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doi:10.3906/mat-0910-89

Weingarten quadric surfaces in a Euclidean 3-space

Min Hee Kim and Dae Won Yoon

Abstract

In this paper, we study quadric surfaces in a Euclidean 3-space. Furthermore, we classify quadric surfaces

in a Euclidean 3-space in terms of the Gaussian curvature and the mean curvature.
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1. Introduction

A Weingarten surface is a surface on which there exists the Jacobi equation Φ(k1, k2) =

det
(

(k1)s (k1)t

(k2)s (k2)t

)
= 0 between the principal curvatures k1, k2 on a surface, or equivalently, the Jacobi

equation Ψ(H, K) = 0 between the Gaussian curvature K and the mean curvature H on a surface, where

(k1)s = ∂k1
∂s and (k2)t = ∂k2

∂t .

On the other hand, if a surface satisfies a linear equation ak1 + bk2 = c or aK + bH = c for some real
numbers a, b, c with (a, b) �= (0, 0), then it is said to be a linear Weingarten surface.

For the study of these surfaces, W. Kühnel ([5]) investigated ruled Weingarten surface in a Euclidean

3-space E
3 . F. Dillen and W. Kühnel ([2]) and Y. H. Kim and D. W. Yoon ([4]) gave a classification of ruled

Weingarten surfaces and ruled linear Weingarten surfaces in a Minkowski 3-space E
3
1 , respectively. D. W. Yoon

([10]) classified ruled linear Weingarten surface in E
3 . Recently, M. I. Munteanu and I. Nistor ([9]) and R. Loṕez

([6, 7]) studied polynomial translation (linear) Weingarten surfaces and a cyclic linear Weingarten surface in a

Euclidean 3-space, respectively. In [8] R. Loṕez classified all parabolic linear Weingarten surfaces in hyperbolic
3-space.

In this paper, we study quadric surfaces in a Euclidean 3-space and prove the following classification
theorem.

Theorem A. Let M be a quadric surface in a Euclidean 3-space with non-zero Gaussian curvature everywhere.
If M satisfies the Jacobi equation with respect to the Gaussian curvature K and the mean curvature H , that
is,

Ψ(K, H) = 0, (1.1)
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then M is an open part of one of a hyperboloid of two sheets, a hyperboloid of one sheet, an ellipsoid or an
elliptic paraboloid.

Throughout this paper, we assume that all objects are smooth and all surfaces are Riemannian, unless
otherwise mentioned.

2. Weingarten quadric surfaces in E
3

A subset M of a Euclidean 3-space E
3 is called a quadric surface if it is the set of points (x1, x2, x3)

satisfying the following equation of the second degree:

3∑
i=1

aijxixj +
3∑

i=1

bixi + c = 0, (2.1)

where aij, bi, c are all real numbers. Suppose that M is not a plane. Then A is not a zero matrix and we

may assume without loss of generality that the matrix A = (aij) is symmetric. By applying a coordinate

transformation in E
3 if necessary, M is either ruled surface, or one of the following two kinds ([1]):

x2
3 − ax2

1 − bx2
2 = c, abc �= 0 (2.2)

or

x3 =
a

2
x2

1 +
b

2
x2

2, a > 0, b > 0. (2.3)

If a surface satisfies the equation (2.2), it is said to be a quadric surface of the first kind and we call a

surface satisfying (2.3) a quadric surface of the second kind.

Let x : M −→ E
3 be a quadric surface of the first kind in E

3 . Then M is parametrized by

x(u, v) = (u, v, (au2 + bv2 + c)
1
2 ). (2.4)

Let’s denote the function au2 + bv2 + c by W . Then, the components E, F and G of the first fundamental
form are given by

E = 1 +
a2u2

W
, F =

abuv

W
, G = 1 +

b2v2

W
.

For later use, we define smooth function q

q = ||xu × xv||2 = 1 +
a2u2

W
+

b2v2

W
. (2.5)

Then, the unit normal vector filed U of the surface M is given by

U =
1
q

1
2

(
− au

W
1
2
,− bv

W
1
2
, 1

)
,

leading to the components of the second fundamental form on M

e =
1

q
1
2 W

3
2
(aW − a2u2), f = − abuv

q
1
2 W

3
2
, g =

1
q

1
2 W

3
2
(bW − b2v2).
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Hence, the Gaussian curvature K and the mean curvature H are given respectively, by

K =
1

q2W 2
abc, (2.6)

H =
1

2q
3
2 W

3
2
H1, (2.7)

where H1 = (a + b)c + (ab + a2b)u2 + (ab + ab2)v2. From (2.6) a quadric surface of the first kind given by (2.4)
has a non-zero Gaussian curvature everywhere.

Differentiating K and H with respect to u and v respectively, we get

{
Ku = −4a2(a+1)bc

q3W3 u,

Kv = −4ab2(b+1)c
q3W3 v,

(2.8)

⎧⎨
⎩

Hu = − 1

4q
5
2 W

7
2
{6a(a + 1)uH1W − 4uW (ab + a2b)(W + a2u2 + b2v2)},

Hv = − 1

4q
5
2 W

7
2
{6b(b + 1)vH1W − 4vW (ab + ab2)(W + a2u2 + b2v2)}.

(2.9)

Suppose that M is a quadric surface of the first kind satisfying the condition (1.1) . Then, we have

KuHv − KvHu = 0. (2.10)

Equation (2.10) together with (2.8) and (2.9) becomes

a2(a + 1)bcu{6b(b + 1)vH1W − 4vW (ab + ab2)(W + a2u2 + b2v2)}

− ab2(b + 1)cv{6a(a + 1)uH1W − 4uW (ab + a2b)(W + a2u2 + b2v2)} = 0.
(2.11)

The direct computation of the left hand side of (2.11) gives a polynomial in u and v with constants as the

coefficients by adjusting the power of the functions W and H1 . Therefore, the coefficients of u5v and uv5 in
(2.11) give, respectively

− 4a4b2c(a + 1)2(b + 1)(a − b) = 0,

− 4a2b4c(a + 1)(b + 1)2(a − b) = 0.

Thus, we have a = −1, b = −1 or a = b because of abc �= 0. In this case, equation (2.11) holds identically.

1. Case a = b . Then a parametrization of M is given by

x(u, v) = (u, v, (au2 + av2 + c)
1
2 ).

(1-i) If a, c > 0, then M is an open part of a hyperboloid of two sheets defined by

−x2

p2
− y2

p2
+ z2 = r2 (2.12)

for some non-zero constants p and r.
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(1-ii) If a > 0 and c < 0, then then M is an open part of a hyperboloid of one sheet given by

x2

p2
+

y2

p2
− z2 = r2. (2.13)

(1-iii) If a < 0 and c > 0, then M is given by

x2

p2
+

y2

p2
+ z2 = r2, (2.14)

which is the equation of an ellipsoid.

The case of a, c < 0 can never occur.

2. Case a = −1. Then a parametrization of M is given by

x(u, v) = (u, v, (−u2 + bv2 + c)
1
2 ).

(2-i) If b, c > 0, then M is an open part of a hyperboloid of one sheet defined by

x2 − y2

p2
+ z2 = r2 (2.15)

for some non-zero constants p and r.

(2-ii) If b > 0 and c < 0, then then M is an open part of a hyperboloid of two sheets given by

−x2 +
y2

p2
− z2 = r2. (2.16)

(2-iii) If b < 0 and c > 0, then M is given by

x2 +
y2

p2
+ z2 = r2 (2.17)

which is the equation of an ellipsoid.

The case of b, c < 0 can never occur.

3. Case b = −1. Then a parametrization of M is given by

x(u, v) = (u, v, (au2 − v2 + c)
1
2 ).

(3-i) If a, c > 0, then M is an open part of a hyperboloid of one sheet defined by

−x2

p2
+ y2 + z2 = r2 (2.18)

for some non-zero constants p and r.

(3-ii) If a > 0 and c < 0, then then M is an open part of a hyperboloid of two sheets given by

x2

p2
− y2 − z2 = r2. (2.19)
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(3-iii) If a < 0 and c > 0, then M is given by

x2

p2
+ y2 + z2 = r2 (2.20)

which is the equation of an ellipsoid.

The case of b, c < 0 can never occur.

Thus, we have the following theorems.

Theorem 2.1. If M is a Weingarten quadric surface of the first kind in a Euclidean 3-space, then M is an
open part of one of the following surfaces:

1. a hyperboloid of two sheets of the form (2.12), (2.16) or (2.19).

2. a hyperboloid of one sheet of the form (2.13), (2.15) or (2.18).

3. an ellipsoid of the form (2.14), (2.17) or (2.20).

Theorem 2.2. Let M be a quadric surface of the first kind in a Euclidean 3-space. Then the Gaussian
curvature K and the mean curvature H of M are related by the relation

[(a + b)c + (ab + a2b)u2 + (ab + ab2)v2]2K = 4abc[c + (a + a2)u2 + (b + b2)v2]H2

for some non-zero constants a, b, c .

Proof. It is obvious by (2.6) and (2.7). �

Let x : M −→ E
3 be a quadric surface of the second kind in E

3 . Then M is parametrized by

x(u, v) = (u, v,
a

2
u2 +

b

2
v2). (2.21)

On the other hand, the components E, F and G of the first fundamental form are obtained by

E = 1 + a2u2, F = abuv, G = 1 + b2v2.

We define the smooth function q as follows:

q = ||xu × xv||2 = 1 + a2u2 + b2v2, (2.22)

which implies that the unit normal vector field U of the surface M is given by

U =
1
q

1
2
(−au,−bv, 1).

From this, the components of the second fundamental form on M are obtained by

e =
a

q
1
2
, f = 0, g =

b

q
1
2
.
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Making use of the data described above, the Gaussian curvature K and the mean curvature H write as
respectively, as

K =
ab

q2
, (2.23)

H =
1

2q
3
2
H1, (2.24)

where H1 = a2bu2 + ab2v2 + a + b. Since a, b > 0, a quadric surface of the second kind given by (2.21) has a
positive Gaussian curvature everywhere.

Differentiating K and H with respect to u and v respectively, we get

{
Ku = −4a3bu

q3 ,

Kv = −4ab3v
q3 ,

(2.25)

⎧⎨
⎩

Hu = − 1

q
5
2
(−3

2a2uH1 + a2buq),

Hv = − 1

q
5
2
(−3

2 b2vH1 + ab2vq).
(2.26)

Suppose that M is a Weingarten quadric surface of the second kind. Then, it satisfies

KuHv − KvHu = 0. (2.27)

From (2.25) and (2.26) equation (2.27) writes as

a3b3((2a2b − 2a3)u3v − (2ab2 − 2b3)uv3 − (2a − 2b)uv) = 0. (2.28)

This yields immediately a = b. Thus, M is given by

z =
a

2
x2 +

a

2
y2, (2.29)

and this means that it is an elliptic paraboloid.

Thus, we have this theorem:

Theorem 2.3. Let M be a Weingarten quadric surface of the second kind in a Euclidean 3-space. Then, M

is an open part of an elliptic paraboloid given by (2.29).

Theorem 2.4. Let M be a quadric surface of the second kind in a Euclidean 3-space. Then the Gaussian
curvature K and the mean curvature H of M are related by the relation

(a2bu2 + ab2v2 + a + b)K = 4ab(a2u2 + b2v2 + 1)H2 (2.30)

for some non-zero positive constants a, b .

Proof. It is obvious by (2.23) and (2.24). �

Combining Theorem 2.1, Theorem 2.3 and main theorem in [5], we obtain the following, theorem.
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Theorem 2.5 (Classification). Let M be a Weingarten quadric surface in a Euclidean 3-space with non-zero
Gaussian curvature everywhere. Then, M is an open part of one of the following surfaces:

1. a hyperboloid of two sheets of the form (2.12), (2.16) or (2.19).

2. a hyperboloid of one sheet of the form (2.13), (2.15) or (2.18).

3. an ellipsoid of the form (2.14), (2.17) or (2.20).

4. an elliptic paraboloid of the form (2.29).
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