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Abstract

Let R be a ring. A collection of R -modules containing the zero module and closed under isomorphisms

will be denoted by X . An R -module M is said to be X -lifting if for every X -submodule N of M there

exists A ≤ N such that M = A ⊕ B and N ∩ B is small in B [11]. In the present paper, we consider the

question:

Can we characterize X -lifting modules via objects of the class X ?
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1. Introduction

Throughout this work all rings will be associative with identity and modules will be unital right modules.

Let R be a ring and M be an R -module. A submodule N of M is said to be a small in M , denoted
by N � M , whenever L ≤ M and M = N + L then M = L , and M is said to be a lifting module (or

D1−module) if for any submodule N of M there exists A ≤ N such that M = A ⊕ B and N ∩ B � B .

By a class X of R -modules we mean a collection of R -modules containing the zero module and closed
under isomorphisms, i.e., any module isomorphic to some module in X also belongs to X . By a X -module we
mean any member of X , and a submodule N of a module M is called X -submodule of M if N is an X -module.
Doĝruöz and Smith [5] introduced the notion of X -extending modules (see also [6] and [7]). Dually, Koşan and

Harmanci [11] introduced X -lifting modules. M is said to be a X -lifting module if for every X -submodule N

of M there exists A ≤ N such that M = A ⊕ B and N ∩ B � B .

Example 1.1 (i) Let X be the class of all torsion Z-modules. Then the Z-module Z is an X -lifting module.

(ii) Let X be the class of all torsion free Z-modules. The zero submodule is the only small submodule of Z ,
and for any non-zero submodules N and K with N + K = Z , N ∩ K is not a small submodule of Z and so
the Z-module Z is not an X -lifting module.
(iii) Let X denote the class of all finitely generated Z-modules. Clearly, Q and Q/Z are X -lifting modules.
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(iv) Let X be the class of all torsion free Z-modules and p any prime integer and M = (Z/pZ)⊕Z . It is clear

that from (ii) and [11, Lemma 2.3], the Z-module M is not X -lifting.

(v) Let R be a ring and X denote the class of all injective R -modules. Then every R -module M is X -lifting.

(vi) Let p be any prime integer and X1 = X2 = {T ∈ Mod − Z : pT = 0} and M = (Z/pZ) ⊕ (Z/p3Z) .

Let M1 = (1, 0)Z , N = (1, p)Z , N1 = (0, p2)Z , N = M1 ⊕ N1 . Then M1 , N1 and N2 are all X1 and X2

submodules of M , M1 is a direct summand and N1 is small in M . By [11, Lemma 2.3], M is both X1 and
X1 -lifting module.

Let X and Y be classes of modules. We write X ≤ Y in case every object of X is in Y .

Lemma 1.2 ([11, Lemma 2.5]) Let X and Y be classes of modules with X ≤ Y . Then every Y -lifting module
is X -lifting.

Example 1.3 Let X = {X ∈ Mod − Z : 2X = 0} and Y = {Y ∈ Mod − Z : 4Y = 0} and let M be the

Z-module (Z/2Z) ⊕ (Z/8Z) . It is easy to see that X ≤ Y and M is X -lifting but is not an Y -lifting module.

Let n be a positive integer and let Xi(1 ≤ i ≤ n) be classes of R -modules. Classes of R -modules can
be combined in different ways to give other classes and we examine how lifting property behave under these
constructions. Then ⊕n

i=1Xi is defined to be the class of R -modules M such that M = ⊕n
i=1Mi is direct sum

of Xi -submodules Mi (1 ≤ i ≤ n).

Lemma 1.4 ([11, Theorem 2.7]) With the above notation, an R -module M is (⊕n
i=1Xi)-lifting if and only if

M is Xi -lifting for all 1 ≤ i ≤ n .

Example 1.5 Let M denote the Z-module (Z/2Z)⊕ (Z/8Z)⊕ (Z/3Z) . Let X1 = {X ∈ Mod − Z : 2X = 0} ,

X2 = {X ∈ Mod − Z : 3X = 0} . Then M is X1 , X2 and X1 ⊕ X2 -lifting.

In [11], a referee asked the following question: Can we characterize X -lifting modules via objects of the
class X ? In this article, we will give some answers to this question.

The terminologies and notations of Anderson and Fuller [3], and Mohamed and Müller [12] will be freely
used.

2. The results

Recall that a projective module P is called a projective cover of a module M if there exists an
epimorphism f : P −→ M with Ker(f) � M . A right R -module is said to be a perfect if M possesses
a projective cover. So a ring R is called perfect if every right R -module is perfect.

Let P be any class of perfect R -modules. Note that P is closed under extensions. It is also easy to see
that a module M is lifting if and only if M is Mod-R -lifting.

Proposition 2.1 Let P be any class of perfect R -modules. Then
(1) R is semisimple if and only if P = {M : M is a semisimple module } .

(2) If R is semisimple, then M is lifting if and only if M is P -lifting.

Proof. Clear. �
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Let TX (M) denote the sum of X -submodules of M .

Lemma 2.2 Let X be any class of R -modules and M be an R -module.
(1) If M does not contain any non-zero X -submodule, i.e. TX (M) = 0 , then M is X -lifting.

(2) Assume that X is closed under taking homomorphic images and direct sums. If M is X -lifting module

then M is TX (M)-lifting.

Proof. (1) Obvious.

(2) Note that if X is closed under direct sums and homomorphic images, then TX (M) belongs to X . Hence if

M is X -lifting then M is TX (M)-lifting by Lemma 1.2. �

Proposition 2.3 Let X be any class of R -modules and M be an R -module.
(1) TX (M) = Σ{TX (N) : N is a X -submodule of M} .

(2) Assume that X is closed under taking homomorphic images and direct sums.

(a) For a homomorphism f : M −→ N , f(TX (M)) ≤ TX (N) .

(b) Let a module M = ⊕i∈IMi be a direct sum of modules Mi for all i ∈ I . Then TX (M) = ⊕i∈ITX (Mi).

Proof. (1) See [11, Lemma 2.18].

(2)(a) See [11, Lemma 2.19].

(2)(b) See [11, Corollary 2.20]. �

Let X be a class of right R -modules and M a right R -module. According to [3], the class of all

modules generated by X is denoted by Gen(X ). We denote TrM (X ) the trace of X in M is defined by

TrM (X ) =
∑

{Imh | h : K → M for some K ∈ X} .

Proposition 2.4 Let X be any class of R -modules and M an R -module.
(1) If X is closed under taking homomorphic images then TX (M) = TrM (X ) .

(2) TrM (X ) = TrM (Gen(X )) .

Proof. Clear. �

Let X be the class of all torsion Z -modules and M be the Z -module Z . Since the zero submodule of Z
is the only X -submodule of M , i.e. TX (M) = 0. By Lemma 2.2, the module M is X -lifting.

Theorem 2.5 Assume that X is closed under taking homomorphic images and direct sums. If an R -module
M is X -lifting then M is TrM (Gen(X ))-lifting.

Proof. By Lemma 1.2 and Propositions 2.3. and 2.4. �

If X is a class of modules such that HomR(X, M) = 0 for all X ∈ X then we shall write HomR(X , M) =

0. The class of all R -modules M with ExtR(X , M) = 0 will be denoted by X⊥ . This is usually called the

right orthogonal complement relative to the functor ExtR(−,−) of the class X .

Lemma 2.6 Let M be an R -module. If M ∈ X⊥ , then TX (E(M)/M) = 0 .
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Proof. Assume that TX (E(M)/M) �= 0. Then we have split exact sequence 0 → M → U → U/M → 0,

where U ≤ E(M), M ≤ U and U/M ∈ X . This implies that M is essential in U , a contradiction. �

Proposition 2.7 Let X be a class of R -modules and let M be a nonzero R -module. If M ∈ X⊥ , then
E(M)/M is an X -lifting module.

Proof. By Lemmas 1.2 and 2.6. �

Note that if X is closed under taking homomorphic images, then the converse of Lemma 2.6 is true

because M ∈ X⊥ if and only if every X in X is projective with respect to the exact sequence 0 → M →
E(M)→E(M)/M → 0. But we do not know the converse of Proposition 2.7 is true or not.

To find a positive answer, we may need an answer to the following question.

Question Let X be any class of R -modules and M be an R -module. Assume that M is X -lifting. Is
TX (M) = 0?

Proposition 2.8 Let X be a class of right R -modules and M be an R -module. If every nonzero cyclic singular

module has a nonzero submodule in X , then M ∈ X⊥ if and only if M is injective.

Proof. Assume that every nonzero cyclic singular module has a nonzero submodule in X . Then, for any

nonzero singular module X , TX (X) �= 0. Let M ∈ X⊥ . If M is not injective, then E(M)/M is a nonzero

singular module and TX (E(M)/M) = 0 by Lemma 2.6. This is a contradiction. So M is injective. The
converse is clear. �

Let R be a ring and I denote the class of all injective R -modules.

Theorem 2.9 Let X be a class of right R -modules and M be a right R -module. Assume that every nonzero

cyclic singular module has a nonzero submodule in X . If M ∈ X⊥ , then the following cases hold.
(1) M is an I -lifting module.

(2) E(M)/M is an X -lifting module.

Proof. (1) By Proposition 2.8 and Example 1.1(v).

(2) By Propositions 2.7 and 2.8. �

When F is the class of all flat right R -modules, then the modules of the class F⊥ are called cotorsion
modules ([15]).

Lemma 2.10 Let R be a ring and (X ,X⊥) a cotorsion theory. Then the following statements are equivalent:

(1) X = Mod-R .

(2) Every nonzero cyclic singular R -module has a nonzero cyclic submodule in X .

(3) Every nonzero cyclic singular R -module has a nonzero submodule in X .

(4) Every nonzero singular R -module has a nonzero submodule in X .
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Proof. (1) =⇒ (2) =⇒ (3) =⇒ (4) Clear.

(4) =⇒ (1) By Proposition 2.8. �

Now we have the following theorem as a result of Lemma 2.10.

Theorem 2.11 Let R be a ring and (X ,X⊥) be a cotorsion theory. If one of the following conditions satisfies,
then any R -module is lifting if and only if any R -module is X -lifting:
(1) Every nonzero cyclic singular R -module has a nonzero cyclic submodule in X .

(2) Every nonzero cyclic singular R -module has a nonzero submodule in X .

(3) Every nonzero singular R -module has a nonzero submodule in X .

Proof. Clear. �

Lemma 2.12 Assume that X is closed under taking homomorphic images and M is an R -module. If I ⊂ X ,

then M ∈ X⊥ if and only if M is an injective module.

Proof. :⇒ Let M ∈ X⊥ . By Lemma 2.6, we have TX (E(M)/M) = 0. Since I ⊂ X and X is closed under

homomorphic images, then TX (E(M)/M) = E(M)/M , i.e., M = E(M) is injective.
:⇐: Clear. �

Now we have the following corollary as a result of Theorem 2.9 and Lemma 2.12.

Corollary 2.13 Let X be a class of R -modules closed under taking homomorphic images, I ⊂ X and M be

an R -module. If M ∈ X⊥ , then the following cases hold.
(1) M is an I -lifting module.

(2) M is a TI(M)-lifting module.

(3) M is a TrM (I)-lifting module.

(4) M is a TrM (Gen(I))-lifting module.

(5) E(M)/M is an X -lifting module.

(6) E(M)/M is an I -lifting module.

Lemma 2.14 Let R be a ring.

(1)Assume that X is a class of R -modules which is closed under taking homomorphic images. Then X⊥ =

(Gen(X ))⊥.

(2) Let C be the class of all cyclic R -modules. Then C⊥ = (Gen(C))⊥ = (Mod − R)⊥ .

Proof. (1) Let M be an R -module. By Proposition 2.4 and Lemma 2.6, we can obtain that TX (M) =

TrM (X ) = TrM (Gen(X )) = TGen(X )(M). This implies that M ∈ X⊥ if and only if TX (E(M)/M) = 0 if and

only if TGen(X )(E(M)/M) = 0 if and only if M ∈ (Gen(X ))⊥ by Lemma 2.6.

(2) is clear from (1). �

Example 2.15 Let R be a ring and I denote the class of all injective R -modules. Then every R -module M
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is I -lifting by Example 1.1(v) . Let C be the class of all cyclic right R -modules. By Lemma 2.14, we have

C⊥ = (Gen(C))⊥ = (Mod − R)⊥ , i.e., Baer Criterion. So every R -module M is C -lifting by Lemma 2.12 and
Corollary 2.13.

3. τ -lifting modules

Let τ = (T ,F) be a torsion theory. Then τ is uniquely determined by its associated class T of τ -torsion

modules T = {M ∈ Mod − R | τ (M) = M} where for an R -module M , τ (M) = {
∑

N | N ≤ M, N ∈ T }
and F is referred to as the τ -torsion free class and F = {M ∈ Mod − R | τ (M) = 0} . A module in T (or

F ) is called a τ -torsion module (or τ -torsionfree). Every torsion class T determines in every module M a

unique maximal T -submodule τ (M), the τ -torsion submodule of M , and τ (M/τ (M)) = 0, i.e., M/τ (M) is
F -module and τ -torsionfree.

In what follows τ will represent a hereditary torsion theory, that is, if τ = (T ,F) then the class T is
closed under taking submodules, direct sums, images and extensions by short exact sequences, equivalently the
class F is closed under taking submodules, direct products, injective hulls and isomorphic copies. Hence, the
class F is not, in general, closed under taking homomorphic images, if this happens to be true for a torsion
theory τ = (T ,F), it is called that τ is cohereditary.

Recall that module M is called τ -lifting if for any τ -torsion free submodule N of M , there exists a
direct summand K of M such that K ≤ N and N/K � M/K ([9] and [10]).

Note that
(1) Every lifting module is τ -lifting,

(2) If M is a τ -lifting module such that every proper submodule of M is contained in F , then then M is a
lifting module,
(3) If M is τ -torsion, then M is τ -lifting.

(4) Let Z denote the ring of integers and consider the Z -module M = N ⊕ (U/V ), where N = Z/8Z and the

submodules U = 2Z/8Z and V = 4Z/8Z of N . Let ¯̄0 and ¯̄2 denote the element of U/V . Let τ := (T ,F)

denoted the torsion theory on Mod-Z where F = {K ∈ Mod−Z|∀0 �= Y ⊆ K, ∃y ∈ Y such that for all positive

integer t we have 3ty �= 0} . If N1 = (1̄, ¯̄2)Z, N2 = (2̄, ¯̄0)Z, N3 = (2̄, ¯̄2)Z, N4 = (1̄, ¯̄0)Z, N5 = (4̄, ¯̄0)Z, N6 =

(4̄, ¯̄2)Z. Then N1, N2, N3 and N4 are τ -torsion free submodules of M , where N1, N4 are direct summands of
M , N2 � M, M = N1 +N3, N5 = N1 ∩N3, N5 � M and M = N1 ⊕N6 . It is easily checked that N3 is neither
small in M nor has any nonzero submodule which is direct summand of M . Hence M is not τ -lifting.

Let (L,≤, 0, 1) be a modular lattice, τ be a hereditary torsion theory and M an R -module. We write

Satτ (M) = {N ≤ M : M/N ∈ F}

by [14]. If a ∈ L , then b ∈ L is said to be a complement of a (in L), if a ∨ b = 1 and a ∧ b = 0. If for each

a ∈ L , there exists b ∈ L such that b ≤ a , b ∨ b′ = 1 and b ∧ b′ = 0 and a ∧ b is small in M holds then L is
said to be lifting- lattice. If Satτ (M) is lifting-lattice, we say M is a τ -lifting module.

Proposition 3.1 Satτ (M) is a complete upper-continuous modular lattice and if N is a τ -dense submodule of

M , then there is a canonical bijection between Satτ (M) and Satτ (N) given by A −→ A∩N where A ∈ Satτ (M)
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and this bijection is a lattice isomorphism.

Proof. A submodule N of M is τ -dense in M if and only if M/N is τ -torsion. (Satτ (M),≤, 0, 1) is
endowed the operations:

≤ : the inclusion operation of submodules of M ,

A ∧ B = A ∩ B , where A, B ∈ Satτ (M),

A ∨ B = Ã + B , where A, B ∈ Satτ (M) and Ã + B denotes the largest submodule of M satisfying

Ã + B/(A + B) ∈ T , equivalently Ã + B/(A + B) = τ (M/(A + B)).

1 = M and 0 = τ (M).

Hence the proof is clear from [14]. �

Proposition 3.2 Let M be an R -module. If τ (M) = 0 and τ (M/N) = M/N for every proper submodule N

of M , then M is indecomposable.

Proof. Clear. �

Corollary 3.3 Let M be a non indecomposable R -module. Then Satτ (M) contains elements other than 0
and 1 .
Proof. Clear from Example 1.1. �

Lemma 3.4 Let M be an R -module.
(1) M is τ -lifting if and only if every submodule M ′ of M can be written as M ′ = X ⊕ Y with X is a

summand of M and τ (Y ) = 0 .

(2) Every submodule of a τ -lifting module is τ -lifting.

Proof. Trivial. �

Recall that M is called τ -cotorsionfree if every proper submodule of M contains no τ -dense submodule.

Theorem 3.5 Let M be a τ -cotorsionfree R -module.
(1) Any τ -torsion submodule of M is small in M .

(2) If M is τ -lifting, then M is indecomposable if and only if M is holllow.

(3) If every proper submodule of M is τ -torsion, then M is indecomposable.

Proof. (1) Let N be a submodule of M with τ (N) = N . Let M = N + K for some submodule K ≤ M .

Then M/K ∼= N/(N ∩K). Since N is a τ -torsion submodule of M , N/N ∩K and so M/K is τ -torsion. But
M is τ -cotorsionfree, therefore M = K . Hence N is small in M .
(2) Assume that M is a τ -lifting module. Suppose that M is indecomposable. For N ≤ M , we have two
cases:
Case (i) If τ (M/N) = 0, then M/N ∈ F . Then M has a decomposition M = A ⊕ B such that A ≤ N and
N ∩ B � B . Since M is indecomposable, we have M = A or M = B . If M = A then M = N ; otherwise
M = B then N � M . Therefore M is hollow.
Case (ii) Let τ (M/N) = M1/N �= 0. Then τ (M/M1) = 0 and M/M1 ∈ F . Since M is a τ -lifting module, M
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has a decomposition M = A ⊕ B such that A ≤ M1 and M1 ∩ B � B . By assumption, M = A or M = B .
If M = A then M = M1 and τ (M/N) = M/N . By [8, Proposition 7.6], we have M = N . If M = B then
N � M . That is M is hollow. The converse is clear.
(3) Clear. �

Recall that M is called τ -semisimple if N ∈ Satτ (M) is a direct summand of M [14]. Clearly, if M is
τ -semisimple, then M is τ -lifting.

In [13] (or [8]) , M is called τ -complemented (or τ -direct) if for every submodule N of M there exists

a direct summand K of M such that K/N is τ -torsion.

Theorem 3.6 is clear from [13] and definitions.

Theorem 3.6 Let M be an R -module. Then the following are equivalent:
1. M is τ -semisimple.
2. M = τ (M) ⊕ P for some τ -torsion free submodule P .
3. M is τ -complemented.

Proposition 3.7 Let M be a τ -semisimple R -module. Then
(1) M = τ (M) ⊕ K for some submodule K of M .

(2) If τ is a cohereditary torsion theory, then Rad(M) ≤ τ (M) .

(3) For every τ -dense submodule N of M , i.e M/N ∈ T , M = τ (M) + N .

(4) If M is τ -cotorsion free, then Rad(M) ≤ τ (M) .

Proof. (1) Clear.

(2) Let L be a small submodule of M . By assumption, M/(L + τ (M)) = 0. By hypothesis, let M =

(L + τ (M)) ⊕ X for some submodule X of M . Thus L ≤ τ (M).

(3) Let N be a τ -dense submodule of M . As in the proof of (2), we can find a decomposition M =

(N + τ (M)) ⊕ Y for some submodule Y of M . It is easy to see that that Y is isomorphic to a submod-

ule of M/N . Since M/N is τ -torsion and Y is τ -torsion free, we have Y = 0.

(4) This is Theorem 3.5 (1). �

Let X be any class of modules. The class dX consists of all modules M such that, for every submodule
N of M , there exists a direct summand K of M such that N ≤ K and K/N is an X -module. Dually, d∗X
is defined to be the class of R - modules M such that each submodule N of M contains a direct summand K
of M such that N/K is an X -module. Properties of these classes are given in [2].

Definition 3.8 Let τ = (T ,F) a torsion theory and M be an R -module. We call M a d∗F -lifting module, if
every submodule A of M has a decomposition N = A⊕B such that A is a direct summand of M and B ∈ F
(see [4] for more general cases).

Examples 3.9 (i) Every simple module with respect to every τ = (T ,F) torsion theory is a d∗F -lifting module.

(ii) Let τ = (TZ,FZ) be a torsion theory on Mod-Z and MZ = ZZ . Let N = 2Z ≤ M . M has only two direct

summands which are (0) and M . Also every nonzero submodule of M is τ -torsion but, for any 0 �= N , M/N

is τ -torsionfree. If N has a decomposition N = A ⊕ B , we have N = A or N = B . It is a contradiction.
Hence MZ is not a d∗F -lifting module.
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Let R be a ring. Let S denote the class of simple R -modules. Then TS(M) is the usual socle of M and

is denoted simply by Soc(M).

Proposition 3.10 If M is a d∗F -lifting R -module, then M/TF (M) is semisimple.

Proof. Any submodule of M/TF (M) has the form N/TF (M) for some submodule N of M which con-

tains TF (M). Since M is a d∗F lifting module, the module N has a decomposition N = A ⊕ B such

that A ≤d M and B ∈ F . Let M = A ⊕ C for some submodule C of M . Then, M/TF (M) =

N/TF (M) ⊕ (C + TF (M))/TF (M). By [3, Theorem 9.6], M is a semisimple module. �

Proposition 3.11 Let τ = (T ,F) be a torsion theory such that S ⊆ F . Let M be a d∗F -lifting R -module.

Then TF (M) is an essential submodule of M .

Proof. Let N be any submodule of M with N ∩ TF (M) = 0. Then N embeds in M/TF (M). By Proposi-

tion 3.7, we have N ∈ S . By hypothesis, N ≤ TF (M). Hence N = 0. This is a contradiction. Thus TF (M)
is an essential submodule of M . �

Theorem 3.12 Let τ = (T ,F) be a torsion theory. Let M be a d∗F -lifting R -module. Then τ (M) is a
direct summand of M . In general, every τ -torsion submodule of M is a direct summand.

Proof. Let N be any submodule of M with τ (N) = N . Then N has a decomposition N = A ⊕ B such

that A is a direct summand of M and B ∈ F . Since τ (N) = N and B ∈ F , we have B = 0. Therefore
N = A is a direct summand of M . �

Corollary 3.13 Let τ = (T ,F) be a torsion theory such that S ⊆ F . Let M be a d∗F -lifting R -module.

Then τ (M) is a semisimple direct summand of M . In particular, τ (M) ≤ Soc(M) .

Theorem 3.14 Let τ = (T ,F) be a torsion theory and M be an R -module such that τ (M) = 0 . If M is a
τ -lifting module then M is a d∗F -lifting module.

Proof. Let N ≤ M . Since M is a τ -lifting module, by Lemma 3.4, N has a decomposition N = A ⊕ B

such that A is a direct summand of M and τ (B) = 0. Since F is closed under submodules, then B ∈ F .
Hence M is a d∗F lifting module. �

Theorem 3.15 Let τ = (T ,F) be a torsion theory and M be an R -module such that τ (M) = M . Then M

is a d∗F lifting module if and only if M is semisimple.

Proof. Let M be a module with τ (M) = M and M be a d∗F -lifting module. Let N ≤ M .Then N has a

decomposition N = A⊕B such that A is a direct summand of M and B ∈ F . Since τ (M) = M and B ∈ F ,

we have B = 0. Hence N = A is a direct summand of M . By [3, Theorem 9.6], M is semisimple. Converse
is clear. �
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Example 3.16 Let F be a field and R be the subring R =
(

F F
0 F

)
of all 3 by 3 matrices over F . Let M

denote right R -module R . Clearly, every module over R is lifting. With respect to the idempotent ideals:

X =
(

F F
0 0

)
and Y =

(
0 F
0 F

)

1. Let TX = {M ∈ Mod − R : MX = 0} . Then TX(M) =
(

0 F
0 F

)
. If M is a d∗F -lifting module, by

Corollary 3.13, then TX(M) is a direct summand of M . But TX(RR) is not a direct summand of M , so M is
not a d∗F -lifting module.

2. Let TY = {M ∈ Mod − R : MY = 0} . Then TY (M) = 0. Since M is a lifting module, then M is a
d∗F -lifting module by Theorem 3.15.

Let τ = (T ,F) be a torsion theory. In definition 3.8, we defined d∗F -lifting module with respect to the

d∗F class. Similarly, we can define d∗T -lifting module with respect to the d∗T class (see [4] for more generally

cases).

Definition 3.17 Let τ = (T ,F) a torsion theory and M be an R -module. We call M a d∗T -lifting module,
if every submodule A of M has a decomposition N = A ⊕ B such that A is a direct summand of M and
B ∈ T .

Examples 3.18 (i) Every semisimple module with respect to a τ = (T ,F) torsion theory is a d∗T -lifting
module.
(ii) Let τ = (TZ,FZ) be a torsion theory on Mod-Z and MZ = ZZ . Clearly, N ∈ TZ if and only if for all
0 �= n ∈ N there exists a 0 �= t ∈ Z such that nt = 0 . Hence, for any submodule A of M , M is a d∗T lifting
module since A = A ⊕ (0) .

Theorem 3.19 Let τ = (T ,F) be a torsion theory and M be an R -module such that τ (M) = 0 . Then M is
a d∗T lifting module if and only if M is semisimple.

Proof. Let M be a d∗T lifting module and τ (M) = 0. Let N ≤ M . Then N has a decomposition

N = A⊕B such that A is a direct summand of M and B ∈ T . Since B = τ (B) ≤ τ (M) = 0, we have N = A

is a direct summand of M . The converse is clear. �

Theorem 3.20 If M is a d∗T lifting R -module, then M/τ (M) is semisimple.

Proof. Let τ (M) ≤ N ≤ M . Since M is a d∗T -lifting module, N has a decomposition N = A ⊕ B

such that A is a direct summand of M and B ∈ T . Let M = A ⊕ C for some submodule C of M . Then
M/τ (M) = (A + τ (M))/τ (M) ⊕ (C + τ (M))/τ (M) by [3, Theorem 9.6]. �
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