

# Module classes and the lifting property

Muhammet Tamer Koşan

Dedicated to the memory of Cemal KOÇ

#### Abstract

Let R be a ring. A collection of R-modules containing the zero module and closed under isomorphisms will be denoted by  $\mathcal{X}$ . An R-module M is said to be  $\mathcal{X}$ -lifting if for every  $\mathcal{X}$ -submodule N of M there exists  $A \leq N$  such that  $M = A \oplus B$  and  $N \cap B$  is small in B [11]. In the present paper, we consider the question:

Can we characterize  $\mathcal{X}$ -lifting modules via objects of the class  $\mathcal{X}$ ?

Key Words: Lifting module, torsion theory.

## 1. Introduction

Throughout this work all rings will be associative with identity and modules will be unital right modules. Let R be a ring and M be an R-module. A submodule N of M is said to be a *small* in M, denoted by  $N \ll M$ , whenever  $L \leq M$  and M = N + L then M = L, and M is said to be a *lifting module* (or  $D_1$ -module) if for any submodule N of M there exists  $A \leq N$  such that  $M = A \oplus B$  and  $N \cap B \ll B$ .

By a class  $\mathcal{X}$  of R-modules we mean a collection of R-modules containing the zero module and closed under isomorphisms, i.e., any module isomorphic to some module in  $\mathcal{X}$  also belongs to  $\mathcal{X}$ . By a  $\mathcal{X}$ -module we mean any member of  $\mathcal{X}$ , and a submodule N of a module M is called  $\mathcal{X}$ -submodule of M if N is an  $\mathcal{X}$ -module. Doğruöz and Smith [5] introduced the notion of  $\mathcal{X}$ -extending modules (see also [6] and [7]). Dually, Koşan and Harmanci [11] introduced  $\mathcal{X}$ -lifting modules. M is said to be a  $\mathcal{X}$ -lifting module if for every  $\mathcal{X}$ -submodule Nof M there exists  $A \leq N$  such that  $M = A \oplus B$  and  $N \cap B \ll B$ .

**Example 1.1 (i)** Let  $\mathcal{X}$  be the class of all torsion  $\mathbb{Z}$ -modules. Then the  $\mathbb{Z}$ -module  $\mathbb{Z}$  is an  $\mathcal{X}$ -lifting module. (ii) Let  $\mathcal{X}$  be the class of all torsion free  $\mathbb{Z}$ -modules. The zero submodule is the only small submodule of  $\mathbb{Z}$ , and for any non-zero submodules N and K with  $N + K = \mathbb{Z}$ ,  $N \cap K$  is not a small submodule of  $\mathbb{Z}$  and so the  $\mathbb{Z}$ -module  $\mathbb{Z}$  is not an  $\mathcal{X}$ -lifting module.

(iii) Let  $\mathcal{X}$  denote the class of all finitely generated  $\mathbb{Z}$ -modules. Clearly,  $\mathbb{Q}$  and  $\mathbb{Q}/\mathbb{Z}$  are  $\mathcal{X}$ -lifting modules.

<sup>2000</sup> AMS Mathematics Subject Classification: 16D90, 16S90.

(iv) Let  $\mathcal{X}$  be the class of all torsion free  $\mathbb{Z}$ -modules and p any prime integer and  $M = (\mathbb{Z}/p\mathbb{Z}) \oplus \mathbb{Z}$ . It is clear that from (ii) and [11, Lemma 2.3], the  $\mathbb{Z}$ -module M is not  $\mathcal{X}$ -lifting.

(v) Let R be a ring and  $\mathcal{X}$  denote the class of all injective R-modules. Then every R-module M is  $\mathcal{X}$ -lifting. (vi) Let p be any prime integer and  $\mathcal{X}_1 = \mathcal{X}_2 = \{T \in Mod - \mathbb{Z} : pT = 0\}$  and  $M = (\mathbb{Z}/p\mathbb{Z}) \oplus (\mathbb{Z}/p^3\mathbb{Z})$ . Let  $M_1 = (\overline{1}, \overline{0})\mathbb{Z}$ ,  $N = (\overline{1}, \overline{p})\mathbb{Z}$ ,  $N_1 = (\overline{0}, \overline{p^2})\mathbb{Z}$ ,  $N = M_1 \oplus N_1$ . Then  $M_1$ ,  $N_1$  and  $N_2$  are all  $\mathcal{X}_1$  and  $\mathcal{X}_2$ submodules of M,  $M_1$  is a direct summand and  $N_1$  is small in M. By [11, Lemma 2.3], M is both  $\mathcal{X}_1$  and  $\mathcal{X}_1$ -lifting module.

Let  $\mathcal{X}$  and  $\mathcal{Y}$  be classes of modules. We write  $\mathcal{X} \leq \mathcal{Y}$  in case every object of  $\mathcal{X}$  is in  $\mathcal{Y}$ .

**Lemma 1.2** ([11, Lemma 2.5]) Let  $\mathcal{X}$  and  $\mathcal{Y}$  be classes of modules with  $\mathcal{X} \leq \mathcal{Y}$ . Then every  $\mathcal{Y}$ -lifting module is  $\mathcal{X}$ -lifting.

**Example 1.3** Let  $\mathcal{X} = \{X \in Mod - \mathbb{Z} : 2X = 0\}$  and  $\mathcal{Y} = \{Y \in Mod - \mathbb{Z} : 4Y = 0\}$  and let M be the  $\mathbb{Z}$ -module  $(\mathbb{Z}/2\mathbb{Z}) \oplus (\mathbb{Z}/8\mathbb{Z})$ . It is easy to see that  $\mathcal{X} \leq \mathcal{Y}$  and M is  $\mathcal{X}$ -lifting but is not an  $\mathcal{Y}$ -lifting module. Let n be a positive integer and let  $\mathcal{X}_i(1 \leq i \leq n)$  be classes of R-modules. Classes of R-modules can be combined in different ways to give other classes and we examine how lifting property behave under these constructions. Then  $\bigoplus_{i=1}^{n} \mathcal{X}_i$  is defined to be the class of R-modules M such that  $M = \bigoplus_{i=1}^{n} M_i$  is direct sum of  $\mathcal{X}_i$ -submodules  $M_i$   $(1 \leq i \leq n)$ .

**Lemma 1.4** ([11, Theorem 2.7]) With the above notation, an *R*-module *M* is  $(\bigoplus_{i=1}^{n} \mathcal{X}_i)$ -lifting if and only if *M* is  $\mathcal{X}_i$ -lifting for all  $1 \le i \le n$ .

**Example 1.5** Let M denote the  $\mathbb{Z}$ -module  $(\mathbb{Z}/2\mathbb{Z}) \oplus (\mathbb{Z}/8\mathbb{Z}) \oplus (\mathbb{Z}/3\mathbb{Z})$ . Let  $\mathcal{X}_1 = \{X \in Mod - \mathbb{Z} : 2X = 0\}$ ,  $\mathcal{X}_2 = \{X \in Mod - \mathbb{Z} : 3X = 0\}$ . Then M is  $\mathcal{X}_1$ ,  $\mathcal{X}_2$  and  $\mathcal{X}_1 \oplus \mathcal{X}_2$ -lifting.

In [11], a referee asked the following question: Can we characterize  $\mathcal{X}$ -lifting modules via objects of the class  $\mathcal{X}$ ? In this article, we will give some answers to this question.

The terminologies and notations of Anderson and Fuller [3], and Mohamed and Müller [12] will be freely used.

#### 2. The results

Recall that a projective module P is called *a projective cover* of a module M if there exists an epimorphism  $f: P \longrightarrow M$  with  $Ker(f) \ll M$ . A right R-module is said to be a *perfect* if M possesses a projective cover. So a ring R is called *perfect* if every right R-module is perfect.

Let  $\mathcal{P}$  be any class of perfect *R*-modules. Note that  $\mathcal{P}$  is closed under extensions. It is also easy to see that a module *M* is lifting if and only if *M* is Mod-*R*-lifting.

**Proposition 2.1** Let  $\mathcal{P}$  be any class of perfect *R*-modules. Then

(1) R is semisimple if and only if  $\mathcal{P} = \{M : M \text{ is a semisimple module }\}.$ 

(2) If R is semisimple, then M is lifting if and only if M is  $\mathcal{P}$ -lifting.

**Proof.** Clear.

Let  $T_{\mathcal{X}}(M)$  denote the sum of  $\mathcal{X}$ -submodules of M.

**Lemma 2.2** Let  $\mathcal{X}$  be any class of R-modules and M be an R-module.

(1) If M does not contain any non-zero  $\mathcal{X}$ -submodule, i.e.  $T_{\mathcal{X}}(M) = 0$ , then M is  $\mathcal{X}$ -lifting.

(2) Assume that  $\mathcal{X}$  is closed under taking homomorphic images and direct sums. If M is  $\mathcal{X}$ -lifting module then M is  $T_{\mathcal{X}}(M)$ -lifting.

**Proof.** (1) Obvious.

(2) Note that if  $\mathcal{X}$  is closed under direct sums and homomorphic images, then  $T_{\mathcal{X}}(M)$  belongs to  $\mathcal{X}$ . Hence if M is  $\mathcal{X}$ -lifting then M is  $T_{\mathcal{X}}(M)$ -lifting by Lemma 1.2.

### **Proposition 2.3** Let $\mathcal{X}$ be any class of R-modules and M be an R-module.

(1)  $T_{\mathcal{X}}(M) = \Sigma \{ T_{\mathcal{X}}(N) : N \text{ is a } \mathcal{X} \text{-submodule of } M \}.$ 

(2) Assume that  $\mathcal{X}$  is closed under taking homomorphic images and direct sums.

(a) For a homomorphism  $f: M \longrightarrow N$ ,  $f(T_{\mathcal{X}}(M)) \leq T_{\mathcal{X}}(N)$ .

(b) Let a module  $M = \bigoplus_{i \in I} M_i$  be a direct sum of modules  $M_i$  for all  $i \in I$ . Then  $T_{\mathcal{X}}(M) = \bigoplus_{i \in I} T_{\mathcal{X}}(M_i)$ .

**Proof.** (1) See [11, Lemma 2.18].

(2)(a) See [11, Lemma 2.19].

(2)(b) See [11, Corollary 2.20].

Let  $\mathcal{X}$  be a class of right *R*-modules and *M* a right *R*-module. According to [3], the class of all modules generated by  $\mathcal{X}$  is denoted by  $\text{Gen}(\mathcal{X})$ . We denote  $\text{Tr}_M(\mathcal{X})$  the trace of  $\mathcal{X}$  in *M* is defined by  $\text{Tr}_M(\mathcal{X}) = \sum \{\text{Im } h \mid h : K \to M \text{ for some } K \in \mathcal{X} \}.$ 

**Proposition 2.4** Let  $\mathcal{X}$  be any class of R-modules and M an R-module. (1) If  $\mathcal{X}$  is closed under taking homomorphic images then  $T_{\mathcal{X}}(M) = \operatorname{Tr}_{M}(\mathcal{X})$ . (2)  $\operatorname{Tr}_{M}(\mathcal{X}) = \operatorname{Tr}_{M}(\operatorname{Gen}(\mathcal{X}))$ .

**Proof.** Clear.

Let  $\mathcal{X}$  be the class of all torsion  $\mathbb{Z}$ -modules and M be the  $\mathbb{Z}$ -module  $\mathbb{Z}$ . Since the zero submodule of  $\mathbb{Z}$  is the only  $\mathcal{X}$ -submodule of M, i.e.  $T_{\mathcal{X}}(M) = 0$ . By Lemma 2.2, the module M is  $\mathcal{X}$ -lifting.

**Theorem 2.5** Assume that  $\mathcal{X}$  is closed under taking homomorphic images and direct sums. If an *R*-module M is  $\mathcal{X}$ -lifting then M is  $\operatorname{Tr}_M(\operatorname{Gen}(\mathcal{X}))$ -lifting.

**Proof.** By Lemma 1.2 and Propositions 2.3. and 2.4.

If  $\mathcal{X}$  is a class of modules such that  $\operatorname{Hom}_R(X, M) = 0$  for all  $X \in \mathcal{X}$  then we shall write  $\operatorname{Hom}_R(\mathcal{X}, M) = 0$ . 0. The class of all *R*-modules *M* with  $\operatorname{Ext}_R(\mathcal{X}, M) = 0$  will be denoted by  $\mathcal{X}^{\perp}$ . This is usually called the right *orthogonal complement* relative to the functor  $\operatorname{Ext}_R(-, -)$  of the class  $\mathcal{X}$ .

**Lemma 2.6** Let M be an R-module. If  $M \in \mathcal{X}^{\perp}$ , then  $T_{\mathcal{X}}(E(M)/M) = 0$ .

**Proof.** Assume that  $T_{\mathcal{X}}(E(M)/M) \neq 0$ . Then we have split exact sequence  $0 \to M \to U \to U/M \to 0$ , where  $U \leq E(M)$ ,  $M \leq U$  and  $U/M \in \mathcal{X}$ . This implies that M is essential in U, a contradiction.  $\Box$ 

**Proposition 2.7** Let  $\mathcal{X}$  be a class of R-modules and let M be a nonzero R-module. If  $M \in \mathcal{X}^{\perp}$ , then E(M)/M is an  $\mathcal{X}$ -lifting module.

**Proof.** By Lemmas 1.2 and 2.6.

Note that if  $\mathcal{X}$  is closed under taking homomorphic images, then the converse of Lemma 2.6 is true because  $M \in \mathcal{X}^{\perp}$  if and only if every X in  $\mathcal{X}$  is projective with respect to the exact sequence  $0 \to M \to E(M) \to E(M)/M \to 0$ . But we do not know the converse of Proposition 2.7 is true or not.

To find a positive answer, we may need an answer to the following question.

**Question** Let  $\mathcal{X}$  be any class of R-modules and M be an R-module. Assume that M is  $\mathcal{X}$ -lifting. Is  $T_{\mathcal{X}}(M) = 0$ ?

**Proposition 2.8** Let  $\mathcal{X}$  be a class of right R-modules and M be an R-module. If every nonzero cyclic singular module has a nonzero submodule in  $\mathcal{X}$ , then  $M \in \mathcal{X}^{\perp}$  if and only if M is injective.

**Proof.** Assume that every nonzero cyclic singular module has a nonzero submodule in  $\mathcal{X}$ . Then, for any nonzero singular module  $X, T_{\mathcal{X}}(X) \neq 0$ . Let  $M \in \mathcal{X}^{\perp}$ . If M is not injective, then E(M)/M is a nonzero singular module and  $T_{\mathcal{X}}(E(M)/M) = 0$  by Lemma 2.6. This is a contradiction. So M is injective. The converse is clear.

Let R be a ring and  $\mathcal{I}$  denote the class of all injective R-modules.

**Theorem 2.9** Let  $\mathcal{X}$  be a class of right *R*-modules and *M* be a right *R*-module. Assume that every nonzero cyclic singular module has a nonzero submodule in  $\mathcal{X}$ . If  $M \in \mathcal{X}^{\perp}$ , then the following cases hold.

- (1) M is an  $\mathcal{I}$ -lifting module.
- (2) E(M)/M is an  $\mathcal{X}$ -lifting module.

**Proof.** (1) By Proposition 2.8 and Example 1.1(v).(2) By Propositions 2.7 and 2.8.

When  $\mathcal{F}$  is the class of all flat right *R*-modules, then the modules of the class  $\mathcal{F}^{\perp}$  are called *cotorsion* modules ([15]).

**Lemma 2.10** Let R be a ring and  $(\mathcal{X}, \mathcal{X}^{\perp})$  a cotorsion theory. Then the following statements are equivalent: (1)  $\mathcal{X} = \text{Mod} \cdot R$ .

- (2) Every nonzero cyclic singular R-module has a nonzero cyclic submodule in  $\mathcal{X}$ .
- (3) Every nonzero cyclic singular R-module has a nonzero submodule in  $\mathcal{X}$ .
- (4) Every nonzero singular R-module has a nonzero submodule in  $\mathcal{X}$ .

**Proof.** 
$$(1) \Longrightarrow (2) \Longrightarrow (3) \Longrightarrow (4)$$
 Clear.  
 $(4) \Longrightarrow (1)$  By Proposition 2.8.

Now we have the following theorem as a result of Lemma 2.10.

**Theorem 2.11** Let R be a ring and  $(\mathcal{X}, \mathcal{X}^{\perp})$  be a cotorsion theory. If one of the following conditions satisfies, then any *R*-module is lifting if and only if any *R*-module is  $\mathcal{X}$ -lifting:

(1) Every nonzero cyclic singular R-module has a nonzero cyclic submodule in  $\mathcal{X}$ .

(2) Every nonzero cyclic singular R-module has a nonzero submodule in  $\mathcal{X}$ .

(3) Every nonzero singular R-module has a nonzero submodule in  $\mathcal{X}$ .

**Proof.** Clear.

**Lemma 2.12** Assume that  $\mathcal{X}$  is closed under taking homomorphic images and M is an R-module. If  $\mathcal{I} \subset \mathcal{X}$ , then  $M \in \mathcal{X}^{\perp}$  if and only if M is an injective module.

 $\Rightarrow$  Let  $M \in \mathcal{X}^{\perp}$ . By Lemma 2.6, we have  $T_{\mathcal{X}}(E(M)/M) = 0$ . Since  $\mathcal{I} \subset \mathcal{X}$  and  $\mathcal{X}$  is closed under Proof. homomorphic images, then  $T_{\mathcal{X}}(E(M)/M) = E(M)/M$ , i.e., M = E(M) is injective.  $:\Leftarrow:$  Clear. 

Now we have the following corollary as a result of Theorem 2.9 and Lemma 2.12.

**Corollary 2.13** Let  $\mathcal{X}$  be a class of R-modules closed under taking homomorphic images,  $\mathcal{I} \subset \mathcal{X}$  and M be an R-module. If  $M \in \mathcal{X}^{\perp}$ , then the following cases hold.

- (1) M is an  $\mathcal{I}$ -lifting module.
- (2) M is a  $T_{\mathcal{I}}(M)$ -lifting module.
- (3) M is a  $Tr_M(\mathcal{I})$ -lifting module.
- (4) M is a  $Tr_M(Gen(\mathcal{I}))$ -lifting module.
- (5) E(M)/M is an  $\mathcal{X}$ -lifting module.
- (6) E(M)/M is an  $\mathcal{I}$ -lifting module.

#### **Lemma 2.14** Let R be a ring.

(1) Assume that  $\mathcal{X}$  is a class of R-modules which is closed under taking homomorphic images. Then  $\mathcal{X}^{\perp} =$  $(\operatorname{Gen}(\mathcal{X}))^{\perp}.$ 

(2) Let  $\mathcal{C}$  be the class of all cyclic *R*-modules. Then  $\mathcal{C}^{\perp} = (\operatorname{Gen}(\mathcal{C}))^{\perp} = (\operatorname{Mod} - R)^{\perp}$ .

(1) Let M be an R-module. By Proposition 2.4 and Lemma 2.6, we can obtain that  $T_{\mathcal{X}}(M) =$ Proof.  $\operatorname{Tr}_M(\mathcal{X}) = \operatorname{Tr}_M(\operatorname{Gen}(\mathcal{X})) = T_{\operatorname{Gen}(\mathcal{X})}(M)$ . This implies that  $M \in \mathcal{X}^{\perp}$  if and only if  $T_{\mathcal{X}}(E(M)/M) = 0$  if and only if  $T_{\text{Gen}(\mathcal{X})}(E(M)/M) = 0$  if and only if  $M \in (\text{Gen}(\mathcal{X}))^{\perp}$  by Lemma 2.6. (2) is clear from (1). 

**Example 2.15** Let R be a ring and  $\mathcal{I}$  denote the class of all injective R-modules. Then every R-module M

is  $\mathcal{I}$ -lifting by Example 1.1(v). Let  $\mathcal{C}$  be the class of all cyclic right R-modules. By Lemma 2.14, we have  $\mathcal{C}^{\perp} = (\operatorname{Gen}(\mathcal{C}))^{\perp} = (\operatorname{Mod} - R)^{\perp}$ , i.e., Baer Criterion. So every R-module M is  $\mathcal{C}$ -lifting by Lemma 2.12 and Corollary 2.13.

### 3. $\tau$ -lifting modules

Let  $\tau = (\mathcal{T}, \mathcal{F})$  be a torsion theory. Then  $\tau$  is uniquely determined by its associated class  $\mathcal{T}$  of  $\tau$ -torsion modules  $\mathcal{T} = \{M \in \text{Mod} - R \mid \tau(M) = M\}$  where for an R-module M,  $\tau(M) = \{\sum N \mid N \leq M, N \in \mathcal{T}\}$ and  $\mathcal{F}$  is referred to as the  $\tau$ -torsion free class and  $\mathcal{F} = \{M \in \text{Mod} - R \mid \tau(M) = 0\}$ . A module in  $\mathcal{T}$  (or  $\mathcal{F}$ ) is called a  $\tau$ -torsion module (or  $\tau$ -torsionfree). Every torsion class  $\mathcal{T}$  determines in every module M a unique maximal  $\mathcal{T}$ -submodule  $\tau(M)$ , the  $\tau$ -torsion submodule of M, and  $\tau(M/\tau(M)) = 0$ , i.e.,  $M/\tau(M)$  is  $\mathcal{F}$ -module and  $\tau$ -torsionfree.

In what follows  $\tau$  will represent a hereditary torsion theory, that is, if  $\tau = (\mathcal{T}, \mathcal{F})$  then the class  $\mathcal{T}$  is closed under taking submodules, direct sums, images and extensions by short exact sequences, equivalently the class  $\mathcal{F}$  is closed under taking submodules, direct products, injective hulls and isomorphic copies. Hence, the class  $\mathcal{F}$  is not, in general, closed under taking homomorphic images, if this happens to be true for a torsion theory  $\tau = (\mathcal{T}, \mathcal{F})$ , it is called that  $\tau$  is *cohereditary*.

Recall that module M is called  $\tau$ -lifting if for any  $\tau$ -torsion free submodule N of M, there exists a direct summand K of M such that  $K \leq N$  and  $N/K \ll M/K$  ([9] and [10]).

Note that

(1) Every lifting module is  $\tau$ -lifting,

(2) If M is a  $\tau$ -lifting module such that every proper submodule of M is contained in  $\mathcal{F}$ , then then M is a lifting module,

(3) If M is  $\tau$ -torsion, then M is  $\tau$ -lifting.

(4) Let  $\mathbb{Z}$  denote the ring of integers and consider the  $\mathbb{Z}$ -module  $M = N \oplus (U/V)$ , where  $N = \mathbb{Z}/8\mathbb{Z}$  and the submodules  $U = 2\mathbb{Z}/8\mathbb{Z}$  and  $V = 4\mathbb{Z}/8\mathbb{Z}$  of N. Let  $\overline{0}$  and  $\overline{2}$  denote the element of U/V. Let  $\tau := (\mathcal{T}, \mathcal{F})$  denoted the torsion theory on Mod- $\mathbb{Z}$  where  $\mathcal{F} = \{K \in Mod - \mathbb{Z} | \forall 0 \neq Y \subseteq K, \exists y \in Y \text{ such that for all positive integer } t \text{ we have } 3^t y \neq 0\}$ . If  $N_1 = (\overline{1}, \overline{2})\mathbb{Z}, N_2 = (\overline{2}, \overline{0})\mathbb{Z}, N_3 = (\overline{2}, \overline{2})\mathbb{Z}, N_4 = (\overline{1}, \overline{0})\mathbb{Z}, N_5 = (\overline{4}, \overline{0})\mathbb{Z}, N_6 = (\overline{4}, \overline{2})\mathbb{Z}$ . Then  $N_1, N_2, N_3$  and  $N_4$  are  $\tau$ -torsion free submodules of M, where  $N_1, N_4$  are direct summands of M,  $N_2 \ll M, M = N_1 + N_3, N_5 = N_1 \cap N_3, N_5 \ll M$  and  $M = N_1 \oplus N_6$ . It is easily checked that  $N_3$  is neither small in M nor has any nonzero submodule which is direct summand of M. Hence M is not  $\tau$ -lifting.

Let  $(\mathcal{L}, \leq, 0, 1)$  be a modular lattice,  $\tau$  be a hereditary torsion theory and M an R-module. We write

$$Sat_{\tau}(M) = \{ N \le M : M/N \in \mathcal{F} \}$$

by [14]. If  $a \in \mathcal{L}$ , then  $b \in \mathcal{L}$  is said to be a *complement* of a (in  $\mathcal{L}$ ), if  $a \vee b = 1$  and  $a \wedge b = 0$ . If for each  $a \in \mathcal{L}$ , there exists  $b \in \mathcal{L}$  such that  $b \leq a$ ,  $b \vee b' = 1$  and  $b \wedge b' = 0$  and  $a \wedge b$  is small in M holds then  $\mathcal{L}$  is said to be *lifting-lattice*. If  $Sat_{\tau}(M)$  is lifting-lattice, we say M is a  $\tau$ -*lifting module*.

**Proposition 3.1** Sat<sub> $\tau$ </sub>(M) is a complete upper-continuous modular lattice and if N is a  $\tau$ -dense submodule of M, then there is a canonical bijection between Sat<sub> $\tau$ </sub>(M) and Sat<sub> $\tau$ </sub>(N) given by  $A \longrightarrow A \cap N$  where  $A \in Sat_{\tau}(M)$ 

and this bijection is a lattice isomorphism.

**Proof.** A submodule N of M is  $\tau$ -dense in M if and only if M/N is  $\tau$ -torsion.  $(Sat_{\tau}(M), \leq, 0, 1)$  is endowed the operations:

 $\leq$ : the inclusion operation of submodules of M,

 $A \wedge B = A \cap B$ , where  $A, B \in Sat_{\tau}(M)$ ,

 $A \lor B = \widetilde{A+B}$ , where  $A, B \in Sat_{\tau}(M)$  and  $\widetilde{A+B}$  denotes the largest submodule of M satisfying  $\widetilde{A+B}/(A+B) \in \mathcal{T}$ , equivalently  $\widetilde{A+B}/(A+B) = \tau(M/(A+B))$ .

1 = M and  $0 = \tau(M)$ .

Hence the proof is clear from [14].

**Proposition 3.2** Let M be an R-module. If  $\tau(M) = 0$  and  $\tau(M/N) = M/N$  for every proper submodule N of M, then M is indecomposable.

**Proof.** Clear.

**Corollary 3.3** Let M be a non indecomposable R-module. Then  $Sat_{\tau}(M)$  contains elements other than 0 and 1.

**Proof.** Clear from Example 1.1.

**Lemma 3.4** Let M be an R-module.

(1) M is  $\tau$ -lifting if and only if every submodule M' of M can be written as  $M' = X \oplus Y$  with X is a summand of M and  $\tau(Y) = 0$ .

(2) Every submodule of a  $\tau$ -lifting module is  $\tau$ -lifting.

**Proof.** Trivial.

Recall that M is called  $\tau$ -cotorsionfree if every proper submodule of M contains no  $\tau$ -dense submodule. **Theorem 3.5** Let M be a  $\tau$ -cotorsionfree R-module.

(1) Any  $\tau$ -torsion submodule of M is small in M.

(2) If M is  $\tau$ -lifting, then M is indecomposable if and only if M is hollow.

(3) If every proper submodule of M is  $\tau$ -torsion, then M is indecomposable.

**Proof.** (1) Let N be a submodule of M with  $\tau(N) = N$ . Let M = N + K for some submodule  $K \leq M$ . Then  $M/K \cong N/(N \cap K)$ . Since N is a  $\tau$ -torsion submodule of M,  $N/N \cap K$  and so M/K is  $\tau$ -torsion. But M is  $\tau$ -cotorsionfree, therefore M = K. Hence N is small in M.

(2) Assume that M is a  $\tau$ -lifting module. Suppose that M is indecomposable. For  $N \leq M$ , we have two cases:

Case (i) If  $\tau(M/N) = 0$ , then  $M/N \in \mathcal{F}$ . Then M has a decomposition  $M = A \oplus B$  such that  $A \leq N$  and  $N \cap B \ll B$ . Since M is indecomposable, we have M = A or M = B. If M = A then M = N; otherwise M = B then  $N \ll M$ . Therefore M is hollow.

Case (ii) Let  $\tau(M/N) = M_1/N \neq 0$ . Then  $\tau(M/M_1) = 0$  and  $M/M_1 \in \mathcal{F}$ . Since M is a  $\tau$ -lifting module, M

385

has a decomposition  $M = A \oplus B$  such that  $A \leq M_1$  and  $M_1 \cap B \ll B$ . By assumption, M = A or M = B. If M = A then  $M = M_1$  and  $\tau(M/N) = M/N$ . By [8, Proposition 7.6], we have M = N. If M = B then  $N \ll M$ . That is M is hollow. The converse is clear. 

(3) Clear.

Recall that M is called  $\tau$ -semisimple if  $N \in Sat_{\tau}(M)$  is a direct summand of M [14]. Clearly, if M is  $\tau$ -semisimple, then M is  $\tau$ -lifting.

In [13] (or [8]), M is called  $\tau$ -complemented (or  $\tau$ -direct) if for every submodule N of M there exists a direct summand K of M such that K/N is  $\tau$ -torsion.

Theorem 3.6 is clear from [13] and definitions.

**Theorem 3.6** Let M be an R-module. Then the following are equivalent:

1. M is  $\tau$ -semisimple.

2.  $M = \tau(M) \oplus P$  for some  $\tau$ -torsion free submodule P.

3. M is  $\tau$ -complemented.

**Proposition 3.7** Let M be a  $\tau$ -semisimple R-module. Then

- (1)  $M = \tau(M) \oplus K$  for some submodule K of M.
- (2) If  $\tau$  is a cohereditary torsion theory, then  $Rad(M) \leq \tau(M)$ .
- (3) For every  $\tau$ -dense submodule N of M, i.e  $M/N \in \mathcal{T}$ ,  $M = \tau(M) + N$ .
- (4) If M is  $\tau$ -cotorsion free, then  $Rad(M) < \tau(M)$ .

#### **Proof.** (1) Clear.

(2) Let L be a small submodule of M. By assumption,  $M/(L + \tau(M)) = 0$ . By hypothesis, let M = $(L + \tau(M)) \oplus X$  for some submodule X of M. Thus  $L \leq \tau(M)$ .

(3) Let N be a  $\tau$ -dense submodule of M. As in the proof of (2), we can find a decomposition M = $(N + \tau(M)) \oplus Y$  for some submodule Y of M. It is easy to see that that Y is isomorphic to a submodule of M/N. Since M/N is  $\tau$ -torsion and Y is  $\tau$ -torsion free, we have Y = 0. (4) This is Theorem 3.5(1). 

Let  $\mathcal{X}$  be any class of modules. The class  $d\mathcal{X}$  consists of all modules M such that, for every submodule N of M, there exists a direct summand K of M such that  $N \leq K$  and K/N is an  $\mathcal{X}$ -module. Dually,  $d^*\mathcal{X}$ is defined to be the class of R-modules M such that each submodule N of M contains a direct summand Kof M such that N/K is an  $\mathcal{X}$ -module. Properties of these classes are given in [2].

**Definition 3.8** Let  $\tau = (\mathcal{T}, \mathcal{F})$  a torsion theory and M be an R-module. We call M a d\*F-lifting module, if every submodule A of M has a decomposition  $N = A \oplus B$  such that A is a direct summand of M and  $B \in \mathcal{F}$ (see [4] for more general cases).

**Examples 3.9 (i)** Every simple module with respect to every  $\tau = (\mathcal{T}, \mathcal{F})$  torsion theory is a  $d^*\mathcal{F}$ -lifting module. (ii) Let  $\tau = (\mathcal{T}_{\mathbb{Z}}, \mathcal{F}_{\mathbb{Z}})$  be a torsion theory on Mod- $\mathbb{Z}$  and  $M_{\mathbb{Z}} = \mathbb{Z}_{\mathbb{Z}}$ . Let  $N = 2\mathbb{Z} \leq M$ . M has only two direct summands which are (0) and M. Also every nonzero submodule of M is  $\tau$ -torsion but, for any  $0 \neq N$ , M/Nis  $\tau$ -torsionfree. If N has a decomposition  $N = A \oplus B$ , we have N = A or N = B. It is a contradiction. Hence  $M_{\mathbb{Z}}$  is not a  $d^*\mathcal{F}$ -lifting module.

Let R be a ring. Let S denote the class of simple R-modules. Then  $T_{\mathcal{S}}(M)$  is the usual socle of M and is denoted simply by Soc(M).

### **Proposition 3.10** If M is a $d^*\mathcal{F}$ -lifting R-module, then $M/T_{\mathcal{F}}(M)$ is semisimple.

**Proof.** Any submodule of  $M/T_{\mathcal{F}}(M)$  has the form  $N/T_{\mathcal{F}}(M)$  for some submodule N of M which contains  $T_{\mathcal{F}}(M)$ . Since M is a  $d^*\mathcal{F}$  lifting module, the module N has a decomposition  $N = A \oplus B$  such that  $A \leq_d M$  and  $B \in \mathcal{F}$ . Let  $M = A \oplus C$  for some submodule C of M. Then,  $M/T_{\mathcal{F}}(M) = N/T_{\mathcal{F}}(M) \oplus (C + T_{\mathcal{F}}(M))/T_{\mathcal{F}}(M)$ . By [3, Theorem 9.6], M is a semisimple module.

**Proposition 3.11** Let  $\tau = (\mathcal{T}, \mathcal{F})$  be a torsion theory such that  $\mathcal{S} \subseteq \mathcal{F}$ . Let M be a  $d^*\mathcal{F}$ -lifting R-module. Then  $T_{\mathcal{F}}(M)$  is an essential submodule of M.

**Proof.** Let N be any submodule of M with  $N \cap T_{\mathcal{F}}(M) = 0$ . Then N embeds in  $M/T_{\mathcal{F}}(M)$ . By Proposition 3.7, we have  $N \in \mathcal{S}$ . By hypothesis,  $N \leq T_{\mathcal{F}}(M)$ . Hence N = 0. This is a contradiction. Thus  $T_{\mathcal{F}}(M)$  is an essential submodule of M.

**Theorem 3.12** Let  $\tau = (\mathcal{T}, \mathcal{F})$  be a torsion theory. Let M be a  $d^*\mathcal{F}$ -lifting R-module. Then  $\tau(M)$  is a direct summand of M. In general, every  $\tau$ -torsion submodule of M is a direct summand.

**Proof.** Let N be any submodule of M with  $\tau(N) = N$ . Then N has a decomposition  $N = A \oplus B$  such that A is a direct summand of M and  $B \in \mathcal{F}$ . Since  $\tau(N) = N$  and  $B \in \mathcal{F}$ , we have B = 0. Therefore N = A is a direct summand of M.

**Corollary 3.13** Let  $\tau = (\mathcal{T}, \mathcal{F})$  be a torsion theory such that  $\mathcal{S} \subseteq \mathcal{F}$ . Let M be a  $d^*\mathcal{F}$ -lifting R-module. Then  $\tau(M)$  is a semisimple direct summand of M. In particular,  $\tau(M) \leq Soc(M)$ .

**Theorem 3.14** Let  $\tau = (\mathcal{T}, \mathcal{F})$  be a torsion theory and M be an R-module such that  $\tau(M) = 0$ . If M is a  $\tau$ -lifting module then M is a  $d^*\mathcal{F}$ -lifting module.

**Proof.** Let  $N \leq M$ . Since M is a  $\tau$ -lifting module, by Lemma 3.4, N has a decomposition  $N = A \oplus B$  such that A is a direct summand of M and  $\tau(B) = 0$ . Since  $\mathcal{F}$  is closed under submodules, then  $B \in \mathcal{F}$ . Hence M is a  $d^*\mathcal{F}$  lifting module.

**Theorem 3.15** Let  $\tau = (\mathcal{T}, \mathcal{F})$  be a torsion theory and M be an R-module such that  $\tau(M) = M$ . Then M is a  $d^*\mathcal{F}$  lifting module if and only if M is semisimple.

**Proof.** Let M be a module with  $\tau(M) = M$  and M be a  $d^*\mathcal{F}$ -lifting module. Let  $N \leq M$ . Then N has a decomposition  $N = A \oplus B$  such that A is a direct summand of M and  $B \in \mathcal{F}$ . Since  $\tau(M) = M$  and  $B \in \mathcal{F}$ , we have B = 0. Hence N = A is a direct summand of M. By [3, Theorem 9.6], M is semisimple. Converse is clear.

**Example 3.16** Let F be a field and R be the subring  $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$  of all 3 by 3 matrices over F. Let M denote right R-module R. Clearly, every module over R is lifting. With respect to the idempotent ideals:

$$X = \left( \begin{array}{cc} F & F \\ 0 & 0 \end{array} \right) \text{ and } Y = \left( \begin{array}{cc} 0 & F \\ 0 & F \end{array} \right)$$

**1.** Let  $\mathcal{T}_X = \{M \in Mod - R : MX = 0\}$ . Then  $\mathcal{T}_X(M) = \begin{pmatrix} 0 & F \\ 0 & F \end{pmatrix}$ . If M is a  $d^*\mathcal{F}$ -lifting module, by Corollary 3.13, then  $\mathcal{T}_X(M)$  is a direct summand of M. But  $\mathcal{T}_X(R_R)$  is not a direct summand of M, so M is not a  $d^*\mathcal{F}$ -lifting module.

**2.** Let  $\mathcal{T}_Y = \{M \in Mod - R : MY = 0\}$ . Then  $\mathcal{T}_Y(M) = 0$ . Since M is a lifting module, then M is a  $d^*\mathcal{F}$ -lifting module by Theorem 3.15.

Let  $\tau = (\mathcal{T}, \mathcal{F})$  be a torsion theory. In definition 3.8, we defined  $d^*\mathcal{F}$ -lifting module with respect to the  $d^*\mathcal{F}$  class. Similarly, we can define  $d^*\mathcal{T}$ -lifting module with respect to the  $d^*\mathcal{T}$  class (see [4] for more generally cases).

**Definition 3.17** Let  $\tau = (\mathcal{T}, \mathcal{F})$  a torsion theory and M be an R-module. We call M a  $d^*T$ -lifting module, if every submodule A of M has a decomposition  $N = A \oplus B$  such that A is a direct summand of M and  $B \in \mathcal{T}$ .

**Examples 3.18** (i) Every semisimple module with respect to a  $\tau = (\mathcal{T}, \mathcal{F})$  torsion theory is a  $d^*\mathcal{T}$ -lifting module.

(ii) Let  $\tau = (T_{\mathbb{Z}}, \mathcal{F}_{\mathbb{Z}})$  be a torsion theory on Mod- $\mathbb{Z}$  and  $M_{\mathbb{Z}} = \mathbb{Z}_{\mathbb{Z}}$ . Clearly,  $N \in T_{\mathbb{Z}}$  if and only if for all  $0 \neq n \in N$  there exists a  $0 \neq t \in \mathbb{Z}$  such that nt = 0. Hence, for any submodule A of M, M is a  $d^*\mathcal{T}$  lifting module since  $A = A \oplus (0)$ .

**Theorem 3.19** Let  $\tau = (\mathcal{T}, \mathcal{F})$  be a torsion theory and M be an R-module such that  $\tau(M) = 0$ . Then M is a  $d^*\mathcal{T}$  lifting module if and only if M is semisimple.

**Proof.** Let M be a  $d^*\mathcal{T}$  lifting module and  $\tau(M) = 0$ . Let  $N \leq M$ . Then N has a decomposition  $N = A \oplus B$  such that A is a direct summand of M and  $B \in \mathcal{T}$ . Since  $B = \tau(B) \leq \tau(M) = 0$ , we have N = A is a direct summand of M. The converse is clear.  $\Box$ 

## **Theorem 3.20** If M is a $d^*T$ lifting R-module, then $M/\tau(M)$ is semisimple.

**Proof.** Let  $\tau(M) \leq N \leq M$ . Since M is a  $d^*\mathcal{T}$ -lifting module, N has a decomposition  $N = A \oplus B$  such that A is a direct summand of M and  $B \in \mathcal{T}$ . Let  $M = A \oplus C$  for some submodule C of M. Then  $M/\tau(M) = (A + \tau(M))/\tau(M) \oplus (C + \tau(M))/\tau(M)$  by [3, Theorem 9.6].

#### Acknowledgments

The authors thank the referee for his/her very careful reading of the manuscript and very many suggestions that improved the article.

#### References

- [1] Alkan, M.: On  $\tau$ -lifting modules and  $\tau$ -semiperfect modules. Turkish J. Math. 33, 117-130 (2009).
- [2] Al-Khazzi, I, Smith, P.F.: Classes of modules with many direct summands. J. Aust. Math. Soc., Ser. A. 59(1), 8-19 (1995).
- [3] Anderson, F.W., Fuller, K.R.: Rings and Categories of Modules. Springer-Verlag, New York 1974.
- [4] Crivei, S.: Relatively lifting modules. Algebra Colloq., to appear.
- [5] Dogruoz, S., Smith, P.F.: Modules which are extending relative to module classes. Comm. Algebra, 26(6), 1699-1721 (1998).
- [6] Dogruoz, S., Smith, P.F.: Quasi-continuous modules relative to module classes. Vietnam J. Math. 27(3), 241-251 (1999).
- [7] Dogruoz, S., Smith, P.F.: Modules which are weak extending relative to module classes. Acta Math. Hung. 87, 1-10 (2000).
- [8] Golan, J.S.: Torsion Theories. Pitmann Mon.and Surveys in Pure and Appl.Math. 29, 1986.
- [9] Koşan, T., Harmanci, A.: Modules supplemented relative to a torsion theory. Turkish J. Math. 28(2), 177-184 (2004).
- [10] Koşan, M.T., Harmanci, A.: Decompositions of modules supplemented relative to a torsion theory. International J. Math. 16(1), 43-52 (2005).
- [11] Koşan, M.T., Harmanci, A.: Modules which are lifting relative to module classes. Kyungpook J. Math. 48(1), 63-71 (2008).
- [12] Mohammed, S.H., Müller, B.J.: Continous and Discrete Modules. London Math. Soc., LN 147, Cambridge Univ.Press, 1990.
- [13] Smith, P.F., Viola-Prioli, A.M., Viola-Prioli, J.: Modules complemented with respect to a torsion theory. Comm. Algebra 25, 1307-1326 (1997).
- [14] Stentröm, B.: Rings of quotients, Springer, Berlin, 1975.
- [15] Xu, J.: Flat covers of modules, Lecture Notes in Math., Springer, Berlin, 1996.

Received: 30.09.2009

Muhammet Tamer KOŞAN Department of Mathematics, Gebze Institute of Technology Çayırova Campus 41400 Gebze, Kocaeli-TURKEY e-mail: mtkosan@gyte.edu.tr