .
$$

As $\operatorname{Ran}(T)^{\perp}=\overline{\operatorname{Ran}\left(T^{2}\right)}{ }^{\perp}$, it follows that $\operatorname{Ker}\left(T^{*}\right)=\operatorname{Ker}\left(T^{* 2}\right)$.
The following lemma is proved in ([3], p. 69) for nonexpansive (not necessarily linear) mappings. One can also find a proof of this result in the monograph [2, Lemma 9.4].

Lemma 2.2 Let $T \in \mathcal{B}(X)$ be a contraction and $S_{\lambda}=\lambda I+(1-\lambda) T$ for $0<\lambda<1$. Then $\lim _{n \rightarrow \infty} \| S_{\lambda}^{n+1}(x)-$ $S_{\lambda}^{n}(x) \|=0$ for every $x \in X$.

The following results, which will be needed for the proof of Theorem 2.9, follow without much difficulty from the preceding lemma.

Lemma 2.3 Let $T \in B(X)$ be a contraction. Then
$\operatorname{Ker}(I-T) \cap \operatorname{Ran}(I-T)=\{0\}$.
Proof. Let $S=S_{\frac{1}{2}}=\frac{I+T}{2}$. Then the range and the kernel of the operator $I-S$ coincide with those of $I-T$. Let $y \in \operatorname{Ker}(I-S) \cap \operatorname{Ran}(I-S)$. Since $(I-S)(y)=0$, that is, $S(y)=y$, we have $S^{n}(y)=y$ for every n. We have $(I-S)(x)=y$ for some $x \in X$, that is, $y=x-S(x)$. By applying the operator S^{n} to this equality we get $y=S^{n} x-S^{n+1} x$. By the previous lemma, $\left\|S^{n} x-S^{n+1} x\right\|$ converges to 0 as $n \rightarrow \infty$, which implies that $y=0$. So $\operatorname{Ker}(I-S) \cap \operatorname{Ran}(I-S)=\{0\}$. Thus, $\operatorname{Ker}(I-T) \cap \operatorname{Ran}(I-T)=\{0\}$.

Lemma 2.4 Let $T: X \rightarrow X$ be a contraction. Then,
$\operatorname{Ker}\left(I-T^{*}\right)=\operatorname{Ker}\left(\left(I-T^{*}\right)^{2}\right)$.
Proof. By Lemma 2.3, we have $\operatorname{Ker}\left(I-T^{*}\right) \cap \operatorname{Ran}\left(I-T^{*}\right)=\{0\}$. Let $x \in \operatorname{Ker}\left(\left(I-T^{*}\right)^{2}\right)$. Then the element $y=\left(I-T^{*}\right)(x)$ is in the intersection of the spaces $\operatorname{Ker}\left(I-T^{*}\right)$ and $\operatorname{Ran}\left(I-T^{*}\right)$, which is trivial. Hence $x \in \operatorname{Ker}\left(I-T^{*}\right)$, which implies that $\operatorname{Ker}\left(I-T^{*}\right)^{2} \subseteq \operatorname{Ker}\left(I-T^{*}\right)$. The other inclusion is always true.

The following lemma will be needed in the proof of Theorem 2.6.

Lemma 2.5 Let $\left(R_{\alpha}\right)$ be a bounded net in $\mathcal{B}\left(X^{*}\right)$. Then we have the following:

ÜLGER, YAVUZ

1. The net $\left(R_{\alpha}\right)$ converges to $R \in \mathcal{B}\left(X^{*}\right)$ in the weak* topology if and only if $\left\langle R_{\alpha}(f), x\right\rangle$ converges to $\langle R(f), x\rangle$ for every $x \in X$ and $f \in X^{*}$.
2. If $\left(R_{\alpha}\right)$ converges to R in the weak* topology, then $\left(R_{\alpha} \circ Q\right)$ converges to $R \circ Q$ in the weak* topology for every operator $Q \in \mathcal{B}\left(X^{*}\right)$.
3. If $\left(R_{\alpha}\right)$ converges to R in the weak* topology, then ($L^{*} \circ R_{\alpha}$) converges to $L^{*} \circ R$ for every operator $L \in \mathcal{B}(X)$.
Proof. Assertion (1) follows from the fact that the net $\left(R_{\alpha}\right)$ is bounded and the set of atomic tensors $f \otimes x$ are total in the space $X^{*} \hat{\otimes} X$. Assertions (2) and (3) follow, respectively, from the identities

$$
\begin{gathered}
\left\langle R_{\alpha} \circ Q, f \otimes x\right\rangle=\left\langle R_{\alpha}, Q(f) \otimes x\right\rangle . \\
\left\langle L^{*} \circ R_{\alpha}, f \otimes x\right\rangle=\left\langle\left(L^{*} \circ R_{\alpha}\right)(f), x\right\rangle=\left\langle R_{\alpha}(f), L(x)\right\rangle=\left\langle R_{\alpha}, f \otimes L(x)\right\rangle .
\end{gathered}
$$

The next result shows that for a power bounded operator $T \in \mathcal{B}(X)$, the kernel of the operator $I-T^{*}$ is always complemented in X^{*}.

Theorem 2.6 Let $T \in \mathcal{B}(X)$ be a contraction. Then there exists a projection $P \in \mathcal{B}\left(X^{*}\right)$ whose range is $\operatorname{Ker}\left(I-T^{*}\right)$ and whose kernel contains $\operatorname{Ran}\left(I-T^{*}\right)$.
Proof. Let $S=\frac{I+T}{2}$. Since $\|S\| \leq 1$, the set $\left\{S^{*^{n}}: n \geq 0\right\}$ is bounded. So by Alaoglu theorem, the sequence $\left(S^{*^{n}}\right)$ has a convergent subnet $\left(S^{*^{n_{i}}}\right)$ that converges to an operator P in $\left(B\left(X^{*}\right), w^{*}\right)$. By Lemma 2.2, we have $\left\langle S^{*^{n+1}} f-S^{*^{n}} f, x\right\rangle \rightarrow 0$ for every $f \in X^{*}$ and $x \in X$. This, together with the fact that P is the weak* limit of the net ($S^{*^{n_{i}}}$), implies that

$$
P \circ S^{*}=S^{*} \circ P=P .
$$

Then $S^{*^{n_{i}}} \circ P=P$ for every n_{i}. So, passing again to the limit in $\left(\mathcal{B}\left(X^{*}\right), w^{*}\right)$ and using Lemma 2.5 , we get $P^{2}=P$. This proves that every cluster point of the sequence $\left(S^{* n}\right)$ is a projection. As $S^{*}=\frac{I+T^{*}}{2}$, we also have

$$
T^{*} \circ P=P \circ T^{*}=P
$$

So $\operatorname{Ran}(P) \subseteq \operatorname{Ker}\left(I-T^{*}\right)$. On the other hand, for $f \in \operatorname{Ker}\left(I-T^{*}\right)$, we have $T^{*}(f)=f$, so $S^{*}(f)=f$. Hence $S^{*^{n_{i}}} f=f$, which implies that $P(f)=f$. Hence $\operatorname{Ran}(P)=\operatorname{Ker}\left(I-T^{*}\right)$. To prove the inclusion $\operatorname{Ran}\left(I-T^{*}\right) \subseteq \operatorname{Ker}(P)$, let $f \in X^{*}$ be an arbitrary element and $g=f-T^{*}(f)$. Then, we have $P(g)=\left(P \circ T^{*}\right)(f)=0$. Hence $\operatorname{Ran}\left(I-T^{*}\right) \subseteq \operatorname{Ker}(P)$.

As an important corollary of this theorem we present the following result.
Corollary 2.7 Let T be a power bounded operator and $S=\frac{I+T}{2}$. Then

1. $\overline{\operatorname{Ran}(I-T)}=X$ if and only if $S^{n}(x) \rightarrow 0$ weakly for every $x \in X$.
2. $\operatorname{Ran}(I-T)=X$ if and only if $\left\|S^{n}\right\| \rightarrow 0$.

Proof. (1): First assume that $\left\langle S^{n} x, f\right\rangle \rightarrow 0$ for every $x \in X$ and $f \in X^{*}$. Then $\left\langle x, S^{* n} f\right\rangle \rightarrow 0$ for every $x \in X$ and $f \in X^{*}$, that is, the sequence $\left(S^{* n}\right)$ converges to 0 in the weak* topology of $\mathcal{B}\left(X^{*}\right)$. Then the projection P obtained in Theorem 2.6 is trivial, which in turn implies that $\operatorname{Ker}\left(I-T^{*}\right)=\{0\}$. Thus, $\overline{\operatorname{Ran}(I-T)}=X$.
Conversely, if $\overline{\operatorname{Ran}(I-T)}=X$, then, since every weak* cluster point of the sequence $\left(S^{* n}\right)$ is a projection on $\operatorname{Ker}\left(I-T^{*}\right)$, the only weak* cluster point of the sequence $\left(S^{* n}\right)$ is 0 . This implies that the sequence $\left(S^{* n}\right)$ itself converges to 0 in the weak* topology since the sequence $\left(S^{* n}\right)$ is bounded.
(2): We first note that by a result by Katznelson-Tzafriri [5, Theorem 1], we have $\sigma(S) \cap\{z \in \mathbb{C}$: $|z|=1\} \subseteq\{1\}$. Note also that by Lemma 2.3, the operator $(I-T)$ is invertible if and only if it is onto. Thus,

$$
\begin{aligned}
\operatorname{Ran}(I-T)=X & \Leftrightarrow 1 \notin \sigma(T) \Leftrightarrow 1 \notin \sigma(S) \\
& \Leftrightarrow \sigma(S) \cap\{z \in \mathbb{C}:|z|=1\}=\emptyset \\
& \Leftrightarrow\left\|S^{n}\right\| \rightarrow 0 .
\end{aligned}
$$

The following corollary, which is of independent interest, will be needed for the proof of our main theorem.
Corollary 2.8 Let $T \in \mathcal{B}(X)$ be a contraction and assume that $\operatorname{Ran}\left(I-T^{*}\right)$ is closed. Then $\operatorname{Ran}\left(\left(I-T^{*}\right)^{2}\right)$ is also closed.
Proof. By Lemma 331 of [4, p.274], it is enough to prove that the space $\operatorname{Ran}\left(I-T^{*}\right)+\operatorname{Ker}\left(I-T^{*}\right)$ is closed. Let $\left(\left(I-T^{*}\right)\left(f_{n}\right)+g_{n}\right)$ be a sequence in $\operatorname{Ran}\left(I-T^{*}\right)+\operatorname{Ker}\left(I-T^{*}\right)$ that converges to $f \in X^{*}$. Let P denote the projection obtained in Theorem 2.6. Since Ran $\left(I-T^{*}\right)$ is a subset of $\operatorname{Ker}(P)$, we have $P\left((I-T)^{*}\left(f_{n}\right)+g_{n}\right)=P g_{n} \rightarrow P f$. As $\operatorname{Ker}\left(I-T^{*}\right)=\operatorname{Ran}(P)$, the sequence $\left(g_{n}\right)$ converges to $P(f)$. Thus, the sequence $(I-T)^{*}\left(f_{n}\right)$ converges to $f-P(f)$ which must be in $\operatorname{Ran}\left(I-T^{*}\right)$, as the space $\operatorname{Ran}\left(I-T^{*}\right)$ is closed.

We can now prove the main result of this paper.
Theorem 2.9 Let $T \in \mathcal{B}(X)$ be a contraction. Then $\operatorname{Ran}(I-T)$ is closed if and only if there exist a projection $\theta \in \mathcal{B}(X)$ and an invertible operator $R \in \mathcal{B}(X)$ such that $I-T=\theta \circ R=R \circ \theta$.
Proof. Assume that the space $\operatorname{Ran}(I-T)$ is closed. Then the space $\operatorname{Ran}\left(I-T^{*}\right)$ is closed as well. Therefore, by Corollary 2.8, the space $\operatorname{Ran}\left(\left(I-T^{*}\right)^{2}\right)$ is also closed, which in turn implies that the space $\operatorname{Ran}\left((I-T)^{2}\right)$ is closed. Note that $\operatorname{Ker}\left(I-T^{*}\right)=\operatorname{Ker}\left(\left(I-T^{*}\right)^{2}\right)$ by Lemma 2.4. Hence, it follows from Lemma 2.1 that the range of the operator $(I-T)^{2}$ coincides with the range of the operator $I-T$. So for every $x \in X$, there exists $y \in X$ such that $(I-T)(x)=(I-T)^{2}(y)$. Thus $x-(I-T) y$ is in $\operatorname{Ker}(I-T)$, which, together with Lemma 2.3, proves that $\operatorname{Ran}(I-T) \oplus \operatorname{Ker}(I-T)=X$. Now, define $R: X \rightarrow X$ as follows:

$$
R(z+y)=(I-T)(z)+y \quad \text { where } \quad z \in \operatorname{Ran}(I-T) \quad \text { and } \quad y \in \operatorname{Ker}(I-T)
$$

The mapping R is well-defined, linear, and bounded. We claim that it is invertible. To see that it is onto, let $x=z+y \in X$, where $z \in \operatorname{Ran}(I-T)$ and $y \in \operatorname{Ker}(I-T)$. Then $z=(I-T) w$ for some $w \in X$.

ÜLGER, YAVUZ

So $R(w+y)=x$. Now, to see that it is one-to-one, let $x=z+y \in \operatorname{Ker}(R)$, where $z \in \operatorname{Ran}(I-T)$ and $y \in \operatorname{Ker}(I-T)$. Then $(I-T)(z)=-y$. Thus $(I-T)(z)=y=0$ since the only point in the intersection of the spaces $\operatorname{Ker}(I-T)$ and $\operatorname{Ran}(I-T)$ is 0 . This also implies that z is in the intersection of the spaces $\operatorname{Ker}(I-T)$ and $\operatorname{Ran}(I-T)$, and so it is 0 as well. Hence $x=z+y=0$. Let θ be the projection with range $\operatorname{Ran}(I-T)$ and kernel $\operatorname{Ker}(I-T)$. Then $I-T=R \circ \theta=\theta \circ R$. The reverse implication is clear.

The following corollary, which is reminiscent of the Fredholm Alternative, is an immediate consequence of the preceding theorem.

Corollary 2.10 Let $T \in \mathcal{B}(X)$ be a contraction and assume that $\operatorname{Ran}(I-T)$ is closed. Then $\operatorname{dim}(\operatorname{Ker}(I-T))=$ $\operatorname{codim}(\operatorname{Ran}(I-T))$.

We will prove below an analogue of Theorem 2.9 for the operator algebra $B(X)$. In what follows we will denote by $R_{(I-T)}$ the operator defined on $\mathcal{B}(X)$ by $R_{(I-T)}(A)=A \circ(I-T)$, and we will denote by $\mathcal{B}(X) \circ(I-T)$ its image.

Corollary 2.11 Let $T \in \mathcal{B}(X)$ be a contraction and assume that $\operatorname{Ran}(I-T)$ is closed. Then $\mathcal{B}(X)=$ $\operatorname{Ker}\left(R_{(I-T)}\right) \oplus \mathcal{B}(X) \circ(I-T)$.

Proof. By Theorem 2.9, we have $I-T=\theta \circ R$, where θ is a bounded projection and R is an invertible operator in $\mathcal{B}(X)$. Consider the operator

$$
\begin{gathered}
\Theta: \mathcal{B}(X) \rightarrow \mathcal{B}(X) \\
A \mapsto A \circ \theta,
\end{gathered}
$$

which is a bounded projection on $\mathcal{B}(X)$. Using the decomposition $I-T=R \circ \theta$, one can easily see that $\operatorname{Ran}(\Theta)=\mathcal{B}(X) \circ(I-T)$ and $\operatorname{Ker}(\Theta)=\operatorname{Ker}\left(R_{(I-T)}\right)$.

Let $A(T)$ be the norm closed subalgebra of $B(X)$ generated by an operator $T \in \mathcal{B}(X)$ and the identity operator I, which is clearly a commutative Banach algebra. The proof of the preceding corollary also shows that the following holds.

Corollary 2.12 Let $T \in \mathcal{B}(X)$ be a contraction. Then the ideal $A(T) \circ(I-T)$ is closed in $A(T)$ if and only if the range of the operator $I-T$ is closed in X.

References

[1] Diestel, J. and Uhl, J.J. Jr.: Vector Measures, Amer. Math. Soc. Mathematical Surveys 15, Providence, (1977).
[2] Goebel, K and Kirk, W.A.: Topics in metric fixed point theory, Cambridge Studies in Advanced Mathematics, Vol. 28, Cambridge University Press, (1990).
[3] Ishikawa, S.: Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc 59 , 65-71 (1976).

ÜLGER, YAVUZ

[4] Kato,T.: Perturbation theory for nullity, deficiency, and other quantities of linear operators, J. Analyse Math.6, 261-322 (1958).
[5] Katznelson, Y. and Tzafriri, L.: On power bounded operators, Journal of Functional Analysis 68, 313-328 (1986).

Ali ÜLGER
Received: 30.12.2009
Department of Mathematics,
Koç University, Rumeli Feneri Yolu,
34450, Sariyer, İstanbul-TURKEY
e-mail: aulger@ku.edu.tr
Onur YAVUZ
Faculty of Engineering and Natural Sciences,
Sabancı University,
34956, Tuzla, İstanbul,TURKEY
e-mail: onuryavuz@sabanciuniv.edu

[^0]: 2000 AMS Mathematics Subject Classification: 47A010, 47A30, 47A53.
 The first author was supported in part by TUBA and Tubitak-Isbap project no: 107 T 896 .

