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B. Y. Chen inequalities for submanifolds of a Riemannian manifold
of quasi-constant curvature

Cihan Özgür

Abstract

In this paper, we prove B. Y. Chen inequalities for submanifolds of a Riemannian manifold of quasi-

constant curvature, i.e., relations between the mean curvature, scalar and sectional curvatures, Ricci curva-

tures and the sectional curvature of the ambient space. The equality cases are considered.
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1. Introduction

In [11], B. Y. Chen and K. Yano introduced the notion of a Riemannian manifold (M, g) of quasi-constant
curvature as a Riemannian manifold with the curvature tensor satisfying the condition

R(X, Y, Z, W ) = a [g(Y, Z)g(X, W ) − g(X, Z)g(Y, W )] +

+b [g(X, W )T (Y )T (Z) − g(X, Z)T (Y )T (W )+

g(Y, Z)T (X)T (W ) − g(Y, W )T (X)T (Z)] , (1.1)

where a, b are scalar functions and T is a 1-form defined by

g(X, P ) = T (X), (1.2)

and P is a unit vector field. It can be easily seen that, if the curvature tensor R is of the form (1.1), then the
manifold is conformally flat. If b = 0 then the manifold reduces to a space of constant curvature.

A non-flat Riemannian manifold (Mn, g) (n > 2) is defined to be a quasi-Einstein manifold [4] if its
Ricci tensor satisfies the condition

S(X, Y ) = ag(X, Y ) + bA(X)A(Y ),

where a, b are scalar functions such that b �= 0 and A is a non-zero 1-form such that g(X, U) = A(X) for
every vector field X and U is a unit vector field. If b = 0 then the manifold reduces to an Einstein manifold.
It can be easily seen that every Riemannian manifold of quasi-constant curvature is a quasi-Einstein manifold.
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One of the basic problems in submanifold theory is to find simple relations between the extrinsic and
intrinsic invariants of a submanifold. In [6], [7], [9] and [10], B. Y. Chen established some inequalities in this
respect. They are called B. Y. Chen inequalities.

Afterwards, many geometers studied similar problems for different submanifolds in various ambient
spaces, for example see [1]–[3], [12] and [13].

Motivated by the studies of the above authors, in the present paper, we study B. Y. Chen inequalities
for submanifolds of a Riemannian manifold of quasi-constant curvature.

2. Preliminaries

Let M be an n-dimensional submanifold of an (n + m)-dimensional Riemannian manifold Nn+m . The
Gauss and Weingarten formulas are given respectively by

∇̃XY = ∇XY + h (X, Y ) and ∇̃XN = −ANX + ∇⊥
XN

for all X, Y ∈ TM and N ∈ T⊥M , where ∇̃ , ∇ and ∇⊥ are the Riemannian, induced Riemannian and normal

connections in M̃ , M and the normal bundle T⊥M of M, respectively, and h is the second fundamental form
related to the shape operator A by g (h (X, Y ) , N) = g (ANX, Y ). The Gauss equation is given by

R̃(X, Y, Z, W ) = R(X, Y, Z, W )− g (h(X, W ), h(Y, Z)) + g (h(X, Z), h(Y, W )) (2.1)

for all X, Y, Z, W ∈ TM , where R is the curvature tensor of M.

The mean curvature vector H is given by H = 1
n

trace(h). The submanifold M is totally geodesic in

Nm+n if h = 0, and minimal if H = 0 [5].

Using (1.1), the Gauss equation for the submanifold Mn of a Riemannian manifold of quasi-constant
curvature is

R(X, Y, Z, W ) = a [g(Y, Z)g(X, W ) − g(X, Z)g(Y, W )] +

+b [g(X, W )T (Y )T (Z) − g(X, Z)T (Y )T (W )+

g(Y, Z)T (X)T (W ) − g(Y, W )T (X)T (Z)] +

+g (h(X, W ), h(Y, Z)) − g (h(X, Z), h(Y, W )) . (2.2)

Let π ⊂ TxMn , x ∈ Mn , be a 2-plane section. Denote by K(π) the sectional curvature of Mn . For

any orthonormal basis {e1, ..., em} of the tangent space TxMn , the scalar curvature τ at x is defined by

τ (x) =
∑

1≤i<j≤n

K(ei ∧ ej).

We recall the following algebraic Lemma:

Lemma 2.1 [6] Let a1, a2, ..., an, b be (n + 1) (n ≥ 2) real numbers such that(
n∑

i=1

ai

)2

= (n − 1)

(
n∑

i=1

a2
i + b

)
.
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Then 2a1a2 ≥ b , with equality holding if and only if a1 + a2 = a3 = ... = an.

Let Mn be an n-dimensional Riemannian manifold, L a k -plane section of TxMn , x ∈ Mn , and X a
unit vector in L.

We choose an orthonormal basis {e1, ..., ek} of L such that e1 = X .

Ones define [8] the Ricci curvature (or k -Ricci curvature) of L at X by

RicL(X) = K12 + K13 + ... + K1k,

where Kij denotes, as usual, the sectional curvature of the 2-plane section spanned by ei, ej . For each integer
k , 2 ≤ k ≤ n , the Riemannian invariant Θk on Mn is defined by:

Θk(x) =
1

k − 1
inf
L,X

RicL(X), x ∈ Mn,

where L runs over all k -plane sections in TxMn and X runs over all unit vectors in L .

Decomposing the vector field P on M uniquely into its tangent and normal components P T and P⊥ ,
respectively, we have

P = P T + P⊥. (2.3)

3. Chen First Inequality

Recall that the Chen first invariant is given by

δMn(x) = τ (x) − inf {K(π) | π ⊂ TxMn, x ∈ Mn, dimπ = 2} ,

(see for example [10]), where Mn is a Riemannian manifold, K(π) is the sectional curvature of Mn associated
with a 2-plane section, π ⊂ TxMn, x ∈ Mn and τ is the scalar curvature at x .

Let us define
Pπ = prπP, (3.1)

where π is a 2-plane section of TxMn, x ∈ Mn .

For submanifolds of a Riemannian manifold of quasi-constant curvature we establish the following optimal
inequality, which will call Chen first inequality.

Theorem 3.1 Let Mn, n ≥ 3, be an n-dimensional submanifold of an (n + m)-dimensional Riemannian

manifold of quasi-constant curvature Nn+m . Then we have

δMn(x) ≤ (n − 2)
[

n2

2(n − 1)
‖H‖2 + (n + 1)

a

2

]
(3.2)

+b
[
(n − 1)

∥∥P T
∥∥2 − ‖Pπ‖2

]
,
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where π is a 2-plane section of TxMn, x ∈ Mn . The equality case of inequality (3.2) holds at a point x ∈ Mn if

and only if there exists an orthonormal basis {e1, e2, ..., en} of TxMn and an orthonormal basis {en+1, ..., en+m}
of T⊥

x Mn such that the shape operators of Mn in Nn+m at x have the forms

Aen+1 =

⎛⎜⎜⎜⎜⎜⎝
a 0 0 · · · 0
0 b 0 · · · 0
0 0 μ · · · 0
...

...
...

. . .
...

0 0 0 · · · μ

⎞⎟⎟⎟⎟⎟⎠ , a + b = μ,

Aen+i =

⎛⎜⎜⎜⎜⎜⎝
hr

11 hr
12 0 · · · 0

hr
12 −hr

11 0 · · · 0
0 0 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎠ , 2 ≤ i ≤ m,

where we denote by hr
ij = g(h(ei, ej), er) , 1 ≤ i, j ≤ n and n + 1 ≤ r ≤ n + m.

Proof. Let x ∈ Mn and {e1, e2, ..., en} and {en+1, ..., en+m} be orthonormal basis of TxMn and T⊥
x Mn ,

respectively. For X = W = ei, Y = Z = ej , i �= j , from the equations (2.2), (2.3) and (1.2) it follows that

a + b
[
g

(
P T , ej

)2
+ g

(
P T , ei

)2
]

= R(ei, ej, ej, ei)+

+g(h(ei, ej), h(ei, ej)) − g(h(ei, ei), h(ej , ej)).

By summation after 1 ≤ i, j ≤ n, it follows from the previous relation that

2τ + ‖h‖2 − n2 ‖H‖2 = 2b(n − 1)
∥∥P T

∥∥2
+ (n2 − n)a, (3.3)

where we denote by

‖h‖2 =
n∑

i,j=1

g(h(ei, ej), h(ei, ej)).

One takes

ε = 2τ − n2(n − 2)
n − 1

‖H‖2 − (n2 − n)a − 2b(n − 1)
∥∥P T

∥∥2
. (3.4)

Then, from (3.3) and (3.4) we get

n2 ‖H‖2 = (n − 1)
(
‖h‖2 + ε

)
. (3.5)

Let x ∈ Mn , π ⊂ TxMn , dimπ = 2, π = sp {e1, e2} . We define en+1 = H
‖H‖ and from the relation (3.5)

we obtain

(
n∑

i=1

hn+1
ii )2 = (n − 1)(

n∑
i,j=1

n+m∑
r=n+1

(hr
ij)

2 + ε),

504



ÖZGÜR

or equivalently,

(
n∑

i=1

hn+1
ii )2 = (n − 1){

n∑
i=1

(hn+1
ii )2 +

∑
i �=j

(hn+1
ij )2 + (3.6)

+
n∑

i,j=1

n+m∑
r=n+2

(hr
ij)

2 + ε}.

By using Lemma 2.1 we have from (3.6),

2hn+1
11 hn+1

22 ≥
∑
i �=j

(hn+1
ij )2 +

n∑
i,j=1

n+m∑
r=n+2

(hr
ij)

2 + ε. (3.7)

Gauss equation for X = W = e1, Y = Z = e2 gives

K(π) = R(e1, e2, e2, e1) = a + b
[
g

(
P T , e1

)2
+ g

(
P T , e2

)2
]

+
m∑

r=n+1

[hr
11h

r
22 − (hr

12)
2] ≥

≥ a + b
[
g

(
P T , e1

)2
+ g

(
P T , e2

)2
]

+
1
2
[
∑
i �=j

(hn+1
ij )2 +

n∑
i,j=1

n+m∑
r=n+2

(hr
ij)

2 + ε]+

+
n+m∑

r=n+2

hr
11h

r
22 −

n+m∑
r=n+1

(hr
12)

2 = a + b
[
g

(
P T , e1

)2
+ g

(
P T , e2

)2
]
+

+
1
2

∑
i �=j

(hn+1
ij )2 +

1
2

n∑
i,j=1

n+m∑
r=n+2

(hr
ij)

2 +
1
2
ε +

n+m∑
r=n+2

hr
11h

r
22 −

n+m∑
r=n+1

(hr
12)

2 =

= a + b
[
g

(
P T , e1

)2
+ g

(
P T , e2

)2
]

+
1
2

∑
i �=j

(hn+1
ij )2 +

1
2

n+m∑
r=n+2

∑
i,j>2

(hr
ij)

2+

+
1
2

n+m∑
r=n+2

(hr
11 + hr

22)
2 +

∑
j>2

[(hn+1
1j )2 + (hn+1

2j )2] +
1
2
ε ≥

≥ a + b
[
g

(
P T , e1

)2
+ g

(
P T , e2

)2
]

+
ε

2
,

which implies

K(π) ≥ a + b
[
g

(
P T , e1

)2
+ g

(
P T , e2

)2
]

+
ε

2
. (3.8)

From (3.1) it follows that

g
(
P T , e1

)2
+ g

(
P T , e2

)2
= ‖Pπ‖2

.

Using (3.4) we get from (3.8)

K(π) ≥ τ − (n − 2)
[

n2

2(n − 1)
‖H‖2 + (n + 1)

a

2

]
+ b

[
‖Pπ‖2 − (n − 1)

∥∥P T
∥∥2

]
,
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which represents the inequality to prove.

The equality case holds at a point x ∈ Mn if and only if it achieves the equality in all the previous
inequalities and we have the equality in the Lemma.

hn+1
ij = 0, ∀i �= j, i, j > 2,

hr
ij = 0, ∀i �= j, i, j > 2, r = n + 1, ..., n + m,

hr
11 + hr

22 = 0, ∀r = n + 2, ..., n + m,

hn+1
1j = hn+1

2j = 0, ∀j > 2,

hn+1
11 + hn+1

22 = hn+1
33 = ... = hn+1

nn .

We may chose {e1, e2} such that hn+1
12 = 0 and we denote by a = hr

11, b = hr
22, μ = hn+1

33 = ... = hn+1
nn .

It follows that the shape operators take the desired forms. �

Corollary 3.2 Under the same assumptions as in Theorem 3.1 , if P is tangent to Mn , we have

δMn(x) ≤ (n − 2)
[

n2

2(n − 1)
‖H‖2 + (n + 1)

a

2

]
+ b

[
n − 1 − ‖Pπ‖2

]
.

If P is normal to Mn , we have

δMn(x) ≤ (n − 2)
[

n2

2(n − 1)
‖H‖2 + (n + 1)

a

2

]
.

4. k -Ricci curvature

We first state a relationship between the sectional curvature of a submanifold Mn of a space of quasi-

constant curvature and the associated squared mean curvature ‖H‖2 . Using this inequality, we prove a

relationship between the k -Ricci curvature of Mn (intrinsic invariant) and the squared mean curvature ‖H‖2

(extrinsic invariant), as another answer of the basic problem in submanifold theory which we have mentioned
in the introduction.

Theorem 4.1 Let Mn, n ≥ 3, be an n-dimensional submanifold of an (n + m)-dimensional space of quasi-

constant curvature Nn+m . Then we have

‖H‖2 ≥ 2τ

n(n − 1)
− a − 2b

n

∥∥P T
∥∥2

. (4.1)

Proof. Let x ∈ Mn and {e1, e2, ..., en} and orthonormal basis of TxMn . The relation (3.3) is equivalent
with

n2 ‖H‖2 = 2τ + ‖h‖2 − (n2 − n)a − 2b(n − 1)
∥∥P T

∥∥2
. (4.2)
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We choose an orthonormal basis {e1, ..., en, en+1, ..., en+m} at x such that en+1 is parallel to the mean

curvature vector H(x) and e1, ..., en diagonalize the shape operator Aen+1 . Then the shape operators take the

forms

Aen+1

⎛⎜⎜⎜⎝
a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . an

⎞⎟⎟⎟⎠ , (4.3)

Aer = (hr
ij), i, j = 1, ..., n; r = n + 2, ..., n+ m, trace Ar = 0. (4.4)

From (4.2), we get

n2 ‖H‖2 = 2τ +
n∑

i=1

a2
i +

n+m∑
r=n+2

n∑
i,j=1

(hr
ij)

2 (4.5)

−n(n − 1)a − 2b(n− 1)
∥∥P T

∥∥2
.

On the other hand, since

0 ≤
∑
i<j

(ai − aj)2 = (n − 1)
∑

i

a2
i − 2

∑
i<j

aiaj,

we obtain

n2 ‖H‖2 = (
n∑

i=1

ai)2 =
n∑

i=1

a2
i + 2

∑
i<j

aiaj ≤ n

n∑
i=1

a2
i , (4.6)

which implies
n∑

i=1

a2
i ≥ n ‖H‖2

.

We have from (4.5)

n2 ‖H‖2 ≥ 2τ + n ‖H‖2 − n(n − 1)a − 2b(n − 1)
∥∥P T

∥∥2
(4.7)

or, equivalently,

‖H‖2 ≥ 2τ

n(n − 1)
− a − 2b

n

∥∥P T
∥∥2

,

this proves the theorem. �

Corollary 4.2 Under the same assumptions as in Theorem 4.1 , if P is tangent to Mn , we have

‖H‖2 ≥ 2τ

n(n − 1)
− a − 2b

n
.
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If P is normal to Mn , we have

‖H‖2 ≥ 2τ

n(n − 1)
− a.

Using Theorem 4.1, we obtain the following:

Theorem 4.3 Let Mn, n ≥ 3, be an n-dimensional submanifold of an (n + m)-dimensional Riemannian

manifold of quasi-constant curvature Nn+m . Then, for any integer k, 2 ≤ k ≤ n , and any point x ∈ Mn , we
have

‖H‖2 (p) ≥ Θk(p) − a − 2b

n

∥∥P T
∥∥2

. (4.8)

Proof. Let {e1, ...en} be an orthonormal basis of TxM . Denote by Li1...ik the k -plane section spanned by
ei1 , ..., eik . By the definitions, one has

τ (Li1...ik) =
1
2

∑
i∈{i1,...,ik}

RicLi1...ik
(ei),

τ (x) =
1

Ck−2
n−2

∑
1≤i1<...<ik≤n

τ (Li1...ik).

From (4.1) and the above relations, one derives

τ (x) ≥ n(n − 1)
2

Θk(p),

which implies (4.8). �

Corollary 4.4 Under the same assumptions as in Theorem 4.3 , if P is tangent to Mn , we have

‖H‖2 (p) ≥ Θk(p) − a − 2b

n
.

If P is normal to Mn , we have

‖H‖2 (p) ≥ Θk(p) − a.
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ÖZGÜR
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