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Probabilities for absolute irreducibility of multivariate polynomials
by the polytope method

Fatih Koyuncu and Ferruh Özbudak

Abstract

Motivated by the Dubickas’s result in [1], which computes the probability of the irreducible polynomials by

Eisenstein’s criterion for some families of polynomials in �[x] , we calculate the probabilities which represent

the ratio of absolutely irreducible multivariate polynomials by the polytope method in some families of

polynomials over arbitrary fields.
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1. Introduction

Throughout this study, F ∗ stands for the set of all nonzero elements for a field F, and n ≥ 2 is an
integer. Moreover, all mentioned polynomials have at least two terms.

We need to give some definitions before introducing the main idea.

Let R
n denote the real n-dimensional space and S be a subset of R

n. The smallest convex set containing
S, denoted by conv(S), is called the convex hull of S. If S = {a1, a2, ..., an} is a finite set then we shall denote

conv(S) by conv(a1, ..., an). Note that

conv(S) =

{
k∑

i=1

λixi : {x1, ..., xk} ⊆ S, λi ≥ 0,

k∑
i=1

λi = 1

}
.

The convex hull of finitely many points in R
n is called a polytope. A point of a polytope is called a

vertex if it is not on the line segment joining any other two different points of the polytope. It is known that a
polytope is always the convex hull of its vertices (see [6, Proposition 2.2]).

The principle operation for convex sets in R
n is defined as follows.

Definition 1.1 For any two sets A and B in R
n, the sum

A + B = {a + b : a ∈ A, b ∈ B}

is called Minkowski sum, or vector addition of A and B.
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A point in R
n is called integral if its coordinates are integers. A polytope in R

n is called integral if all
of its vertices are integral. An integral polytope C is called integrally decomposable if there exist integral
polytopes A and B such that C = A + B where both A and B have at least two points. Otherwise, C is
called integrally indecomposable.

Definition 1.2 Let F be any field and consider any polynomial

f(x1 , x2, ..., xn) =
∑

ce1e2...enxe1
1 xe2

2 ...xen
n ∈ F [x1, ..., xn].

We can think an exponent vector (e1, e2, ..., en) of f as a point in R
n. The Newton polytope of f, denoted

by Pf , is defined as the convex hull in R
n of all the points (e1, ..., en) with ce1e2...en �= 0.

Recall that a polynomial over a field F is called absolutely irreducible if it remains irreducible over
every algebraic extension of F .

Using Newton polytopes of multivariate polynomials, we can determine infinite families of absolutely
irreducible polynomials over an arbitrary field F by the following result due to Ostrowski [5]; c.f. [2, Lemma

2.1].

Lemma 1.3 Let f, g, h ∈ F [x1, ..., xn] with f �= 0 and f = gh. Then Pf = Pg + Ph.

As a direct result of Lemma 1.3, we have the following corollary which is an irreducibility criterion for
multivariate polynomials over arbitrary fields.

Corollary 1.4 Let F be any field and f a nonzero polynomial in F [x1, ..., xn] not divisible by any xi. If the
Newton polytope Pf of f is integrally indecomposable then f is absolutely irreducible over F.

When Pf is integrally decomposable, depending on the given field, f may be reducible or irreducible.

For example, the polynomial f = x9 +y9 +z9 has the Newton polytope Pf = conv((9, 0, 0), (0, 9, 0), (0, 0, 9)) =

conv((6, 0, 0), (0, 6, 0), (0, 0, 6))+

conv((3, 0, 0), (0, 3, 0), (0, 0, 3)). But, while f = x9 + y9 + z9 = (x + y + z)9 over F3, it is irreducible over
F2, F5, F7, F11, where Fm represents the finite field with m elements.

In [2], [3] and [4], infinitely many integrally indecomposable polytopes in R
n are presented and then,

being associated to these polytopes, infinite families of absolutely irreducible polynomials are determined over
any field F.

Let F be any field. For a multivariate polynomial

f(x1, x2, ..., xn) ∈ F [x1, x2, ..., xn],

we say that f is absolutely irreducible over F by the polytope method if its Newton polytope Pf is integrally

indecomposable.

Definition 1.5 Let F be any field. We define a relation ∼ on the ring of multivariate polynomials F [x1, ..., xn]
by

f =
∑

ce1e2...enxe1
1 xe2

2 ...xen
n ∼ g =

∑
de1e2...enxe1

1 xe2
2 ...xen

n
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if and only if, for each coefficient ce1e2...en of f and de1e2...en of g, there exists an element ae1e2...en ∈ F ∗ such
that

ce1e2...en = ae1e2...en de1e2...en.

It can be verified directly that ∼ is an equivalence relation. For f ∈ F [x1, ..., xn], we shall use the notation [f ]
to denote the equivalence class of f.

Note that, for f, g ∈ F [x1, ..., xn], if f ∼ g and f is absolutely irreducible over F by the polytope
method then g is also absolutely irreducible over F by the polytope method.

Let F be an arbitrary field. For any family of multivariate polynomials, all of which have bounded
degrees,

F = {fi(x1, ..., xn) ∈ F [x1, ..., xn] : i ∈ I},

we shall use the notation PF to denote the chance that the representative f of a random polynomial class [f ]

in F/ ∼ is absolutely irreducible over F by the polytope method.

Let F be a finite field and F a finite set of multivariate polynomials over F. We shall use the notation

P̃F to indicate the probability of a random polynomial f in F to be irreducible by the polytope method over
F.

The main aim of this paper is to introduce the probabilities PF and P̃F and calculate them for some
families F of multivariate polynomials.

Remark 1.6 Let n be an arbitrary given positive integer. Consider any family of multivariate polynomials

F = {fi(x1, ..xn) ∈ F [x1, ..., xn] : deg(f) ≤ n, i ∈ I}

over any field F, where deg(f) indicates the total degree for a polynomial f . Let

F =
β⋃

i=1

[fi]

be a disjoint union of the equivalence classes [fi] , where each fi has si number of terms. Assume that α

representatives f1, ..., fα of the classes [f1], ..., [fβ] have integrally indecomposable Newton polytopes. Then we

have

PF =
α

β
.

Moreover, if F is finite with |F | = q then we have

P̃F =
(q − 1)s1 + ... + (q − 1)sα

(q − 1)s1 + (q − 1)s2 + ... + (q − 1)sβ
.

We see that over the finite field F2 , PF = P̃F.

Actually, for the family

F =
{∑

cie1ie2...ienxie1
1 xie2

2 ...xien
n ∈ F [x1, ..., xn] : cie1ie2...ien ∈ F ∗, i ∈ I

}
369
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of polynomials with deg(f) ≤ n, we have β = |F1|, where F1 is the subset of F, obtained by taking only the
members of F whose all coefficients are 1, given by

F1 =
{∑

cie1ie2...ienxie1
1 xie2

2 ...xien
n ∈ F [x1, ..., xn] : cie1ie2...ien = 1, i ∈ I

}
.

In general, for an arbitrary polynomial f(x1 , ..xn) ∈ F [x1, ..., xn] , it is not easy to determine whether f is
absolutely irreducible or not over F by the polytope method. As a result, it is hard to find α for a given family
F of multivariate polynomials. In this paper, we have found α only for some special families of multivariate
polynomials.

Proposition 1.7 Let F be a finite field with |F | = q . Consider a finite set of polynomials

F =
{∑

cie1ie2...ienxie1
1 xie2

2 ...xien
n ∈ F [x1, ..., xn] : cie1ie2...ien ∈ F ∗, i ∈ I

}
such that all polynomials in F have the same number of terms. Let |F| = ε . If we have δ polynomials in F

whose Newton polytopes are integrally indecomposable, then

PF = P̃F =
δ

ε
.

Proof. Let [f1], ..., [fβ] be the classes of F/ ∼ such that [f1], ..., [fα] have integrally indecomposable

representatives. If any polynomial f ∈ F has r number of terms, then we have

PF =
α

β
=

(q − 1)rα

(q − 1)rβ
= P̃F =

δ

ε
.

�

In Section 2, we compute PF or P̃F for some families F of multivariate polynomials. We consider the
families having Newton polytopes as line segments, triangles, pyramids and bipyramids.

2. Some related examples

We start with the simplest forms of two-term multivariate polynomials with two variables having Newton
polytopes as line segments. Then we examine some multivariate polynomials with three variables. Of course,
we can give arbitrary number of examples of families of polynomials within any number of variables x1, ..., xn.

In this section, for any field F , we assume that all considered polynomials f in F [x1, ..., xn] have at least two
terms and are not divisible by any xi.

Throughout this paper, φ denotes the Euler-phi function. Moreover, for positive integers M ≤ N and
i , SM−N (i) denotes the set

SM−N(i) = {x ∈ Z : M ≤ x ≤ N, gcd(x, i) = 1}.
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Example 2.1 Consider the set of polynomials

S = {axn + bym : a, b ∈ F ∗, 1 ≤ n ≤ 3, 1 ≤ m ≤ 5}.

The number of polynomial classes of S is 3 · 5 = 15 = β since

S =
⋃

1≤i≤3,1≤j≤5

[xi + yj ].

Any polynomial f = axn + bym in S has the Newton polytope of the form
conv((n, 0), (0, m)) which is integrally indecomposable, by [2, Corollary 4.3] or [4, Corollary 2.4], if and only if

gcd(n, m) = 1.

Consequently, we have α =
∑3

i=1 |S1−5(i)| = 12 giving

PS =
12
15

=
4
5
.

Moreover, if F is a finite field with |F | = q then we have

P̃F =
(q − 1)212
(q − 1)215

=
4
5
.

In addition, for the family of polynomials

F = {axN + bym : 1 ≤ m ≤ N}

we have PF = φ(N)/N.

More generally, for the set of polynomials

T = {axn + bym : 1 ≤ n ≤ N, 1 ≤ m ≤ M, N ≤ M},

by a similar argument we have

PT =
∑N

i=1 |S1−M(i)|
NM

.

Furthermore, if F is a finite field then PS = P̃S , PF = P̃F and PT = P̃T by Proposition 1.7.

Example 2.2 Let F be any field. Consider the family of polynomials

S = {axn + bym +
∑

cijx
iyj : a, b ∈ F ∗, cij ∈ F, mi + nj = mn}

having the family of Newton polytopes {conv((n, 0), (0, m))}, where 1 ≤ n ≤ 3 and 1 ≤ m ≤ 2. We see that

S = {ax3 + by, ax3 + by2, ax2 + by, ax2 + by2, ax2 + by2 + cijxy, ax + by, ax + by2},

where a, b, cij ∈ F ∗ . Therefore, we have α = 5 and β = 7 , i.e.

PS =
5
7
.
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In addition, if F is a finite field with |F | = q , then we have

P̃F =
5(q − 1)2

6(q − 1)2 + (q − 1)3
.

Example 2.3 Consider the set of polynomials

S = {axn + bym +
∑

cijx
iyj : a, b ∈ F ∗, cij ∈ F, mi + nj = mn}

having the family of Newton polytopes {conv((n, 0), (0, m))}, where N and M are given positive integers such
that 1 ≤ n ≤ N, 1 ≤ m ≤ M , with N ≤ M. In order to find β, we form the set

K = {xn + ym +
∑

cxiyj : mi + nj = mn},

where c ∈ {0, 1} . Elements of K have the family of Newton polytopes

N = {conv((n, 0), (0, m))},

which are line segments. Any element conv((a, 0), (0, b)) of N is integrally indecomposable, by [2, Corollary

4.3] or [4, Corollary 2.4], if and only if gcd(a, b) = 1. Therefore, we have

PS =
∑N

i=1 φ(i) +
∑N

i=2 φ(i)
|K| =

2
∑N

i=1 φ(i) − 1
|K|

=
∑N

i=1 |S1−N(i)|
|K| if N = M,

and

PS =
2

∑N
i=1 φ(i) +

∑M
i=N+1 |S1−N(i)| − 1
|K|

=
∑N

i=1 |S1−M(i)|
|K| if N < M.

For example, if N = M = 3 then we have

S = {ax + by, ax + by2, ax + by3, ax2 + by, ax2 + by2, ax2 + by2 + cxy, ax2 + by3,

ax3 + by, ax3 + by2 , ax3 + by3, ax3 + by3 + cxy2, ax3 + by3 + cx2y,

ax3 + by3 + cxy2 + dx2y : a, b, c, d ∈ F ∗}

and
K = {x + y, x + y2 , x + y3, x2 + y, x2 + y2, x2 + y2 + xy, x2 + y3 , x3 + y,

x3 + y2 , x3 + y3 , x3 + y3 + xy2, x3 + y3 + x2y, x3 + y3 + xy2 + x2y}.

Consequently, we get

PS =
∑3

i=1 |S1−3(i)|
|K| =

7
13

.
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Moreover, if F is a finite field with |F | = q , then we have

P̃S =
7(q − 1)2

7(q − 1)2 + 2(q − 1)2 + 3(q − 1)3 + (q − 1)4
.

Example 2.4 Consider the family of polynomials

S = {axu + byvzw +
∑

cijkxiyjzk : a, b ∈ F ∗, cijk ∈ F }

having the family of Newton polytopes

N = {conv((u, 0, 0), (0, v, w))},

where 1 ≤ u ≤ A, 1 ≤ v ≤ B, 1 ≤ w ≤ C for some positive integers A, B, C. A polynomial

f = a1x
u1 + b1y

v1zw1 +
∑

cijkx
iyjzk

in this family has the Newton polytope conv((u1, 0, 0), (0, v1, w1)) which is integrally indecomposable, by [2,

Corollary 4.3] or [4, Corollary 2.4], if and only if

gcd(u1, v1, w1) = 1.

Hence, we see that

PS ≥
∑A

i=1 |S1−B(i)| +
∑A

i=1 |S1−C(i)| +
∑B

i=1 |S1−C(i)|
|K| .

Actually, we have

PS =
r +

∑A
i=1

(
|S1−B(i)| + |S1−C(i)|

)
+

∑B
i=1 |S1−C(i)|

|K| ,

where r is the cardinality of the set

T = {(e1, e2, e3) : 1 ≤ e1 ≤ A, 1 ≤ e2 ≤ B, 1 ≤ e3 ≤ C, gcd(e1, e2, e3) = 1},

and K is the set given by

K = {xu + yvzw +
∑

cxiyjzk : 1 ≤ u ≤ A, 1 ≤ v ≤ B, 1 ≤ w ≤ C},

where c ∈ {0, 1} and the point (i, j, k) lies on the line segment from the point (u, 0, 0) to the point (0, v, w) .

.

Example 2.5 Consider the set of polynomials

S = {axn + bym + cxuyv +
∑

cijx
iyj : a, b, c ∈ F ∗, cij ∈ F }
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having the family of Newton polytopes

F = {conv((n, 0), (0, m), (u, v))},

where 1 ≤ n ≤ N, 1 ≤ m ≤ M and N,M,A,B,C,D are given positive integers satisfying

A ≤ u ≤ B, C ≤ v ≤ D, Mu + Nv > MN.

Without loss of generality, assume that N ≤ M < C ≤ A ≤ B ≤ D.

A polynomial

f = a1x
e1 + b1y

e2 + c1x
e3ye4 +

∑
cijx

iyj

in the set S has triangular Newton polytope conv((e1 , 0), (0, e2)(e3, e4)) which is integrally indecomposable, by

[2, Corollary 4.5] or [4, Proposition 2.6], if and only if

gcd(e3 − e1, e4, e3, e4 − e2) = gcd(e1, e2, e3, e4) = 1.

Moreover, we observe that β = |K| ≥ NM(B − A + 1)(D − C + 1) for the set

K = {xn + ym + xuyv +
∑

cxiyj : c ∈ {0, 1}, (i, j) ∈ conv((n, 0), (0, m), (u, v))}.

As a result, we have

PS ≥
[
r +

N∑
i=1

(
|S1−M (i)| + |SA−B(i)| + |SC−D(i)|

)
+

M∑
i=1

(
|SA−B(i)| + |SC−D(i)|

)
+

B∑
i=A

|SC−D(i)|
]
/

[
|K|

]
,

where r is the cardinality of the set of triple and quad relatively prime exponents in the related intervals. That
is, e.g., we call an exponent (e1 , e2, e3) triple relatively prime if gcd(e1, e2, e3) = 1 .

Example 2.6 Consider the set of polynomials

S = {axn + bym + czl + dxuyvzw : a, b, c, d ∈ F ∗}

which have the set of Newton polytopes

F = {conv((n, 0, 0), (0, m, 0), (0, 0, l), (u, v, w))},

where 1 ≤ n ≤ N, 1 ≤ m ≤ M, 1 ≤ l ≤ L, 1 ≤ u ≤ U, 1 ≤ v ≤ V, 1 ≤ w ≤ W for some integers N, M, L, U, V

and W.

Any member conv((e1, 0, 0), (0, e2, 0), (0, 0, e3), (e4, e5, e6)) of F is a pyramid in R
3 which is integrally

indecomposable, by [2, Theorem 4.2] or [4, Example 3.17], if and only if

gcd(e1, e2, e3, e4, e5, e6) = 1.
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By a similar argument as in the Example 2.4 and Example 2.5, we see that

PS =
[
r +

∑N
i=1

(
|S1−M(i)| + |S1−L(i)| + |S1−U (i)| + |S1−V (i)| + |S1−W (i)|

)
+

∑M
i=1

(
|S1−L(i)| + |S1−U(i)| + |S1−V (i)| + |S1−W (i)|

)
+

∑L
i=1

(
|S1−U (i)| + |S1−V (i)| + |S1−W (i)|

)
+

∑U
i=1

(
|S1−V (i)| + |S1−W (i)|

)
+

∑V
i=1

(
|S1−W (i)|

)]
/

[
NMLUV W

]

where r is the number of relatively prime exponents having three, four, five or six components in the related
intervals.

Example 2.7 Consider the family of polynomials

S = {axL + byM + czN + dxuyvzw + exryszt : a, b, c, d, e ∈ F ∗}

having the set of bipyramid Newton polytopes

F = {conv((L, 0, 0), (0, M, 0), (0, 0, N), (u, v, w), (r, s, t))}

with L, M, N ≥ 2 such that

L + 1 ≤ u ≤ A, M + 1 ≤ v ≤ B, N + 1 ≤ w ≤ C

D ≤ r ≤ L − 1, E ≤ s ≤ M − 1, F ≤ t ≤ N − 1

for some given positive integers A, B, C, D, E, F, L, M and N. Any bipyramid

conv((L, 0, 0), (0, M, 0), (0, 0, N), (e1, e2, e3), (e4, e5, e6))

in the family F is integrally indecomposable, by [4, Lemma 3.2 or Example 3.5,(2)], if and only if

gcd(L, M, N, e1, e2, e3, e4, e5, e6) = 1.

Hence, we have
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PS =
[
|SM−M (L)| + |SN−N(L)| + |S(L+1)−A(L)| + |S(M+1)−B(L)| + |S(N+1)−C(L)|

+|SD−(L−1)(L)| + |SE−(M−1)(L)| + |SF−(N−1)(L)| + |SN−N (M)|+ |S(L+1)−A(M)|

+|S(M+1)−B(M)| + |S(N+1)−C(M)| + |SD−(L−1)(M)| + |SE−(M−1)(M)|

+|SF−(N−1)(M)| + |S(L+1)−A(N)| + |S(M+1)−B(N)| + |S(N+1)−C(N)|

+|SD−(L−1)(N)| + |SE−(M−1)(N)| + |SF−(N−1)(N)|

+
A∑

i=L+1

|S(M+1)−B(i)| +
A∑

i=L+1

|S(N+1)−C(i)| +
A∑

i=L+1

|SD−(L−1)(i)|

+
A∑

i=L+1

|SE−(M−1)(i)| +
A∑

i=L+1

|SF−(N−1)(i)| +
B∑

i=M+1

|S(N+1)−C(i)|

+
B∑

i=M+1

|SD−(L−1)(i)| +
B∑

i=M+1

|SE−(M−1)(i)| +
B∑

i=M+1

|SF−(N−1)(i)|

+
C∑

i=N+1

|SD−(L−1)(i)| +
C∑

i=N+1

|SE−(M−1)(i)| +
C∑

i=N+1

|SF−(N−1)(i)|

+
L−1∑
i=D

|SE−(M−1)(i)| +
L−1∑
i=D

|SF−(N−1)(i)|

+
M−1∑
i=E

|SF−(N−1)(i)| + r

]
/

[
(A − L)(B − M)(C − N)(L − D)(M − E)(N − F )

]

where r is the number of relatively prime exponents having three, four, five, six, seven, eight or nine components
in the indicated intervals.

Acknowledgments

The authors are thankful to the referees for their helpful comments. The second author is partially
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