Module classes and the lifting property

Muhammet Tamer Koşan

Dedicated to the memory of Cemal KOÇ

Abstract

Let R be a ring. A collection of R-modules containing the zero module and closed under isomorphisms will be denoted by \mathcal{X}. An R-module M is said to be \mathcal{X}-lifting if for every \mathcal{X}-submodule N of M there exists $A \leq N$ such that $M=A \oplus B$ and $N \cap B$ is small in B [11]. In the present paper, we consider the question:

Can we characterize \mathcal{X}-lifting modules via objects of the class $\mathcal{X} ?$

Key Words: Lifting module, torsion theory.

1. Introduction

Throughout this work all rings will be associative with identity and modules will be unital right modules.
Let R be a ring and M be an R-module. A submodule N of M is said to be a small in M, denoted by $N \ll M$, whenever $L \leq M$ and $M=N+L$ then $M=L$, and M is said to be a lifting module (or D_{1}-module) if for any submodule N of M there exists $A \leq N$ such that $M=A \oplus B$ and $N \cap B \ll B$.

By a class \mathcal{X} of R-modules we mean a collection of R-modules containing the zero module and closed under isomorphisms, i.e., any module isomorphic to some module in \mathcal{X} also belongs to \mathcal{X}. By a \mathcal{X}-module we mean any member of \mathcal{X}, and a submodule N of a module M is called \mathcal{X}-submodule of M if N is an \mathcal{X}-module. Doĝruöz and Smith [5] introduced the notion of \mathcal{X}-extending modules (see also [6] and [7]). Dually, Koşan and Harmanci [11] introduced \mathcal{X}-lifting modules. M is said to be a \mathcal{X}-lifting module if for every \mathcal{X}-submodule N of M there exists $A \leq N$ such that $M=A \oplus B$ and $N \cap B \ll B$.

Example 1.1 (i) Let \mathcal{X} be the class of all torsion \mathbb{Z}-modules. Then the \mathbb{Z}-module \mathbb{Z} is an \mathcal{X}-lifting module. (ii) Let \mathcal{X} be the class of all torsion free \mathbb{Z}-modules. The zero submodule is the only small submodule of \mathbb{Z}, and for any non-zero submodules N and K with $N+K=\mathbb{Z}, N \cap K$ is not a small submodule of \mathbb{Z} and so the \mathbb{Z}-module \mathbb{Z} is not an \mathcal{X}-lifting module.
(iii) Let \mathcal{X} denote the class of all finitely generated \mathbb{Z}-modules. Clearly, \mathbb{Q} and \mathbb{Q} / \mathbb{Z} are \mathcal{X}-lifting modules.

[^0]
KOŞAN

(iv) Let \mathcal{X} be the class of all torsion free \mathbb{Z}-modules and p any prime integer and $M=(\mathbb{Z} / p \mathbb{Z}) \oplus \mathbb{Z}$. It is clear that from (ii) and [11, Lemma 2.3], the \mathbb{Z}-module M is not \mathcal{X}-lifting.
(v) Let R be a ring and \mathcal{X} denote the class of all injective R-modules. Then every R-module M is \mathcal{X}-lifting. (vi) Let p be any prime integer and $\mathcal{X}_{1}=\mathcal{X}_{2}=\{T \in \operatorname{Mod}-\mathbb{Z}: p T=0\}$ and $M=(\mathbb{Z} / p \mathbb{Z}) \oplus\left(\mathbb{Z} / p^{3} \mathbb{Z}\right)$. Let $M_{1}=(\overline{1}, \overline{0}) \mathbb{Z}, N=(\overline{1}, \bar{p}) \mathbb{Z}, N_{1}=\left(\overline{0}, \overline{p^{2}}\right) \mathbb{Z}, N=M_{1} \oplus N_{1}$. Then M_{1}, N_{1} and N_{2} are all \mathcal{X}_{1} and \mathcal{X}_{2} submodules of M, M_{1} is a direct summand and N_{1} is small in M. By [11, Lemma 2.3], M is both \mathcal{X}_{1} and \mathcal{X}_{1}-lifting module.

Let \mathcal{X} and \mathcal{Y} be classes of modules. We write $\mathcal{X} \leq \mathcal{Y}$ in case every object of \mathcal{X} is in \mathcal{Y}.
Lemma 1.2 ([11, Lemma 2.5]) Let \mathcal{X} and \mathcal{Y} be classes of modules with $\mathcal{X} \leq \mathcal{Y}$. Then every \mathcal{Y}-lifting module is \mathcal{X}-lifting.

Example 1.3 Let $\mathcal{X}=\{X \in \operatorname{Mod}-\mathbb{Z}: 2 X=0\}$ and $\mathcal{Y}=\{Y \in \operatorname{Mod}-\mathbb{Z}: 4 Y=0\}$ and let M be the \mathbb{Z}-module $(\mathbb{Z} / 2 \mathbb{Z}) \oplus(\mathbb{Z} / 8 \mathbb{Z})$. It is easy to see that $\mathcal{X} \leq \mathcal{Y}$ and M is \mathcal{X}-lifting but is not an \mathcal{Y}-lifting module. Let n be a positive integer and let $\mathcal{X}_{i}(1 \leq i \leq n)$ be classes of R-modules. Classes of R-modules can be combined in different ways to give other classes and we examine how lifting property behave under these constructions. Then $\oplus_{i=1}^{n} \mathcal{X}_{i}$ is defined to be the class of R-modules M such that $M=\oplus_{i=1}^{n} M_{i}$ is direct sum of \mathcal{X}_{i}-submodules $M_{i}(1 \leq i \leq n)$.

Lemma 1.4 ([11, Theorem 2.7]) With the above notation, an R-module M is $\left(\oplus_{i=1}^{n} \mathcal{X}_{i}\right)$-lifting if and only if M is \mathcal{X}_{i}-lifting for all $1 \leq i \leq n$.

Example 1.5 Let M denote the \mathbb{Z}-module $(\mathbb{Z} / 2 \mathbb{Z}) \oplus(\mathbb{Z} / 8 \mathbb{Z}) \oplus(\mathbb{Z} / 3 \mathbb{Z})$. Let $\mathcal{X}_{1}=\{X \in \operatorname{Mod}-\mathbb{Z}: 2 X=0\}$, $\mathcal{X}_{2}=\{X \in \operatorname{Mod}-\mathbb{Z}: 3 X=0\}$. Then M is $\mathcal{X}_{1}, \mathcal{X}_{2}$ and $\mathcal{X}_{1} \oplus \mathcal{X}_{2}$-lifting.

In [11], a referee asked the following question: Can we characterize \mathcal{X}-lifting modules via objects of the class \mathcal{X} ? In this article, we will give some answers to this question.

The terminologies and notations of Anderson and Fuller [3], and Mohamed and Müller [12] will be freely used.

2. The results

Recall that a projective module P is called a projective cover of a module M if there exists an epimorphism $f: P \longrightarrow M$ with $\operatorname{Ker}(f) \ll M$. A right R-module is said to be a perfect if M possesses a projective cover. So a ring R is called perfect if every right R-module is perfect.

Let \mathcal{P} be any class of perfect R-modules. Note that \mathcal{P} is closed under extensions. It is also easy to see that a module M is lifting if and only if M is Mod- R-lifting.

Proposition 2.1 Let \mathcal{P} be any class of perfect R-modules. Then
(1) R is semisimple if and only if $\mathcal{P}=\{M: M$ is a semisimple module $\}$.
(2) If R is semisimple, then M is lifting if and only if M is \mathcal{P}-lifting.

Proof. Clear.

KOŞAN

Let $T_{\mathcal{X}}(M)$ denote the sum of \mathcal{X}-submodules of M.
Lemma 2.2 Let \mathcal{X} be any class of R-modules and M be an R-module.
(1) If M does not contain any non-zero \mathcal{X}-submodule, i.e. $T_{\mathcal{X}}(M)=0$, then M is \mathcal{X}-lifting.
(2) Assume that \mathcal{X} is closed under taking homomorphic images and direct sums. If M is \mathcal{X}-lifting module then M is $T_{\mathcal{X}}(M)$-lifting.
Proof. (1) Obvious.
(2) Note that if \mathcal{X} is closed under direct sums and homomorphic images, then $T_{\mathcal{X}}(M)$ belongs to \mathcal{X}. Hence if M is \mathcal{X}-lifting then M is $T_{\mathcal{X}}(M)$-lifting by Lemma 1.2 .

Proposition 2.3 Let \mathcal{X} be any class of R-modules and M be an R-module.
(1) $T_{\mathcal{X}}(M)=\Sigma\left\{T_{\mathcal{X}}(N): N\right.$ is a \mathcal{X}-submodule of $\left.M\right\}$.
(2) Assume that \mathcal{X} is closed under taking homomorphic images and direct sums.
(a) For a homomorphism $f: M \longrightarrow N, f\left(T_{\mathcal{X}}(M)\right) \leq T_{\mathcal{X}}(N)$.
(b) Let a module $M=\oplus_{i \in I} M_{i}$ be a direct sum of modules M_{i} for all $i \in I$. Then $T_{\mathcal{X}}(M)=\oplus_{i \in I} T_{\mathcal{X}}\left(M_{i}\right)$.

Proof. (1) See [11, Lemma 2.18].
(2)(a) See [11, Lemma 2.19].
(2)(b) See [11, Corollary 2.20].

Let \mathcal{X} be a class of right R-modules and M a right R-module. According to [3], the class of all modules generated by \mathcal{X} is denoted by $\operatorname{Gen}(\mathcal{X})$. We denote $\operatorname{Tr}_{M}(\mathcal{X})$ the trace of \mathcal{X} in M is defined by $\operatorname{Tr}_{M}(\mathcal{X})=\sum\{\operatorname{Im} h \mid h: K \rightarrow M$ for some $K \in \mathcal{X}\}$.

Proposition 2.4 Let \mathcal{X} be any class of R-modules and M an R-module.
(1) If \mathcal{X} is closed under taking homomorphic images then $T_{\mathcal{X}}(M)=\operatorname{Tr}_{M}(\mathcal{X})$.
(2) $\operatorname{Tr}_{M}(\mathcal{X})=\operatorname{Tr}_{M}(\operatorname{Gen}(\mathcal{X}))$.

Proof. Clear.

Let \mathcal{X} be the class of all torsion \mathbb{Z}-modules and M be the \mathbb{Z}-module \mathbb{Z}. Since the zero submodule of \mathbb{Z} is the only \mathcal{X}-submodule of M, i.e. $T_{\mathcal{X}}(M)=0$. By Lemma 2.2 , the module M is \mathcal{X}-lifting.

Theorem 2.5 Assume that \mathcal{X} is closed under taking homomorphic images and direct sums. If an R-module M is \mathcal{X}-lifting then M is $\operatorname{Tr}_{M}(\operatorname{Gen}(\mathcal{X}))$-lifting.
Proof. By Lemma 1.2 and Propositions 2.3. and 2.4.

If \mathcal{X} is a class of modules such that $\operatorname{Hom}_{R}(X, M)=0$ for all $X \in \mathcal{X}$ then we shall write $\operatorname{Hom}_{R}(\mathcal{X}, M)=$ 0 . The class of all R-modules M with $\operatorname{Ext}_{R}(\mathcal{X}, M)=0$ will be denoted by \mathcal{X}^{\perp}. This is usually called the right orthogonal complement relative to the functor $\operatorname{Ext}_{R}(-,-)$ of the class \mathcal{X}.

Lemma 2.6 Let M be an R-module. If $M \in \mathcal{X}^{\perp}$, then $T_{\mathcal{X}}(E(M) / M)=0$.

KOŞAN

Proof. Assume that $T_{\mathcal{X}}(E(M) / M) \neq 0$. Then we have split exact sequence $0 \rightarrow M \rightarrow U \rightarrow U / M \rightarrow 0$, where $U \leq E(M), M \leq U$ and $U / M \in \mathcal{X}$. This implies that M is essential in U, a contradiction.

Proposition 2.7 Let \mathcal{X} be a class of R-modules and let M be a nonzero R-module. If $M \in \mathcal{X}^{\perp}$, then $E(M) / M$ is an \mathcal{X}-lifting module.
Proof. By Lemmas 1.2 and 2.6.

Note that if \mathcal{X} is closed under taking homomorphic images, then the converse of Lemma 2.6 is true because $M \in \mathcal{X}^{\perp}$ if and only if every X in \mathcal{X} is projective with respect to the exact sequence $0 \rightarrow M \rightarrow$ $E(M) \rightarrow E(M) / M \rightarrow 0$. But we do not know the converse of Proposition 2.7 is true or not.

To find a positive answer, we may need an answer to the following question.
Question Let \mathcal{X} be any class of R-modules and M be an R-module. Assume that M is \mathcal{X}-lifting. Is $T_{\mathcal{X}}(M)=0$?

Proposition 2.8 Let \mathcal{X} be a class of right R-modules and M be an R-module. If every nonzero cyclic singular module has a nonzero submodule in \mathcal{X}, then $M \in \mathcal{X}^{\perp}$ if and only if M is injective.
Proof. Assume that every nonzero cyclic singular module has a nonzero submodule in \mathcal{X}. Then, for any nonzero singular module $X, T_{\mathcal{X}}(X) \neq 0$. Let $M \in \mathcal{X}^{\perp}$. If M is not injective, then $E(M) / M$ is a nonzero singular module and $T_{\mathcal{X}}(E(M) / M)=0$ by Lemma 2.6. This is a contradiction. So M is injective. The converse is clear.

Let R be a ring and \mathcal{I} denote the class of all injective R-modules.
Theorem 2.9 Let \mathcal{X} be a class of right R-modules and M be a right R-module. Assume that every nonzero cyclic singular module has a nonzero submodule in \mathcal{X}. If $M \in \mathcal{X}^{\perp}$, then the following cases hold.
(1) M is an \mathcal{I}-lifting module.
(2) $E(M) / M$ is an \mathcal{X}-lifting module.

Proof. (1) By Proposition 2.8 and Example 1.1(v).
(2) By Propositions 2.7 and 2.8.

When \mathcal{F} is the class of all flat right R-modules, then the modules of the class \mathcal{F}^{\perp} are called cotorsion modules ([15]).

Lemma 2.10 Let R be a ring and $\left(\mathcal{X}, \mathcal{X}^{\perp}\right)$ a cotorsion theory. Then the following statements are equivalent:
(1) $\mathcal{X}=\operatorname{Mod}-R$.
(2) Every nonzero cyclic singular R-module has a nonzero cyclic submodule in \mathcal{X}.
(3) Every nonzero cyclic singular R-module has a nonzero submodule in \mathcal{X}.
(4) Every nonzero singular R-module has a nonzero submodule in \mathcal{X}.

KOŞAN

Proof. $(1) \Longrightarrow(2) \Longrightarrow(3) \Longrightarrow(4)$ Clear.
$(4) \Longrightarrow(1)$ By Proposition 2.8.

Now we have the following theorem as a result of Lemma 2.10.
Theorem 2.11 Let R be a ring and $\left(\mathcal{X}, \mathcal{X}^{\perp}\right)$ be a cotorsion theory. If one of the following conditions satisfies, then any R-module is lifting if and only if any R-module is \mathcal{X}-lifting:
(1) Every nonzero cyclic singular R-module has a nonzero cyclic submodule in \mathcal{X}.
(2) Every nonzero cyclic singular R-module has a nonzero submodule in \mathcal{X}.
(3) Every nonzero singular R-module has a nonzero submodule in \mathcal{X}.

Proof. Clear.

Lemma 2.12 Assume that \mathcal{X} is closed under taking homomorphic images and M is an R-module. If $\mathcal{I} \subset \mathcal{X}$, then $M \in \mathcal{X}^{\perp}$ if and only if M is an injective module.
Proof. $\quad: \Rightarrow$ Let $M \in \mathcal{X}^{\perp}$. By Lemma 2.6, we have $T_{\mathcal{X}}(E(M) / M)=0$. Since $\mathcal{I} \subset \mathcal{X}$ and \mathcal{X} is closed under homomorphic images, then $T_{\mathcal{X}}(E(M) / M)=E(M) / M$, i.e., $M=E(M)$ is injective.
$: \Leftarrow$: Clear.

Now we have the following corollary as a result of Theorem 2.9 and Lemma 2.12.
Corollary 2.13 Let \mathcal{X} be a class of R-modules closed under taking homomorphic images, $\mathcal{I} \subset \mathcal{X}$ and M be an R-module. If $M \in \mathcal{X}^{\perp}$, then the following cases hold.
(1) M is an \mathcal{I}-lifting module.
(2) M is a $T_{\mathcal{I}}(M)$-lifting module.
(3) M is a $\operatorname{Tr}_{M}(\mathcal{I})$-lifting module.
(4) M is a $\operatorname{Tr}_{M}(\operatorname{Gen}(\mathcal{I}))$-lifting module.
(5) $E(M) / M$ is an \mathcal{X}-lifting module.
(6) $E(M) / M$ is an \mathcal{I}-lifting module.

Lemma 2.14 Let R be a ring.
(1) Assume that \mathcal{X} is a class of R-modules which is closed under taking homomorphic images. Then $\mathcal{X}^{\perp}=$ $(\operatorname{Gen}(\mathcal{X}))^{\perp}$.
(2) Let \mathcal{C} be the class of all cyclic R-modules. Then $\mathcal{C}^{\perp}=(\operatorname{Gen}(\mathcal{C}))^{\perp}=(\operatorname{Mod}-R)^{\perp}$.

Proof. (1) Let M be an R-module. By Proposition 2.4 and Lemma 2.6, we can obtain that $T_{\mathcal{X}}(M)=$ $\operatorname{Tr}_{M}(\mathcal{X})=\operatorname{Tr}_{M}(\operatorname{Gen}(\mathcal{X}))=T_{\operatorname{Gen}(\mathcal{X})}(M)$. This implies that $M \in \mathcal{X}^{\perp}$ if and only if $T_{\mathcal{X}}(E(M) / M)=0$ if and only if $T_{\operatorname{Gen}(\mathcal{X})}(E(M) / M)=0$ if and only if $M \in(\operatorname{Gen}(\mathcal{X}))^{\perp}$ by Lemma 2.6.
(2) is clear from (1).

Example 2.15 Let R be a ring and \mathcal{I} denote the class of all injective R-modules. Then every R-module M

KOŞAN

is \mathcal{I}-lifting by Example 1.1(v) . Let \mathcal{C} be the class of all cyclic right R-modules. By Lemma 2.14, we have $\mathcal{C}^{\perp}=(\operatorname{Gen}(\mathcal{C}))^{\perp}=(\operatorname{Mod}-R)^{\perp}$, i.e., Baer Criterion. So every R-module M is \mathcal{C}-lifting by Lemma 2.12 and Corollary 2.13.

3. τ-lifting modules

Let $\tau=(\mathcal{T}, \mathcal{F})$ be a torsion theory. Then τ is uniquely determined by its associated class \mathcal{T} of τ-torsion modules $\mathcal{T}=\{M \in \operatorname{Mod}-R \mid \tau(M)=M\}$ where for an R-module $M, \tau(M)=\left\{\sum N \mid N \leq M, N \in \mathcal{T}\right\}$ and \mathcal{F} is referred to as the τ-torsion free class and $\mathcal{F}=\{M \in \operatorname{Mod}-R \mid \tau(M)=0\}$. A module in \mathcal{T} (or \mathcal{F}) is called a τ-torsion module (or τ-torsionfree). Every torsion class \mathcal{T} determines in every module M a unique maximal \mathcal{T}-submodule $\tau(M)$, the τ-torsion submodule of M, and $\tau(M / \tau(M))=0$, i.e., $M / \tau(M)$ is \mathcal{F}-module and τ-torsionfree.

In what follows τ will represent a hereditary torsion theory, that is, if $\tau=(\mathcal{T}, \mathcal{F})$ then the class \mathcal{T} is closed under taking submodules, direct sums, images and extensions by short exact sequences, equivalently the class \mathcal{F} is closed under taking submodules, direct products, injective hulls and isomorphic copies. Hence, the class \mathcal{F} is not, in general, closed under taking homomorphic images, if this happens to be true for a torsion theory $\tau=(\mathcal{T}, \mathcal{F})$, it is called that τ is cohereditary.

Recall that module M is called τ-lifting if for any τ-torsion free submodule N of M, there exists a direct summand K of M such that $K \leq N$ and $N / K \ll M / K$ ([9] and [10]).

Note that
(1) Every lifting module is τ-lifting,
(2) If M is a τ-lifting module such that every proper submodule of M is contained in \mathcal{F}, then then M is a lifting module,
(3) If M is τ-torsion, then M is τ-lifting.
(4) Let \mathbb{Z} denote the ring of integers and consider the \mathbb{Z}-module $M=N \oplus(U / V)$, where $N=\mathbb{Z} / 8 \mathbb{Z}$ and the submodules $U=2 \mathbb{Z} / 8 \mathbb{Z}$ and $V=4 \mathbb{Z} / 8 \mathbb{Z}$ of N. Let $\overline{\overline{0}}$ and $\overline{\overline{2}}$ denote the element of U / V. Let $\tau:=(\mathcal{T}, \mathcal{F})$ denoted the torsion theory on Mod- \mathbb{Z} where $\mathcal{F}=\{K \in \operatorname{Mod}-\mathbb{Z} \mid \forall 0 \neq Y \subseteq K, \exists y \in Y$ such that for all positive integer t we have $\left.3^{t} y \neq 0\right\}$. If $N_{1}=(\overline{1}, \overline{\overline{2}}) \mathbb{Z}, N_{2}=(\overline{2}, \overline{\overline{0}}) \mathbb{Z}, N_{3}=(\overline{2}, \overline{\overline{2}}) \mathbb{Z}, N_{4}=(\overline{1}, \overline{\overline{0}}) \mathbb{Z}, N_{5}=(\overline{4}, \overline{\overline{0}}) \mathbb{Z}, N_{6}=$ $(\overline{4}, \overline{\overline{2}}) \mathbb{Z}$. Then N_{1}, N_{2}, N_{3} and N_{4} are τ-torsion free submodules of M, where N_{1}, N_{4} are direct summands of $M, N_{2} \ll M, M=N_{1}+N_{3}, N_{5}=N_{1} \cap N_{3}, N_{5} \ll M$ and $M=N_{1} \oplus N_{6}$. It is easily checked that N_{3} is neither small in M nor has any nonzero submodule which is direct summand of M. Hence M is not τ-lifting.

Let $(\mathcal{L}, \leq, 0,1)$ be a modular lattice, τ be a hereditary torsion theory and M an R-module. We write

$$
\operatorname{Sat}_{\tau}(M)=\{N \leq M: M / N \in \mathcal{F}\}
$$

by [14]. If $a \in \mathcal{L}$, then $b \in \mathcal{L}$ is said to be a complement of a (in \mathcal{L}), if $a \vee b=1$ and $a \wedge b=0$. If for each $a \in \mathcal{L}$, there exists $b \in \mathcal{L}$ such that $b \leq a, b \vee b^{\prime}=1$ and $b \wedge b^{\prime}=0$ and $a \wedge b$ is small in M holds then \mathcal{L} is said to be lifting-lattice. If $\operatorname{Sat}_{\tau}(M)$ is lifting-lattice, we say M is a τ-lifting module.

Proposition $3.1 S a t_{\tau}(M)$ is a complete upper-continuous modular lattice and if N is a τ-dense submodule of M, then there is a canonical bijection between $\operatorname{Sat}_{\tau}(M)$ and $\operatorname{Sat}_{\tau}(N)$ given by $A \longrightarrow A \cap N$ where $A \in S a t_{\tau}(M)$

KOŞAN

and this bijection is a lattice isomorphism.
Proof. A submodule N of M is τ-dense in M if and only if M / N is τ-torsion. $\left(\operatorname{Sat}_{\tau}(M), \leq, 0,1\right)$ is endowed the operations:
$\leq:$ the inclusion operation of submodules of M,
$A \wedge B=A \cap B$, where $A, B \in \operatorname{Sat}_{\tau}(M)$,
$A \vee B=\widetilde{A+B}$, where $A, B \in \operatorname{Sat}_{\tau}(M)$ and $\widetilde{A+B}$ denotes the largest submodule of M satisfying $\widetilde{A+B} /(A+B) \in \mathcal{T}$, equivalently $\widetilde{A+B} /(A+B)=\tau(M /(A+B))$.
$1=M$ and $0=\tau(M)$.
Hence the proof is clear from [14].

Proposition 3.2 Let M be an R-module. If $\tau(M)=0$ and $\tau(M / N)=M / N$ for every proper submodule N of M, then M is indecomposable.

Proof. Clear.

Corollary 3.3 Let M be a non indecomposable R-module. Then $S_{\tau}(M)$ contains elements other than 0 and 1 .
Proof. Clear from Example 1.1.

Lemma 3.4 Let M be an R-module.
(1) M is τ-lifting if and only if every submodule M^{\prime} of M can be written as $M^{\prime}=X \oplus Y$ with X is a summand of M and $\tau(Y)=0$.
(2) Every submodule of a τ-lifting module is τ-lifting.

Proof. Trivial.

Recall that M is called τ-cotorsionfree if every proper submodule of M contains no τ-dense submodule.
Theorem 3.5 Let M be a τ-cotorsionfree R-module.
(1) Any τ-torsion submodule of M is small in M.
(2) If M is τ-lifting, then M is indecomposable if and only if M is holllow.
(3) If every proper submodule of M is τ-torsion, then M is indecomposable.

Proof. (1) Let N be a submodule of M with $\tau(N)=N$. Let $M=N+K$ for some submodule $K \leq M$. Then $M / K \cong N /(N \cap K)$. Since N is a τ-torsion submodule of $M, N / N \cap K$ and so M / K is τ-torsion. But M is τ-cotorsionfree, therefore $M=K$. Hence N is small in M.
(2) Assume that M is a τ-lifting module. Suppose that M is indecomposable. For $N \leq M$, we have two cases:
Case (i) If $\tau(M / N)=0$, then $M / N \in \mathcal{F}$. Then M has a decomposition $M=A \oplus B$ such that $A \leq N$ and $N \cap B \ll B$. Since M is indecomposable, we have $M=A$ or $M=B$. If $M=A$ then $M=N$; otherwise $M=B$ then $N \ll M$. Therefore M is hollow.
Case (ii) Let $\tau(M / N)=M_{1} / N \neq 0$. Then $\tau\left(M / M_{1}\right)=0$ and $M / M_{1} \in \mathcal{F}$. Since M is a τ-lifting module, M

KOŞAN

has a decomposition $M=A \oplus B$ such that $A \leq M_{1}$ and $M_{1} \cap B \ll B$. By assumption, $M=A$ or $M=B$. If $M=A$ then $M=M_{1}$ and $\tau(M / N)=M / N$. By [8, Proposition 7.6], we have $M=N$. If $M=B$ then $N \ll M$. That is M is hollow. The converse is clear.
(3) Clear.

Recall that M is called τ-semisimple if $N \in \operatorname{Sat}_{\tau}(M)$ is a direct summand of M [14]. Clearly, if M is τ-semisimple, then M is τ-lifting.

In [13] (or [8]) , M is called τ-complemented (or τ-direct) if for every submodule N of M there exists a direct summand K of M such that K / N is τ-torsion.

Theorem 3.6 is clear from [13] and definitions.
Theorem 3.6 Let M be an R-module. Then the following are equivalent:

1. M is τ-semisimple.
2. $M=\tau(M) \oplus P$ for some τ-torsion free submodule P.
3. M is τ-complemented.

Proposition 3.7 Let M be a τ-semisimple R-module. Then
(1) $M=\tau(M) \oplus K$ for some submodule K of M.
(2) If τ is a cohereditary torsion theory, then $\operatorname{Rad}(M) \leq \tau(M)$.
(3) For every τ-dense submodule N of M, i.e $M / N \in \mathcal{T}, M=\tau(M)+N$.
(4) If M is τ-cotorsion free, then $\operatorname{Rad}(M) \leq \tau(M)$.

Proof. (1) Clear.
(2) Let L be a small submodule of M. By assumption, $M /(L+\tau(M))=0$. By hypothesis, let $M=$ $(L+\tau(M)) \oplus X$ for some submodule X of M. Thus $L \leq \tau(M)$.
(3) Let N be a τ-dense submodule of M. As in the proof of (2), we can find a decomposition $M=$ $(N+\tau(M)) \oplus Y$ for some submodule Y of M. It is easy to see that that Y is isomorphic to a submodule of M / N. Since M / N is τ-torsion and Y is τ-torsion free, we have $Y=0$.
(4) This is Theorem 3.5 (1).

Let \mathcal{X} be any class of modules. The class $d \mathcal{X}$ consists of all modules M such that, for every submodule N of M, there exists a direct summand K of M such that $N \leq K$ and K / N is an \mathcal{X}-module. Dually, $d^{*} \mathcal{X}$ is defined to be the class of R - modules M such that each submodule N of M contains a direct summand K of M such that N / K is an \mathcal{X}-module. Properties of these classes are given in [2].

Definition 3.8 Let $\tau=(\mathcal{T}, \mathcal{F})$ a torsion theory and M be an R-module. We call M a $d^{*} F$-lifting module, if every submodule A of M has a decomposition $N=A \oplus B$ such that A is a direct summand of M and $B \in \mathcal{F}$ (see [4] for more general cases).

Examples 3.9 (i) Every simple module with respect to every $\tau=(\mathcal{T}, \mathcal{F})$ torsion theory is a $d^{*} \mathcal{F}$-lifting module. (ii) Let $\tau=\left(\mathcal{T}_{\mathbb{Z}}, \mathcal{F}_{\mathbb{Z}}\right)$ be a torsion theory on $\operatorname{Mod}-\mathbb{Z}$ and $M_{\mathbb{Z}}=\mathbb{Z}_{\mathbb{Z}}$. Let $N=2 \mathbb{Z} \leq M$. M has only two direct summands which are (0) and M. Also every nonzero submodule of M is τ-torsion but, for any $0 \neq N, M / N$ is τ-torsionfree. If N has a decomposition $N=A \oplus B$, we have $N=A$ or $N=B$. It is a contradiction. Hence $M_{\mathbb{Z}}$ is not a $d^{*} \mathcal{F}$-lifting module.

KOŞAN

Let R be a ring. Let \mathcal{S} denote the class of simple R-modules. Then $T_{\mathcal{S}}(M)$ is the usual socle of M and is denoted simply by $\operatorname{Soc}(M)$.

Proposition 3.10 If M is a $d^{*} \mathcal{F}$-lifting R-module, then $M / T_{\mathcal{F}}(M)$ is semisimple.
Proof. Any submodule of $M / T_{\mathcal{F}}(M)$ has the form $N / T_{\mathcal{F}}(M)$ for some submodule N of M which contains $T_{\mathcal{F}}(M)$. Since M is a $d^{*} \mathcal{F}$ lifting module, the module N has a decomposition $N=A \oplus B$ such that $A \leq_{d} M$ and $B \in \mathcal{F}$. Let $M=A \oplus C$ for some submodule C of M. Then, $M / T_{\mathcal{F}}(M)=$ $N / T_{\mathcal{F}}(M) \oplus\left(C+T_{\mathcal{F}}(M)\right) / T_{\mathcal{F}}(M)$. By [3, Theorem 9.6], M is a semisimple module.

Proposition 3.11 Let $\tau=(\mathcal{T}, \mathcal{F})$ be a torsion theory such that $\mathcal{S} \subseteq \mathcal{F}$. Let M be a d $d^{*} \mathcal{F}$-lifting R-module. Then $T_{\mathcal{F}}(M)$ is an essential submodule of M.

Proof. Let N be any submodule of M with $N \cap T_{\mathcal{F}}(M)=0$. Then N embeds in $M / T_{\mathcal{F}}(M)$. By Proposition 3.7, we have $N \in \mathcal{S}$. By hypothesis, $N \leq T_{\mathcal{F}}(M)$. Hence $N=0$. This is a contradiction. Thus $T_{\mathcal{F}}(M)$ is an essential submodule of M.

Theorem 3.12 Let $\tau=(\mathcal{T}, \mathcal{F})$ be a torsion theory. Let M be a $d^{*} \mathcal{F}$-lifting R-module. Then $\tau(M)$ is a direct summand of M. In general, every τ-torsion submodule of M is a direct summand.

Proof. Let N be any submodule of M with $\tau(N)=N$. Then N has a decomposition $N=A \oplus B$ such that A is a direct summand of M and $B \in \mathcal{F}$. Since $\tau(N)=N$ and $B \in \mathcal{F}$, we have $B=0$. Therefore $N=A$ is a direct summand of M.

Corollary 3.13 Let $\tau=(\mathcal{T}, \mathcal{F})$ be a torsion theory such that $\mathcal{S} \subseteq \mathcal{F}$. Let M be a d $d^{*} \mathcal{F}$-lifting R-module. Then $\tau(M)$ is a semisimple direct summand of M. In particular, $\tau(M) \leq \operatorname{Soc}(M)$.

Theorem 3.14 Let $\tau=(\mathcal{T}, \mathcal{F})$ be a torsion theory and M be an R-module such that $\tau(M)=0$. If M is a τ-lifting module then M is a $d^{*} \mathcal{F}$-lifting module.
Proof. Let $N \leq M$. Since M is a τ-lifting module, by Lemma 3.4, N has a decomposition $N=A \oplus B$ such that A is a direct summand of M and $\tau(B)=0$. Since \mathcal{F} is closed under submodules, then $B \in \mathcal{F}$. Hence M is a $d^{*} \mathcal{F}$ lifting module.

Theorem 3.15 Let $\tau=(\mathcal{T}, \mathcal{F})$ be a torsion theory and M be an R-module such that $\tau(M)=M$. Then M is a $d^{*} \mathcal{F}$ lifting module if and only if M is semisimple.

Proof. Let M be a module with $\tau(M)=M$ and M be a $d^{*} \mathcal{F}$-lifting module. Let $N \leq M$.Then N has a decomposition $N=A \oplus B$ such that A is a direct summand of M and $B \in \mathcal{F}$. Since $\tau(M)=M$ and $B \in \mathcal{F}$, we have $B=0$. Hence $N=A$ is a direct summand of M. By [3, Theorem 9.6], M is semisimple. Converse is clear.

KOŞAN

Example 3.16 Let F be a field and R be the subring $R=\left(\begin{array}{cc}F & F \\ 0 & F\end{array}\right)$ of all 3 by 3 matrices over F. Let M denote right R-module R. Clearly, every module over R is lifting. With respect to the idempotent ideals:

$$
X=\left(\begin{array}{cc}
F & F \\
0 & 0
\end{array}\right) \text { and } Y=\left(\begin{array}{cc}
0 & F \\
0 & F
\end{array}\right)
$$

1. Let $\mathcal{T}_{X}=\{M \in M o d-R: M X=0\}$. Then $\mathcal{T}_{X}(M)=\left(\begin{array}{cc}0 & F \\ 0 & F\end{array}\right)$. If M is a $d^{*} \mathcal{F}$-lifting module, by Corollary 3.13 , then $\mathcal{T}_{X}(M)$ is a direct summand of M. But $\mathcal{T}_{X}\left(R_{R}\right)$ is not a direct summand of M, so M is not a $d^{*} \mathcal{F}$-lifting module.
2. Let $\mathcal{T}_{Y}=\{M \in \operatorname{Mod}-R: M Y=0\}$. Then $\mathcal{T}_{Y}(M)=0$. Since M is a lifting module, then M is a $d^{*} \mathcal{F}$-lifting module by Theorem 3.15.

Let $\tau=(\mathcal{T}, \mathcal{F})$ be a torsion theory. In definition 3.8 , we defined $d^{*} \mathcal{F}$-lifting module with respect to the $d^{*} \mathcal{F}$ class. Similarly, we can define $d^{*} \mathcal{T}$-lifting module with respect to the $d^{*} \mathcal{T}$ class (see [4] for more generally cases).

Definition 3.17 Let $\tau=(\mathcal{T}, \mathcal{F})$ a torsion theory and M be an R-module. We call M a $d^{*} T$-lifting module, if every submodule A of M has a decomposition $N=A \oplus B$ such that A is a direct summand of M and $B \in \mathcal{T}$.

Examples 3.18 (i) Every semisimple module with respect to a $\tau=(\mathcal{T}, \mathcal{F})$ torsion theory is a $d^{*} \mathcal{T}$-lifting module.
(ii) Let $\tau=\left(\mathcal{T}_{\mathbb{Z}}, \mathcal{F}_{\mathbb{Z}}\right)$ be a torsion theory on $\operatorname{Mod}-\mathbb{Z}$ and $M_{\mathbb{Z}}=\mathbb{Z}_{\mathbb{Z}}$. Clearly, $N \in \mathcal{T}_{\mathbb{Z}}$ if and only if for all $0 \neq n \in N$ there exists a $0 \neq t \in \mathbb{Z}$ such that $n t=0$. Hence, for any submodule A of M, M is a d $d^{*} \mathcal{T}$ lifting module since $A=A \oplus(0)$.

Theorem 3.19 Let $\tau=(\mathcal{T}, \mathcal{F})$ be a torsion theory and M be an R-module such that $\tau(M)=0$. Then M is $a d^{*} \mathcal{T}$ lifting module if and only if M is semisimple.
Proof. Let M be a $d^{*} \mathcal{T}$ lifting module and $\tau(M)=0$. Let $N \leq M$. Then N has a decomposition $N=A \oplus B$ such that A is a direct summand of M and $B \in \mathcal{T}$. Since $B=\tau(B) \leq \tau(M)=0$, we have $N=A$ is a direct summand of M. The converse is clear.

Theorem 3.20 If M is a $d^{*} \mathcal{T}$ lifting R-module, then $M / \tau(M)$ is semisimple.
Proof. Let $\tau(M) \leq N \leq M$. Since M is a $d^{*} \mathcal{T}$-lifting module, N has a decomposition $N=A \oplus B$ such that A is a direct summand of M and $B \in \mathcal{T}$. Let $M=A \oplus C$ for some submodule C of M. Then $M / \tau(M)=(A+\tau(M)) / \tau(M) \oplus(C+\tau(M)) / \tau(M)$ by [3, Theorem 9.6].

Acknowledgments

The authors thank the referee for his/her very careful reading of the manuscript and very many suggestions that improved the article.

KOŞAN

References

[1] Alkan, M.: On τ-lifting modules and τ-semiperfect modules. Turkish J. Math. 33, 117-130 (2009).
[2] Al-Khazzi, I, Smith, P.F.: Classes of modules with many direct summands. J. Aust. Math. Soc., Ser. A. 59(1), 8-19 (1995).
[3] Anderson, F.W., Fuller, K.R.: Rings and Categories of Modules. Springer-Verlag, New York 1974.
[4] Crivei, S.: Relatively lifting modules. Algebra Colloq., to appear.
[5] Dogruoz, S., Smith, P.F.: Modules which are extending relative to module classes. Comm. Algebra, 26(6), 16991721 (1998).
[6] Dogruoz, S., Smith, P.F.: Quasi-continuous modules relative to module classes. Vietnam J. Math. 27(3), 241-251 (1999).
[7] Dogruoz, S., Smith, P.F.: Modules which are weak extending relative to module classes. Acta Math. Hung. 87, 1-10 (2000).
[8] Golan, J.S.: Torsion Theories. Pitmann Mon.and Surveys in Pure and Appl.Math. 29, 1986.
[9] Koşan, T., Harmanci, A.: Modules supplemented relative to a torsion theory. Turkish J. Math. 28(2), 177-184 (2004).
[10] Koşan, M.T., Harmanci, A.: Decompositions of modules supplemented relative to a torsion theory. International J. Math. 16(1), 43-52 (2005).
[11] Koşan, M.T., Harmanci, A.: Modules which are lifting relative to module classes. Kyungpook J. Math. 48(1), 63-71 (2008).
[12] Mohammed, S.H., Müller, B.J.: Continous and Discrete Modules. London Math. Soc., LN 147, Cambridge Univ.Press, 1990.
[13] Smith, P.F., Viola-Prioli, A.M., Viola-Prioli, J.: Modules complemented with respect to a torsion theory. Comm. Algebra 25, 1307-1326 (1997).
[14] Stentröm, B.: Rings of quotients, Springer, Berlin, 1975.
[15] Xu, J.: Flat covers of modules, Lecture Notes in Math., Springer, Berlin, 1996.

Muhammet Tamer KOŞAN
Received: 30.09.2009
Department of Mathematics,
Gebze Institute of Technology
Çayırova Campus 41400 Gebze, Kocaeli-TURKEY
e-mail: mtkosan@gyte.edu.tr

[^0]: 2000 AMS Mathematics Subject Classification: 16D90, 16S90.

