

Turk J Math 35 (2011) , 473 – 478. © TÜBİTAK doi:10.3906/mat-0912-68

A Fredholm alternative-like result on power bounded operators

Ali Ülger, Onur Yavuz

Abstract

Let X be a complex Banach space and $T: X \to X$ be a power bounded operator, i.e., $\sup_{n\geq 0} ||T^n|| < \infty$. We write $\mathcal{B}(X)$ for the Banach algebra of all bounded linear operators on X. We prove that the space $\operatorname{Ran}(I-T)$ is closed if and only if there exist a projection $\theta \in \mathcal{B}(X)$ and an invertible operator $R \in \mathcal{B}(X)$ such that $I - T = \theta R = R\theta$. This paper also contains some consequences of this result.

1. Introduction

Let X be a complex Banach space. It is well known that for every compact operator $K: X \to K$, the range of the operator I - K is closed. However, we cannot expect this to hold for an arbitrary bounded linear operator $T: X \to X$. So it is natural to ask when the range of the operator I - T is closed. In this paper, we answer this problem for power bounded operators by proving that, for a power bounded operator T, the range of the operator I - T is closed if and only if I - T can be written as a product of two commuting operators θ and R where θ is an idempotent and R is invertible. We also present some consequences of this result and it is essentially self-contained.

2. Main results

Let $T : X \to X$ be a power bounded operator on X. If we renorm X with the norm $|||x||| := \sup_{n\geq 0} ||T^nx||$, then T becomes a contraction on X with this new norm, that is, $||T|| \leq 1$. For that reason we will work with a fixed contraction operator T. Clearly all of the results presented below are valid for power bounded operators. We will denote by $\mathcal{B}(X)$ the Banach algebra of all bounded linear operators on X, and by $\mathcal{B}(X^*)$ the Banach algebra of all bounded linear operators on the dual space X^* . Note that one can identify $\mathcal{B}(X^*)$ with the dual space of the projective tensor space $X^* \hat{\otimes} X$ [1, p. 230, Corollary 2]. So it carries a weak^{*} topology. The natural duality between the spaces $\mathcal{B}(X^*)$ and $X^* \hat{\otimes} X$ is given by $\langle B, f \otimes x \rangle = \langle B(f), x \rangle$ for every operator $B \in \mathcal{B}(X^*)$, every functional $f \in X^*$, and every vector $x \in X$.

We start with the following observation which will be used in the proof of our main theorem.

Lemma 2.1 Let $T \in \mathcal{B}(X)$ and assume that $\operatorname{Ran}(T)$ is closed. Then the following are equivalent:

²⁰⁰⁰ AMS Mathematics Subject Classification: 47A010, 47A30, 47A53.

The first author was supported in part by TUBA and Tubitak-Isbap project no: 107T896.

- 1. $\operatorname{Ker}(T^*) = \operatorname{Ker}(T^{*^2})$.
- 2. $\overline{\operatorname{Ran}(T^2)} = \operatorname{Ran}(T)$.

Proof. $(1) \Rightarrow (2)$: Since

$$\operatorname{Ran}(T)^{\perp} = \operatorname{Ker}(T^*) = \operatorname{Ker}(T^{*^2}) = \operatorname{Ran}(T^2)^{\perp}$$

and $\operatorname{Ran}(T)$ is closed, we have $\overline{\operatorname{Ran}(T^2)} = \operatorname{Ran}(T)$ by Hahn-Banach Theorem. (2) \Rightarrow (1): We have

$$\operatorname{Ker}(T^{*2}) = \overline{\operatorname{Ran}(T^2)}^{\perp}$$
 and $\operatorname{Ker}(T^*) = \operatorname{Ran}(T)^{\perp}$.

As $\operatorname{Ran}(T)^{\perp} = \overline{\operatorname{Ran}(T^2)}^{\perp}$, it follows that $\operatorname{Ker}(T^*) = \operatorname{Ker}(T^{*2})$.

The following lemma is proved in ([3], p. 69) for nonexpansive (not necessarily linear) mappings. One can also find a proof of this result in the monograph [2, Lemma 9.4].

Lemma 2.2 Let $T \in \mathcal{B}(X)$ be a contraction and $S_{\lambda} = \lambda I + (1 - \lambda)T$ for $0 < \lambda < 1$. Then $\lim_{n \to \infty} ||S_{\lambda}^{n+1}(x) - S_{\lambda}^{n}(x)|| = 0$ for every $x \in X$.

The following results, which will be needed for the proof of Theorem 2.9, follow without much difficulty from the preceding lemma.

Lemma 2.3 Let $T \in B(X)$ be a contraction. Then $\operatorname{Ker}(I - T) \cap \operatorname{Ran}(I - T) = \{0\}$.

Proof. Let $S = S_{\frac{1}{2}} = \frac{I+T}{2}$. Then the range and the kernel of the operator I - S coincide with those of I - T. Let $y \in \text{Ker}(I - S) \cap \text{Ran}(I - S)$. Since (I - S)(y) = 0, that is, S(y) = y, we have $S^n(y) = y$ for every n. We have (I - S)(x) = y for some $x \in X$, that is, y = x - S(x). By applying the operator S^n to this equality we get $y = S^n x - S^{n+1} x$. By the previous lemma, $||S^n x - S^{n+1} x||$ converges to 0 as $n \to \infty$, which implies that y = 0. So $\text{Ker}(I - S) \cap \text{Ran}(I - S) = \{0\}$. Thus, $\text{Ker}(I - T) \cap \text{Ran}(I - T) = \{0\}$.

Lemma 2.4 Let $T: X \to X$ be a contraction. Then, $\operatorname{Ker}(I - T^*) = \operatorname{Ker}((I - T^*)^2).$

Proof. By Lemma 2.3, we have Ker $(I - T^*) \cap \text{Ran} (I - T^*) = \{0\}$. Let $x \in \text{Ker}((I - T^*)^2)$. Then the element $y = (I - T^*)(x)$ is in the intersection of the spaces $\text{Ker}(I - T^*)$ and $\text{Ran}(I - T^*)$, which is trivial. Hence $x \in \text{Ker}(I - T^*)$, which implies that $\text{Ker}(I - T^*)^2 \subseteq \text{Ker}(I - T^*)$. The other inclusion is always true. \Box

The following lemma will be needed in the proof of Theorem 2.6.

Lemma 2.5 Let (R_{α}) be a bounded net in $\mathcal{B}(X^*)$. Then we have the following:

- 1. The net (R_{α}) converges to $R \in \mathcal{B}(X^*)$ in the weak^{*} topology if and only if $\langle R_{\alpha}(f), x \rangle$ converges to $\langle R(f), x \rangle$ for every $x \in X$ and $f \in X^*$.
- 2. If (R_{α}) converges to R in the weak^{*} topology, then $(R_{\alpha} \circ Q)$ converges to $R \circ Q$ in the weak^{*} topology for every operator $Q \in \mathcal{B}(X^*)$.
- 3. If (R_{α}) converges to R in the weak^{*} topology, then $(L^* \circ R_{\alpha})$ converges to $L^* \circ R$ for every operator $L \in \mathcal{B}(X)$.

Proof. Assertion (1) follows from the fact that the net (R_{α}) is bounded and the set of atomic tensors $f \otimes x$ are total in the space $X^* \hat{\otimes} X$. Assertions (2) and (3) follow, respectively, from the identities

$$\langle R_{\alpha} \circ Q, f \otimes x \rangle = \langle R_{\alpha}, Q(f) \otimes x \rangle.$$
$$L^* \circ R_{\alpha}, f \otimes x \rangle = \langle (L^* \circ R_{\alpha})(f), x \rangle = \langle R_{\alpha}(f), L(x) \rangle = \langle R_{\alpha}, f \otimes L(x) \rangle.$$

The next result shows that for a power bounded operator $T \in \mathcal{B}(X)$, the kernel of the operator $I - T^*$ is always complemented in X^* .

Theorem 2.6 Let $T \in \mathcal{B}(X)$ be a contraction. Then there exists a projection $P \in \mathcal{B}(X^*)$ whose range is $\operatorname{Ker}(I - T^*)$ and whose kernel contains $\operatorname{Ran}(I - T^*)$.

Proof. Let $S = \frac{I+T}{2}$. Since $||S|| \le 1$, the set $\{S^{*^n} : n \ge 0\}$ is bounded. So by Alaoglu theorem, the sequence (S^{*^n}) has a convergent subnet $(S^{*^{n_i}})$ that converges to an operator P in $(B(X^*), w^*)$. By Lemma 2.2, we have $\langle S^{*^{n+1}}f - S^{*^n}f, x \rangle \to 0$ for every $f \in X^*$ and $x \in X$. This, together with the fact that P is the weak^{*} limit of the net $(S^{*^{n_i}})$, implies that

$$P \circ S^* = S^* \circ P = P.$$

Then $S^{*^{n_i}} \circ P = P$ for every n_i . So, passing again to the limit in $(\mathcal{B}(X^*), w^*)$ and using Lemma 2.5, we get $P^2 = P$. This proves that every cluster point of the sequence (S^{*n}) is a projection. As $S^* = \frac{I+T^*}{2}$, we also have

$$T^* \circ P = P \circ T^* = P.$$

So $\operatorname{Ran}(P) \subseteq \operatorname{Ker}(I - T^*)$. On the other hand, for $f \in \operatorname{Ker}(I - T^*)$, we have $T^*(f) = f$, so $S^*(f) = f$. Hence $S^{*^{n_i}}f = f$, which implies that P(f) = f. Hence $\operatorname{Ran}(P) = \operatorname{Ker}(I - T^*)$. To prove the inclusion $\operatorname{Ran}(I - T^*) \subseteq \operatorname{Ker}(P)$, let $f \in X^*$ be an arbitrary element and $g = f - T^*(f)$. Then, we have $P(g) = (P \circ T^*)(f) = 0$. Hence $\operatorname{Ran}(I - T^*) \subseteq \operatorname{Ker}(P)$.

As an important corollary of this theorem we present the following result.

Corollary 2.7 Let T be a power bounded operator and $S = \frac{I+T}{2}$. Then

- 1. $\overline{\operatorname{Ran}(I-T)} = X$ if and only if $S^n(x) \to 0$ weakly for every $x \in X$.
- 2. $\operatorname{Ran}(I-T) = X$ if and only if $||S^n|| \to 0$.

<

Proof. (1): First assume that $\langle S^n x, f \rangle \to 0$ for every $x \in X$ and $f \in X^*$. Then $\langle x, S^{*n} f \rangle \to 0$ for every $x \in X$ and $f \in X^*$, that is, the sequence (S^{*n}) converges to 0 in the weak* topology of $\mathcal{B}(X^*)$. Then the projection P obtained in Theorem 2.6 is trivial, which in turn implies that $\operatorname{Ker}(I - T^*) = \{0\}$. Thus, $\overline{\operatorname{Ran}(I - T)} = X$.

Conversely, if $\overline{\operatorname{Ran}(I-T)} = X$, then, since every weak^{*} cluster point of the sequence (S^{*n}) is a projection on $\operatorname{Ker}(I-T^*)$, the only weak^{*} cluster point of the sequence (S^{*n}) is 0. This implies that the sequence (S^{*n}) itself converges to 0 in the weak^{*} topology since the sequence (S^{*n}) is bounded.

(2): We first note that by a result by Katznelson-Tzafriri [5, Theorem 1], we have $\sigma(S) \cap \{z \in \mathbb{C} : |z| = 1\} \subseteq \{1\}$. Note also that by Lemma 2.3, the operator (I - T) is invertible if and only if it is onto. Thus,

$$\operatorname{Ran}(I - T) = X \Leftrightarrow 1 \notin \sigma(T) \Leftrightarrow 1 \notin \sigma(S)$$
$$\Leftrightarrow \sigma(S) \cap \{z \in \mathbb{C} : |z| = 1\} = \emptyset$$
$$\Leftrightarrow \|S^n\| \to 0.$$

The following corollary, which is of independent interest, will be needed for the proof of our main theorem.

Corollary 2.8 Let $T \in \mathcal{B}(X)$ be a contraction and assume that $\operatorname{Ran}(I - T^*)$ is closed. Then $\operatorname{Ran}((I - T^*)^2)$ is also closed.

Proof. By Lemma 331 of [4, p.274], it is enough to prove that the space $\operatorname{Ran}(I - T^*) + \operatorname{Ker}(I - T^*)$ is closed. Let $((I - T^*)(f_n) + g_n)$ be a sequence in $\operatorname{Ran}(I - T^*) + \operatorname{Ker}(I - T^*)$ that converges to $f \in X^*$. Let P denote the projection obtained in Theorem 2.6. Since $\operatorname{Ran}(I - T^*)$ is a subset of $\operatorname{Ker}(P)$, we have $P((I - T)^*(f_n) + g_n) = Pg_n \to Pf$. As $\operatorname{Ker}(I - T^*) = \operatorname{Ran}(P)$, the sequence (g_n) converges to P(f). Thus, the sequence $(I - T)^*(f_n)$ converges to f - P(f) which must be in $\operatorname{Ran}(I - T^*)$, as the space $\operatorname{Ran}(I - T^*)$ is closed. \Box

We can now prove the main result of this paper.

Theorem 2.9 Let $T \in \mathcal{B}(X)$ be a contraction. Then $\operatorname{Ran}(I-T)$ is closed if and only if there exist a projection $\theta \in \mathcal{B}(X)$ and an invertible operator $R \in \mathcal{B}(X)$ such that $I - T = \theta \circ R = R \circ \theta$.

Proof. Assume that the space $\operatorname{Ran}(I-T)$ is closed. Then the space $\operatorname{Ran}(I-T^*)$ is closed as well. Therefore, by Corollary 2.8, the space $\operatorname{Ran}((I-T^*)^2)$ is also closed, which in turn implies that the space $\operatorname{Ran}((I-T)^2)$ is closed. Note that $\operatorname{Ker}(I-T^*) = \operatorname{Ker}((I-T^*)^2)$ by Lemma 2.4. Hence, it follows from Lemma 2.1 that the range of the operator $(I-T)^2$ coincides with the range of the operator I-T. So for every $x \in X$, there exists $y \in X$ such that $(I-T)(x) = (I-T)^2(y)$. Thus x - (I-T)y is in $\operatorname{Ker}(I-T)$, which, together with Lemma 2.3, proves that $\operatorname{Ran}(I-T) \oplus \operatorname{Ker}(I-T) = X$. Now, define $R: X \to X$ as follows:

R(z+y) = (I-T)(z) + y where $z \in \operatorname{Ran}(I-T)$ and $y \in \operatorname{Ker}(I-T)$.

The mapping R is well-defined, linear, and bounded. We claim that it is invertible. To see that it is onto, let $x = z + y \in X$, where $z \in \text{Ran}(I - T)$ and $y \in \text{Ker}(I - T)$. Then z = (I - T)w for some $w \in X$.

So R(w + y) = x. Now, to see that it is one-to-one, let $x = z + y \in \text{Ker}(R)$, where $z \in \text{Ran}(I - T)$ and $y \in \text{Ker}(I - T)$. Then (I - T)(z) = -y. Thus (I - T)(z) = y = 0 since the only point in the intersection of the spaces Ker(I - T) and Ran(I - T) is 0. This also implies that z is in the intersection of the spaces Ker(I - T) and Ran(I - T), and so it is 0 as well. Hence x = z + y = 0. Let θ be the projection with range Ran(I - T) and kernel Ker(I - T). Then $I - T = R \circ \theta = \theta \circ R$. The reverse implication is clear.

The following corollary, which is reminiscent of the Fredholm Alternative, is an immediate consequence of the preceding theorem.

Corollary 2.10 Let $T \in \mathcal{B}(X)$ be a contraction and assume that $\operatorname{Ran}(I-T)$ is closed. Then $\dim(\operatorname{Ker}(I-T)) = \operatorname{codim}(\operatorname{Ran}(I-T))$.

We will prove below an analogue of Theorem 2.9 for the operator algebra B(X). In what follows we will denote by $R_{(I-T)}$ the operator defined on $\mathcal{B}(X)$ by $R_{(I-T)}(A) = A \circ (I-T)$, and we will denote by $\mathcal{B}(X) \circ (I-T)$ its image.

Corollary 2.11 Let $T \in \mathcal{B}(X)$ be a contraction and assume that $\operatorname{Ran}(I - T)$ is closed. Then $\mathcal{B}(X) = \operatorname{Ker}(R_{(I-T)}) \oplus \mathcal{B}(X) \circ (I - T)$.

Proof. By Theorem 2.9, we have $I - T = \theta \circ R$, where θ is a bounded projection and R is an invertible operator in $\mathcal{B}(X)$. Consider the operator

$$\Theta: \mathcal{B}(X) \to \mathcal{B}(X)$$
$$A \mapsto A \circ \theta,$$

which is a bounded projection on $\mathcal{B}(X)$. Using the decomposition $I - T = R \circ \theta$, one can easily see that $\operatorname{Ran}(\Theta) = \mathcal{B}(X) \circ (I - T)$ and $\operatorname{Ker}(\Theta) = \operatorname{Ker}(R_{(I-T)})$.

Let A(T) be the norm closed subalgebra of B(X) generated by an operator $T \in \mathcal{B}(X)$ and the identity operator I, which is clearly a commutative Banach algebra. The proof of the preceding corollary also shows that the following holds.

Corollary 2.12 Let $T \in \mathcal{B}(X)$ be a contraction. Then the ideal $A(T) \circ (I - T)$ is closed in A(T) if and only if the range of the operator I - T is closed in X.

References

- [1] Diestel, J. and Uhl, J.J. Jr.: Vector Measures, Amer. Math. Soc. Mathematical Surveys 15, Providence, (1977).
- [2] Goebel, K and Kirk, W.A.: Topics in metric fixed point theory, Cambridge Studies in Advanced Mathematics, Vol. 28, Cambridge University Press, (1990).
- [3] Ishikawa, S.: Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc 59, 65-71 (1976).

- [4] Kato,T.: Perturbation theory for nullity, deficiency, and other quantities of linear operators, J. Analyse Math.6, 261-322 (1958).
- [5] Katznelson, Y. and Tzafriri, L.: On power bounded operators, Journal of Functional Analysis 68, 313-328 (1986).

Received: 30.12.2009

Ali ÜLGER Department of Mathematics, Koç University, Rumeli Feneri Yolu, 34450, Sariyer, İstanbul-TURKEY e-mail: aulger@ku.edu.tr

Onur YAVUZ Faculty of Engineering and Natural Sciences, Sabancı University, 34956, Tuzla, İstanbul,TURKEY e-mail: onuryavuz@sabanciuniv.edu