Probabilities for absolute irreducibility of multivariate polynomials by the polytope method

Fatih Koyuncu and Ferruh Özbudak

Abstract

Motivated by the Dubickas's result in [1], which computes the probability of the irreducible polynomials by Eisenstein's criterion for some families of polynomials in $\mathbb{Z}[x]$, we calculate the probabilities which represent the ratio of absolutely irreducible multivariate polynomials by the polytope method in some families of polynomials over arbitrary fields.

Key Words: Absolute irreducibility, polytopes, multivariate polynomials

1. Introduction

Throughout this study, F^{*} stands for the set of all nonzero elements for a field F, and $n \geq 2$ is an integer. Moreover, all mentioned polynomials have at least two terms.

We need to give some definitions before introducing the main idea.
Let \mathbb{R}^{n} denote the real n-dimensional space and S be a subset of \mathbb{R}^{n}. The smallest convex set containing S, denoted by $\operatorname{conv}(S)$, is called the convex hull of S. If $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is a finite set then we shall denote $\operatorname{conv}(S)$ by $\operatorname{conv}\left(a_{1}, \ldots, a_{n}\right)$. Note that

$$
\operatorname{conv}(S)=\left\{\sum_{i=1}^{k} \lambda_{i} x_{i}:\left\{x_{1}, \ldots, x_{k}\right\} \subseteq S, \lambda_{i} \geq 0, \sum_{i=1}^{k} \lambda_{i}=1\right\}
$$

The convex hull of finitely many points in \mathbb{R}^{n} is called a polytope. A point of a polytope is called a vertex if it is not on the line segment joining any other two different points of the polytope. It is known that a polytope is always the convex hull of its vertices (see [6, Proposition 2.2]).

The principle operation for convex sets in \mathbb{R}^{n} is defined as follows.

Definition 1.1 For any two sets A and B in \mathbb{R}^{n}, the sum

$$
A+B=\{a+b: a \in A, b \in B\}
$$

is called Minkowski sum, or vector addition of A and B.

[^0]
KOYUNCU, ÖZBUDAK

A point in \mathbb{R}^{n} is called integral if its coordinates are integers. A polytope in \mathbb{R}^{n} is called integral if all of its vertices are integral. An integral polytope C is called integrally decomposable if there exist integral polytopes A and B such that $C=A+B$ where both A and B have at least two points. Otherwise, C is called integrally indecomposable.

Definition 1.2 Let F be any field and consider any polynomial

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum c_{e_{1} e_{2} \ldots e_{n}} x_{1}^{e_{1}} x_{2}^{e_{2}} \ldots x_{n}^{e_{n}} \in F\left[x_{1}, \ldots, x_{n}\right] .
$$

We can think an exponent vector $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ of f as a point in \mathbb{R}^{n}. The Newton polytope of f, denoted by P_{f}, is defined as the convex hull in \mathbb{R}^{n} of all the points $\left(e_{1}, \ldots, e_{n}\right)$ with $c_{e_{1} e_{2} \ldots e_{n}} \neq 0$.

Recall that a polynomial over a field F is called absolutely irreducible if it remains irreducible over every algebraic extension of F.

Using Newton polytopes of multivariate polynomials, we can determine infinite families of absolutely irreducible polynomials over an arbitrary field F by the following result due to Ostrowski [5]; c.f. [2, Lemma 2.1].

Lemma 1.3 Let $f, g, h \in F\left[x_{1}, \ldots, x_{n}\right]$ with $f \neq 0$ and $f=g h$. Then $P_{f}=P_{g}+P_{h}$.
As a direct result of Lemma 1.3, we have the following corollary which is an irreducibility criterion for multivariate polynomials over arbitrary fields.

Corollary 1.4 Let F be any field and f a nonzero polynomial in $F\left[x_{1}, \ldots, x_{n}\right]$ not divisible by any x_{i}. If the Newton polytope P_{f} of f is integrally indecomposable then f is absolutely irreducible over F.

When P_{f} is integrally decomposable, depending on the given field, f may be reducible or irreducible. For example, the polynomial $f=x^{9}+y^{9}+z^{9}$ has the Newton polytope $P_{f}=\operatorname{conv}((9,0,0),(0,9,0),(0,0,9))=$ $\operatorname{conv}((6,0,0),(0,6,0),(0,0,6))+$
$\operatorname{conv}((3,0,0),(0,3,0),(0,0,3))$. But, while $f=x^{9}+y^{9}+z^{9}=(x+y+z)^{9}$ over \mathbb{F}_{3}, it is irreducible over $\mathbb{F}_{2}, \mathbb{F}_{5}, \mathbb{F}_{7}, \mathbb{F}_{11}$, where \mathbb{F}_{m} represents the finite field with m elements.

In [2], [3] and [4], infinitely many integrally indecomposable polytopes in \mathbb{R}^{n} are presented and then, being associated to these polytopes, infinite families of absolutely irreducible polynomials are determined over any field F.

Let F be any field. For a multivariate polynomial

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in F\left[x_{1}, x_{2}, \ldots, x_{n}\right]
$$

we say that f is absolutely irreducible over F by the polytope method if its Newton polytope P_{f} is integrally indecomposable.

Definition 1.5 Let F be any field. We define a relation \sim on the ring of multivariate polynomials $F\left[x_{1}, \ldots, x_{n}\right]$ by

$$
f=\sum c_{e_{1} e_{2} \ldots e_{n}} x_{1}^{e_{1}} x_{2}^{e_{2}} \ldots x_{n}^{e_{n}} \sim g=\sum d_{e_{1} e_{2} \ldots e_{n}} x_{1}^{e_{1}} x_{2}^{e_{2}} \ldots x_{n}^{e_{n}}
$$

KOYUNCU, ÖZBUDAK

if and only if, for each coefficient $c_{e_{1} e_{2} \ldots e_{n}}$ of f and $d_{e_{1} e_{2} \ldots e_{n}}$ of g, there exists an element $a_{e_{1} e_{2} \ldots e_{n}} \in F^{*}$ such that

$$
c_{e_{1} e_{2} \ldots e_{n}}=a_{e_{1} e_{2} \ldots e_{n}} d_{e_{1} e_{2} \ldots e_{n}}
$$

It can be verified directly that \sim is an equivalence relation. For $f \in F\left[x_{1}, \ldots, x_{n}\right]$, we shall use the notation $[f]$ to denote the equivalence class of f.

Note that, for $f, g \in F\left[x_{1}, \ldots, x_{n}\right]$, if $f \sim g$ and f is absolutely irreducible over F by the polytope method then g is also absolutely irreducible over F by the polytope method.

Let F be an arbitrary field. For any family of multivariate polynomials, all of which have bounded degrees,

$$
\mathcal{F}=\left\{f_{i}\left(x_{1}, \ldots, x_{n}\right) \in F\left[x_{1}, \ldots, x_{n}\right]: i \in I\right\}
$$

we shall use the notation $P_{\mathcal{F}}$ to denote the chance that the representative f of a random polynomial class $[f]$ in \mathcal{F} / \sim is absolutely irreducible over F by the polytope method.

Let F be a finite field and \mathcal{F} a finite set of multivariate polynomials over F. We shall use the notation $\widetilde{P}_{\mathcal{F}}$ to indicate the probability of a random polynomial f in \mathcal{F} to be irreducible by the polytope method over F.

The main aim of this paper is to introduce the probabilities $P_{\mathcal{F}}$ and $\widetilde{P}_{\mathcal{F}}$ and calculate them for some families \mathcal{F} of multivariate polynomials.

Remark 1.6 Let n be an arbitrary given positive integer. Consider any family of multivariate polynomials

$$
\mathcal{F}=\left\{f_{i}\left(x_{1}, . . x_{n}\right) \in F\left[x_{1}, \ldots, x_{n}\right]: \operatorname{deg}(f) \leq n, i \in I\right\}
$$

over any field F, where $\operatorname{deg}(f)$ indicates the total degree for a polynomial f. Let

$$
\mathcal{F}=\bigcup_{i=1}^{\beta}\left[f_{i}\right]
$$

be a disjoint union of the equivalence classes $\left[f_{i}\right]$, where each f_{i} has s_{i} number of terms. Assume that α representatives $f_{1}, \ldots, f_{\alpha}$ of the classes $\left[f_{1}\right], \ldots,\left[f_{\beta}\right]$ have integrally indecomposable Newton polytopes. Then we have

$$
P_{\mathcal{F}}=\frac{\alpha}{\beta}
$$

Moreover, if F is finite with $|F|=q$ then we have

$$
\widetilde{P}_{\mathcal{F}}=\frac{(q-1)^{s_{1}}+\ldots+(q-1)^{s_{\alpha}}}{(q-1)^{s_{1}}+(q-1)^{s_{2}}+\ldots+(q-1)^{s_{\beta}}}
$$

We see that over the finite field $\mathbb{F}_{2}, P_{\mathcal{F}}=\widetilde{P}_{\mathcal{F}}$.
Actually, for the family

$$
\mathcal{F}=\left\{\sum c_{i e_{1} i e_{2} \ldots i e_{n}} x_{1}^{i e_{1}} x_{2}^{i e_{2}} \ldots x_{n}^{i e_{n}} \in F\left[x_{1}, \ldots, x_{n}\right]: c_{i e_{1} i e_{2} \ldots i e_{n}} \in F^{*}, i \in I\right\}
$$

KOYUNCU, ÖZBUDAK

of polynomials with $\operatorname{deg}(f) \leq n$, we have $\beta=\left|\mathcal{F}_{1}\right|$, where \mathcal{F}_{1} is the subset of \mathcal{F}, obtained by taking only the members of \mathcal{F} whose all coefficients are 1 , given by

$$
\mathcal{F}_{1}=\left\{\sum c_{i e_{1} i e_{2} \ldots i e_{n}} x_{1}^{i e_{1}} x_{2}^{i e_{2}} \ldots x_{n}^{i e_{n}} \in F\left[x_{1}, \ldots, x_{n}\right]: c_{i e_{1} i e_{2} \ldots i e_{n}}=1, i \in I\right\} .
$$

In general, for an arbitrary polynomial $f\left(x_{1}, . . x_{n}\right) \in F\left[x_{1}, \ldots, x_{n}\right]$, it is not easy to determine whether f is absolutely irreducible or not over F by the polytope method. As a result, it is hard to find α for a given family \mathcal{F} of multivariate polynomials. In this paper, we have found α only for some special families of multivariate polynomials.

Proposition 1.7 Let F be a finite field with $|F|=q$. Consider a finite set of polynomials

$$
\mathcal{F}=\left\{\sum c_{i e_{1} i e_{2} \ldots i e_{n}} x_{1}^{i e_{1}} x_{2}^{i e_{2}} \ldots x_{n}^{i e_{n}} \in F\left[x_{1}, \ldots, x_{n}\right]: c_{i e_{1} i e_{2} \ldots i e_{n}} \in F^{*}, i \in I\right\}
$$

such that all polynomials in \mathcal{F} have the same number of terms. Let $|\mathcal{F}|=\epsilon$. If we have δ polynomials in \mathcal{F} whose Newton polytopes are integrally indecomposable, then

$$
P_{\mathcal{F}}=\widetilde{P}_{\mathcal{F}}=\frac{\delta}{\epsilon} .
$$

Proof. Let $\left[f_{1}\right], \ldots,\left[f_{\beta}\right]$ be the classes of \mathcal{F} / \sim such that $\left[f_{1}\right], \ldots,\left[f_{\alpha}\right]$ have integrally indecomposable representatives. If any polynomial $f \in \mathcal{F}$ has r number of terms, then we have

$$
P_{\mathcal{F}}=\frac{\alpha}{\beta}=\frac{(q-1)^{r} \alpha}{(q-1)^{r} \beta}=\widetilde{P}_{\mathcal{F}}=\frac{\delta}{\epsilon} .
$$

In Section 2, we compute $P_{\mathcal{F}}$ or $\widetilde{P}_{\mathcal{F}}$ for some families \mathcal{F} of multivariate polynomials. We consider the families having Newton polytopes as line segments, triangles, pyramids and bipyramids.

2. Some related examples

We start with the simplest forms of two-term multivariate polynomials with two variables having Newton polytopes as line segments. Then we examine some multivariate polynomials with three variables. Of course, we can give arbitrary number of examples of families of polynomials within any number of variables x_{1}, \ldots, x_{n}. In this section, for any field F, we assume that all considered polynomials f in $F\left[x_{1}, \ldots, x_{n}\right]$ have at least two terms and are not divisible by any x_{i}.

Throughout this paper, ϕ denotes the Euler-phi function. Moreover, for positive integers $M \leq N$ and i, $S_{M-N}(i)$ denotes the set

$$
S_{M-N}(i)=\{x \in \mathbb{Z}: \quad M \leq x \leq N, \quad \operatorname{gcd}(x, i)=1\} .
$$

KOYUNCU, ÖZBUDAK

Example 2.1 Consider the set of polynomials

$$
S=\left\{a x^{n}+b y^{m}: a, b \in F^{*}, 1 \leq n \leq 3,1 \leq m \leq 5\right\}
$$

The number of polynomial classes of S is $3 \cdot 5=15=\beta$ since

$$
S=\bigcup_{1 \leq i \leq 3,1 \leq j \leq 5}\left[x^{i}+y^{j}\right]
$$

Any polynomial $f=a x^{n}+b y^{m}$ in S has the Newton polytope of the form conv $((n, 0),(0, m))$ which is integrally indecomposable, by [2, Corollary 4.3] or [4, Corollary 2.4], if and only if $\operatorname{gcd}(n, m)=1$.

Consequently, we have $\alpha=\sum_{i=1}^{3}\left|S_{1-5}(i)\right|=12$ giving

$$
P_{S}=\frac{12}{15}=\frac{4}{5}
$$

Moreover, if F is a finite field with $|F|=q$ then we have

$$
\widetilde{P}_{\mathcal{F}}=\frac{(q-1)^{2} 12}{(q-1)^{2} 15}=\frac{4}{5}
$$

In addition, for the family of polynomials

$$
F=\left\{a x^{N}+b y^{m}: 1 \leq m \leq N\right\}
$$

we have $P_{F}=\phi(N) / N$.
More generally, for the set of polynomials

$$
T=\left\{a x^{n}+b y^{m}: 1 \leq n \leq N, 1 \leq m \leq M, N \leq M\right\}
$$

by a similar argument we have

$$
P_{T}=\frac{\sum_{i=1}^{N}\left|S_{1-M}(i)\right|}{N M} .
$$

Furthermore, if F is a finite field then $P_{S}=\widetilde{P}_{S}, P_{F}=\widetilde{P}_{F}$ and $P_{T}=\widetilde{P}_{T}$ by Proposition 1.7.
Example 2.2 Let F be any field. Consider the family of polynomials

$$
S=\left\{a x^{n}+b y^{m}+\sum c_{i j} x^{i} y^{j}: a, b \in F^{*}, c_{i j} \in F, m i+n j=m n\right\}
$$

having the family of Newton polytopes $\{\operatorname{conv}((n, 0),(0, m))\}$, where $1 \leq n \leq 3$ and $1 \leq m \leq 2$. We see that

$$
S=\left\{a x^{3}+b y, a x^{3}+b y^{2}, a x^{2}+b y, a x^{2}+b y^{2}, a x^{2}+b y^{2}+c_{i j} x y, a x+b y, a x+b y^{2}\right\}
$$

where $a, b, c_{i j} \in F^{*}$. Therefore, we have $\alpha=5$ and $\beta=7$, i.e.

$$
P_{S}=\frac{5}{7}
$$

KOYUNCU, ÖZBUDAK

In addition, if F is a finite field with $|F|=q$, then we have

$$
\widetilde{P}_{\mathcal{F}}=\frac{5(q-1)^{2}}{6(q-1)^{2}+(q-1)^{3}} .
$$

Example 2.3 Consider the set of polynomials

$$
S=\left\{a x^{n}+b y^{m}+\sum c_{i j} x^{i} y^{j}: a, b \in F^{*}, c_{i j} \in F, m i+n j=m n\right\}
$$

having the family of Newton polytopes $\{\operatorname{conv}((n, 0),(0, m))\}$, where N and M are given positive integers such that $1 \leq n \leq N, 1 \leq m \leq M$, with $N \leq M$. In order to find β, we form the set

$$
K=\left\{x^{n}+y^{m}+\sum c x^{i} y^{j}: m i+n j=m n\right\},
$$

where $c \in\{0,1\}$. Elements of K have the family of Newton polytopes

$$
N=\{\operatorname{conv}((n, 0),(0, m))\},
$$

which are line segments. Any element conv $((a, 0),(0, b))$ of N is integrally indecomposable, by [2, Corollary 4.3] or [4, Corollary 2.4], if and only if $\operatorname{gcd}(a, b)=1$. Therefore, we have

$$
\begin{aligned}
P_{S} & =\frac{\sum_{i=1}^{N} \phi(i)+\sum_{i=2}^{N} \phi(i)}{|K|}=\frac{2 \sum_{i=1}^{N} \phi(i)-1}{|K|} \\
& =\frac{\sum_{i=1}^{N}\left|S_{1-N}(i)\right|}{|K|} \text { if } \quad N=M,
\end{aligned}
$$

and

$$
\begin{aligned}
P_{S} & =\frac{2 \sum_{i=1}^{N} \phi(i)+\sum_{i=N+1}^{M}\left|S_{1-N}(i)\right|-1}{|K|} \\
& =\frac{\sum_{i=1}^{N}\left|S_{1-M}(i)\right|}{|K|} \text { if } \quad N<M .
\end{aligned}
$$

For example, if $N=M=3$ then we have

$$
\begin{aligned}
S= & \left\{a x+b y, a x+b y^{2}, a x+b y^{3}, a x^{2}+b y, a x^{2}+b y^{2}, a x^{2}+b y^{2}+c x y, a x^{2}+b y^{3},\right. \\
& a x^{3}+b y, a x^{3}+b y^{2}, a x^{3}+b y^{3}, a x^{3}+b y^{3}+c x y^{2}, a x^{3}+b y^{3}+c x^{2} y, \\
& \left.a x^{3}+b y^{3}+c x y^{2}+d x^{2} y: a, b, c, d \in F^{*}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
K= & \left\{x+y, x+y^{2}, x+y^{3}, x^{2}+y, x^{2}+y^{2}, x^{2}+y^{2}+x y, x^{2}+y^{3}, x^{3}+y,\right. \\
& \left.x^{3}+y^{2}, x^{3}+y^{3}, x^{3}+y^{3}+x y^{2}, x^{3}+y^{3}+x^{2} y, x^{3}+y^{3}+x y^{2}+x^{2} y\right\} .
\end{aligned}
$$

Consequently, we get

$$
P_{S}=\frac{\sum_{i=1}^{3}\left|S_{1-3}(i)\right|}{|K|}=\frac{7}{13} .
$$

KOYUNCU, ÖZBUDAK

Moreover, if F is a finite field with $|F|=q$, then we have

$$
\widetilde{P}_{S}=\frac{7(q-1)^{2}}{7(q-1)^{2}+2(q-1)^{2}+3(q-1)^{3}+(q-1)^{4}} .
$$

Example 2.4 Consider the family of polynomials

$$
S=\left\{a x^{u}+b y^{v} z^{w}+\sum c_{i j k} x^{i} y^{j} z^{k}: a, b \in F^{*}, c_{i j k} \in F\right\}
$$

having the family of Newton polytopes

$$
N=\{\operatorname{conv}((u, 0,0),(0, v, w))\},
$$

where $1 \leq u \leq A, 1 \leq v \leq B, 1 \leq w \leq C$ for some positive integers A, B, C. A polynomial

$$
f=a_{1} x^{u_{1}}+b_{1} y^{v_{1}} z^{w_{1}}+\sum c_{i j k} x^{i} y^{j} z^{k}
$$

in this family has the Newton polytope conv $\left(\left(u_{1}, 0,0\right),\left(0, v_{1}, w_{1}\right)\right)$ which is integrally indecomposable, by [2, Corollary 4.3] or [4, Corollary 2.4], if and only if

$$
\operatorname{gcd}\left(u_{1}, v_{1}, w_{1}\right)=1 .
$$

Hence, we see that

$$
P_{S} \geq \frac{\sum_{i=1}^{A}\left|S_{1-B}(i)\right|+\sum_{i=1}^{A}\left|S_{1-C}(i)\right|+\sum_{i=1}^{B}\left|S_{1-C}(i)\right|}{|K|}
$$

Actually, we have

$$
P_{S}=\frac{r+\sum_{i=1}^{A}\left(\left|S_{1-B}(i)\right|+\left|S_{1-C}(i)\right|\right)+\sum_{i=1}^{B}\left|S_{1-C}(i)\right|}{|K|},
$$

where r is the cardinality of the set

$$
T=\left\{\left(e_{1}, e_{2}, e_{3}\right): 1 \leq e_{1} \leq A, 1 \leq e_{2} \leq B, 1 \leq e_{3} \leq C, \operatorname{gcd}\left(e_{1}, e_{2}, e_{3}\right)=1\right\},
$$

and K is the set given by

$$
K=\left\{x^{u}+y^{v} z^{w}+\sum c x^{i} y^{j} z^{k}: 1 \leq u \leq A, 1 \leq v \leq B, 1 \leq w \leq C\right\},
$$

where $c \in\{0,1\}$ and the point (i, j, k) lies on the line segment from the point $(u, 0,0)$ to the point $(0, v, w)$.

Example 2.5 Consider the set of polynomials

$$
S=\left\{a x^{n}+b y^{m}+c x^{u} y^{v}+\sum c_{i j} x^{i} y^{j}: a, b, c \in F^{*}, c_{i j} \in F\right\}
$$

KOYUNCU, ÖZBUDAK

having the family of Newton polytopes

$$
F=\{\operatorname{conv}((n, 0),(0, m),(u, v))\},
$$

where $1 \leq n \leq N, 1 \leq m \leq M$ and N, M, A, B, C, D are given positive integers satisfying

$$
A \leq u \leq B, \quad C \leq v \leq D, \quad M u+N v>M N .
$$

Without loss of generality, assume that $N \leq M<C \leq A \leq B \leq D$.
A polynomial

$$
f=a_{1} x^{e_{1}}+b_{1} y^{e_{2}}+c_{1} x^{e_{3}} y^{e_{4}}+\sum c_{i j} x^{i} y^{j}
$$

in the set S has triangular Newton polytope conv $\left(\left(e_{1}, 0\right),\left(0, e_{2}\right)\left(e_{3}, e_{4}\right)\right)$ which is integrally indecomposable, by [2, Corollary 4.5] or [4, Proposition 2.6], if and only if

$$
\operatorname{gcd}\left(e_{3}-e_{1}, e_{4}, e_{3}, e_{4}-e_{2}\right)=\operatorname{gcd}\left(e_{1}, e_{2}, e_{3}, e_{4}\right)=1 .
$$

Moreover, we observe that $\beta=|K| \geq N M(B-A+1)(D-C+1)$ for the set

$$
K=\left\{x^{n}+y^{m}+x^{u} y^{v}+\sum c x^{i} y^{j}: c \in\{0,1\},(i, j) \in \operatorname{conv}((n, 0),(0, m),(u, v))\right\} .
$$

As a result, we have

$$
P_{S} \geq\left[r+\sum_{i=1}^{N}\left(\left|S_{1-M}(i)\right|+\left|S_{A-B}(i)\right|+\left|S_{C-D}(i)\right|\right)+\sum_{i=1}^{M}\left(\left|S_{A-B}(i)\right|+\left|S_{C-D}(i)\right|\right)+\sum_{i=A}^{B}\left|S_{C-D}(i)\right|\right] /[|K|],
$$

where r is the cardinality of the set of triple and quad relatively prime exponents in the related intervals. That is, e.g., we call an exponent $\left(e_{1}, e_{2}, e_{3}\right)$ triple relatively prime if $\operatorname{gcd}\left(e_{1}, e_{2}, e_{3}\right)=1$.

Example 2.6 Consider the set of polynomials

$$
S=\left\{a x^{n}+b y^{m}+c z^{l}+d x^{u} y^{v} z^{w}: a, b, c, d \in F^{*}\right\}
$$

which have the set of Newton polytopes

$$
F=\{\operatorname{conv}((n, 0,0),(0, m, 0),(0,0, l),(u, v, w))\},
$$

where $1 \leq n \leq N, 1 \leq m \leq M, 1 \leq l \leq L, 1 \leq u \leq U, 1 \leq v \leq V, 1 \leq w \leq W$ for some integers N, M, L, U, V and W.

Any member conv $\left(\left(e_{1}, 0,0\right),\left(0, e_{2}, 0\right),\left(0,0, e_{3}\right),\left(e_{4}, e_{5}, e_{6}\right)\right)$ of F is a pyramid in \mathbb{R}^{3} which is integrally indecomposable, by [2, Theorem 4.2] or [4, Example 3.17], if and only if

$$
\operatorname{gcd}\left(e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right)=1
$$

KOYUNCU, ÖZBUDAK

By a similar argument as in the Example 2.4 and Example 2.5, we see that

$$
\begin{aligned}
P_{S}= & {\left[r+\sum_{i=1}^{N}\left(\left|S_{1-M}(i)\right|+\left|S_{1-L}(i)\right|+\left|S_{1-U}(i)\right|+\left|S_{1-V}(i)\right|+\left|S_{1-W}(i)\right|\right)\right.} \\
& +\sum_{i=1}^{M}\left(\left|S_{1-L}(i)\right|+\left|S_{1-U}(i)\right|+\left|S_{1-V}(i)\right|+\left|S_{1-W}(i)\right|\right)+\sum_{i=1}^{L}\left(\left|S_{1-U}(i)\right|+\left|S_{1-V}(i)\right|+\left|S_{1-W}(i)\right|\right) \\
& \left.+\sum_{i=1}^{U}\left(\left|S_{1-V}(i)\right|+\left|S_{1-W}(i)\right|\right)+\sum_{i=1}^{V}\left(\left|S_{1-W}(i)\right|\right)\right] /[N M L U V W]
\end{aligned}
$$

where r is the number of relatively prime exponents having three, four, five or six components in the related intervals.

Example 2.7 Consider the family of polynomials

$$
S=\left\{a x^{L}+b y^{M}+c z^{N}+d x^{u} y^{v} z^{w}+e x^{r} y^{s} z^{t}: a, b, c, d, e \in F^{*}\right\}
$$

having the set of bipyramid Newton polytopes

$$
F=\{\operatorname{conv}((L, 0,0),(0, M, 0),(0,0, N),(u, v, w),(r, s, t))\}
$$

with $L, M, N \geq 2$ such that

$$
\begin{aligned}
& L+1 \leq u \leq A, \quad M+1 \leq v \leq B, \quad N+1 \leq w \leq C \\
& D \leq r \leq L-1, \quad E \leq s \leq M-1, \quad F \leq t \leq N-1
\end{aligned}
$$

for some given positive integers A, B, C, D, E, F, L, M and N. Any bipyramid

$$
\operatorname{conv}\left((L, 0,0),(0, M, 0),(0,0, N),\left(e_{1}, e_{2}, e_{3}\right),\left(e_{4}, e_{5}, e_{6}\right)\right)
$$

in the family F is integrally indecomposable, by [4, Lemma 3.2 or Example 3.5,(2)], if and only if

$$
\operatorname{gcd}\left(L, M, N, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right)=1
$$

Hence, we have

KOYUNCU, ÖZBUDAK

$$
\begin{aligned}
P_{S}= & {\left[\left|S_{M-M}(L)\right|+\left|S_{N-N}(L)\right|+\left|S_{(L+1)-A}(L)\right|+\left|S_{(M+1)-B}(L)\right|+\left|S_{(N+1)-C}(L)\right|\right.} \\
& +\left|S_{D-(L-1)}(L)\right|+\left|S_{E-(M-1)}(L)\right|+\left|S_{F-(N-1)}(L)\right|+\left|S_{N-N}(M)\right|+\left|S_{(L+1)-A}(M)\right| \\
& +\left|S_{(M+1)-B}(M)\right|+\left|S_{(N+1)-C}(M)\right|+\left|S_{D-(L-1)}(M)\right|+\left|S_{E-(M-1)}(M)\right| \\
& +\left|S_{F-(N-1)}(M)\right|+\left|S_{(L+1)-A}(N)\right|+\left|S_{(M+1)-B}(N)\right|+\left|S_{(N+1)-C}(N)\right| \\
& +\left|S_{D-(L-1)}(N)\right|+\left|S_{E-(M-1)}(N)\right|+\left|S_{F-(N-1)}(N)\right| \\
& +\sum_{i=L+1}^{A}\left|S_{(M+1)-B}(i)\right|+\sum_{i=L+1}^{A}\left|S_{(N+1)-C}(i)\right|+\sum_{i=L+1}^{A}\left|S_{D-(L-1)}(i)\right| \\
& +\sum_{i=L+1}^{A}\left|S_{E-(M-1)}(i)\right|+\sum_{i=L+1}^{A}\left|S_{F-(N-1)}(i)\right|+\sum_{i=M+1}^{B}\left|S_{(N+1)-C}(i)\right| \\
& +\sum_{i=M+1}^{B}\left|S_{D-(L-1)}(i)\right|+\sum_{i=M+1}^{B}\left|S_{E-(M-1)}(i)\right|+\sum_{i=M+1}^{B}\left|S_{F-(N-1)}(i)\right| \\
& +\sum_{i=N+1}^{C}\left|S_{D-(L-1)}(i)\right|+\sum_{i=N+1}^{C}\left|S_{E-(M-1)}(i)\right|+\sum_{i=N+1}^{C}\left|S_{F-(N-1)}(i)\right| \\
& +\sum_{i=D}^{L-1}\left|S_{E-(M-1)}(i)\right|+\sum_{i=D}^{L-1}\left|S_{F-(N-1)}(i)\right| \\
& \left.+\sum_{i=E}^{M-1}\left|S_{F-(N-1)}(i)\right|+r\right] /[(A-L)(B-M)(C-N)(L-D)(M-E)(N-F)]
\end{aligned}
$$

where r is the number of relatively prime exponents having three, four, five, six, seven, eight or nine components in the indicated intervals.

Acknowledgments

The authors are thankful to the referees for their helpful comments. The second author is partially supported by TÜBi̇TAK under Grant No.TBAG-107T826.

References

[1] Dubickas, A.: Polynomials irreducible by Eisenstein's Criterion, Appl. Algebra Engrg. Comm. Comput. 14, 127-132, (2003).
[2] Gao, S.: Absolute irreducibility of polynomials via Newton polytopes, Journal of Algebra 237, 2, 501-520, (2001).
[3] Gao S. and Lauder, A.G.B.: Decomposition of polytopes and polynomials, Discrete and Computational Geometry 26 no. 1, 89-104, (2001).
[4] Koyuncu, F. and Özbudak, F, Integral and homothetic indecomposability with applications to irreducibility of polynomials, Turkish Journal of Mathematics, 32, 1-15, (2008).
[5] Ostrowski, A.M.: On multiplication and factorization of polynomials, I. Lexicographic orderings and extreme aggregates of terms, Aequationes Math., 13, 201-228, (1975).
[6] Ziegler, G.M. : Lectures on Polytopes, GTM 152, Springer-Verlag, 1995.

Fatih KOYUNCU
Department of Mathematics
Muğla University
48170, Muğla-TURKEY
e-mail: fatih@mu.edu.tr
Ferruh ÖZBUDAK
Department of Mathematics and
Institute of Applied Mathematics
Middle East Technical University
İnönü Bulvarı, 06531, Ankara-TURKEY
e-mail: ozbudak@metu.edu.tr

[^0]: 2000 AMS Mathematics Subject Classification: 12E05, 12F05, 52B10, 52B11.

