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Pseudo PQ-injective modules

Zhanmin Zhu

Abstract

A module Mg is called Pseudo PQ-injective (or PPQ-injective for short) if every monomorphism from a
principal submodule of M to M extends to an endomorphism of M . Some characterizations and properties
of this class of modules are investigated, PPQ-injective modules with some additional conditions are studied,

semisimple artinian rings are characterized by PPQ-injective modules.

Key Words: PPQ- injective modules; Endomorphism rings; Strongly Kasch modules; semisimple artinian

rings; perfect rings.

1. Introduction

Throughout R is an associative ring with identity and all modules are unitary. Following [6], a right
R-module M is called principally quasi-injective (or PQ-injective for short) if every homomorphism from a
principal submodule of M to M extends to an endomorphism of M, or equivalently, 1y;(rg(m)) = Sm for
every m € M, where S = End(Mg). In this paper, we generalized the concept of PQ-injective modules to
PPQ-injective modules and give some interesting results on these modules.

As usual, we denote the Jacobson radical of a ring R by J(R) and denote the injective hull of a module
M by E(M). Let M be aright R-module, then we denote S = End(Mg). Let X C M, Y C M and AC S,
then we write rp(X) ={r e R|ar =0, forall z € X}, 15(Y) ={s € S| sy =0, forall y € Y}, and
ry(A)={me M|sm=0,forall s A}.

2. Pseudo PQ-injective modules
We start with the following definition.

Definition 1 Let R be a ring. A right R-module M is called Pseudo PQ-injective (or PPQ-injective for

short) if every monomorphism from a principal submodule of M to M extends to an endomorphism of M .
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Theorem 2 The following conditions are equivalent for a module Mg .

(1) M is PPQ-injective.

(2) rr(m) =rgr(n),m,n, in M, implies that Sm = Sn.

3)If me M and o, : mR — M are monic, then there exists s € S such that o = s3.
Proof. (1) = (2). If rr(m) = rr(n),m,n in M, then the mapping f : mR — M; mr — nr is a
monomorphism. Since M is PPQ-injective, there exists s € S such that s extends f, then n = f(m) = sm
and so Sn C Sm. Similarly, Sm C Sn, so Sm = Sn.

(2) = (3). Since a, 8 are monic, we have rr(a(m)) =rgr(8(m)). By (2), Sa(m) = SB(m) which shows
that Sa = S3, and so there exists s € S such that o = sg.

(3) = (1). Take f: mR — M to be the inclusion mapping in (3). O

Example 3 Let M be one of the following two examples of Pseudo-injective modules which are not quasi-
injective: either the Hallet’s example or the Teply’s example (see [4, p.364]). Since M has five submodules 0,
M, N1, Ny and Ny @ Ny which are all cyclic, it follows that M is PPQ-injective but not PQ-injective.

Let M be a right R-module. Following [6], we write W(S) = {w € S | ker(w) C°** M}. Note that
W(S) is an ideal of S. Recall that a ring R is called semipotent [7] if every right ideal of R not contained
in J(R) contains a nonzero idempotent. In order to facilitate, we call a module Mg a principal annihilator
module if for every principal submodule K of Mg, there exists a subset A of End(Mpg) such that K =rp(A).
Clearly, Mp is a principal annihilator module if and only if ry;(1s(K)) = K for every principal submodule K
of Mg.

Theorem 4 Let Mgr be PPQ -injective. Then

(1) J(S) S W(S).
(2) If S is also semipotent, then J(S) = W (S).
(3) If mR C M is simple, then Sm is simple.
(4) Soc(Mp) C Soc(sM).
(5) If Mg is also a principal annihilator module, then Soc(Mp) = Soc(sM).
Proof. (1). Let a € J(S). If a ¢ W(S), then ker(a) N K =0 for some 0 # K < Mp. Take k € K such
that ak # 0, then rgr(k) = rr(ak). Since My is PPQ-injective, Sk = Sak. Write k = bak, where b € S, then
(1 —ba)k =0, and so k =0, a contradiction. Therefore, J(S) C W(S).

(2). By (1), we need only to prove that W (S) C J(S). If not, then W (S) contains a nonzero idempotent
e because S is semipotent. But Ker(e) = (1 —e)M is not essential in Mp, a contradiction.

(3). Let mR C M be simple. Then rg(am) = rgr(m) for each a € S such that am # 0, so the
PPQ-injectivity of Mg implies that S(am) = Sm. Which shows that Sm is simple.

(4). Follows from (3).

(5). Suppose that Mp is a principal annihilator module. If Sm is simple, then 1g(mb) = 1g(m) for each
b € R such that mb # 0, and hence mbR = mR. It shows that mR is also simple, so Soc(sM) C Soc(Mpg),
and whence Soc(gM) = Soc(Mp) by (4). O
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Recall that a ring R is called left Kasch [7] if every simple left R-module embeds in gR, equivalently,
rr(T) # 0 for every maximal left ideal T' of R. The concept of left Kasch rings were generalized to modules
in paper [1]. Following [1], a module pM is said to be Kasch provided that every simple module in o[M]
embeds in M, where o[M] is the category consisting of all M -subgenerated left R-modules. Kasch modules
have studied by series of authors, see [1, 6, 5]. In paper [12], a module grM is called strongly Kasch if every
simple left R-module embeds in M. It is easy to see that pM is strongly Kasch if and only if rp(T") # 0 for
every maximal left ideal T' of R. And we also recall that a module M is called Cy [7, p.9] if every submodule
of M that is isomorphic to a direct summand of M is itself a direct summand of M. Cs modules are also
called direct injective modules [8, p.368 |. Following [11], a module M is called GC5 if every submodule of M
that is isomorphic to M is itself a direct summand of M . Clearly, Cs modules are GCj.

Proposition 5  Let M be a right R-module. Consider the following conditions:
(1) S is left Kasch.
(2) sM is strongly Kasch.
(3) Mg is Cs.
(4) Mg is GCs.
(5) W(S) € J(5).

Then we always have (1) = (2) = (3) = (4) = (5).
Proof. (1) = (2). Let K be any maximal left ideal of S. Since S is left Kasch, rg(K) # 0. Choose
0#serg(K), then 0# sM C ry(K) for ¢M is faithful. So rp/(K) # 0, and then gM is strongly Kasch.

(2) = (3). Let K be a submodule of My and o : eM — K be an isomorphism, where ¢* = e € S.
Then there exists s € S such that se = ce and K = seM. Let a = se, then ae = a and K = aM. We
claim that Sa = Se. If not let Sa C L C™% Se. By the strongly Kasch hypothesis of M, there exists
a monomorphism « : Se/L — gM. Write m = a(e + L), then em = ex(e + L) = a(e+ L) = m and
am = aa(e + L) = a(ae + L) = a(a + L) = a(0) = 0. Noting that Ker(a) = Ker(e), we have m = em = 0,
and hence e € L. This contradiction shows that Sa = Se. Write e = ba, then a = aba, and hence K is a
direct summand of Mpg.

(3) = (4). Obvious.

(4) = (5). See [14, Corollary 6]. O

Theorem 6 Let Mpr be a finitely cogenerated PPQ-injective module. Then the following statements are
equivalent:

(1) sM is strongly Kasch.

(2) Mp is Cs.
(3) Mg is GCs.
(4) W(S) = J(S).
Proof. (1) = (2) = (3) by Proposition 5. (3) = (4) by Theorem 4(1) and Proposition 5.
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(4) = (1). Since Mp is finitely cogenerated, Soc(Mp) is finitely generated and essential in Mp. Assume
that (4) holds. Observe first that J(S) C lg(Soc(Mp)) because Soc(Mg) C Soc(sM) by Theorem 4(4); and
lg(Soc(MRr)) € W(S) because Soc(Mpr) C°° Mp. Using (4), it follows that J(S) = lg(Soc(Mp)). Let
Soc(Mg) = 21R® - ® z, R, where each x; R is simple, then

J(S) =1g(Soc(MR)) = Ni_ls(z:).

Since Sz; is simple by Theorem 4(3), each lg(x;) is a maximal left ideal of S. Therefore S is semilocal.
Noting that the map S — M™ given by s — (sz1, sxa, -, sz,) is a left S-homomorphism with kernel J(S),
S/J(S) embeds in gM™. Note that the ring S/J(S) is semisimple and hence left Kasch, and every simple left
S-module K, regarded as a left S/J(S)-module, is simple, so as a left S/J(S)-module, K embeds in the left
S/J(S)-module S/J(S), which follows that K embeds in S/J(S) as left S-modules. Therefore, s K embeds
in the left S-module gM™ and hence embeds in gM . O

Let M and N be two right R-modules, then we call M pseudo principally N-injective (or PP-N-

injective for short) if every monomorphism from a principal submodule of N to M extends to an homomorphism
of N to M. Clearly, M is PPQ-injective if and only if M is PP-M -injective.

Proposition 7 Let M, N be two right R-modules and N’ be a submodule of N. If M is PP-N-injective, then
(1) Every direct summand of M is PP-N-injective.
(2) M is PP-N'-injective.
Proof. (1). Let M = M; @ M>. Then for every principal submodule K of N and every monomorphism f
of K to M, since M is PP-N-injective, f extends to a homomorphism of N to M. Which follows that f

extends to a homomorphism of N to M; because M; is a direct summand of M .

(2) It is obvious. O

By Proposition 7, we have immediately the following corollary.

Corollary 8 FEvery direct summand of a PPQ-injective module is PPQ-injective.
Following [12], we call a right R-module M minimal quasi-injective if every homomorphism from a simple

submodule of M to M can be extended to an endomorphism of M.

Theorem 9 The following statements are equivalent for a ring R:
(1) R is a semisimple artinian ring.
(2) R is a right V-ring and every minimal quasi-injective right R-module is PPQ-injective.
(3) Every right R-module is PPQ-injective.
Proof. (1) = (2). Obvious.
(2) = (3). Since R is a right V-ring, every simple right R-module is injective and hence is a direct

summand of each module containing it. So every right R-module is minimal quasi-injective, and then (3) follows
from (2).
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(3) = (1). Let K be any principal right R-module. Since K @ E(K) is PPQ-injective, by proposi-
tion 7(1), K is PP-K @ E(K)-injective, and hence K is PP-E(K)-injective by proposition 7(2). Therefore,
K = E(K) is injective. This proves the theorem. O

A module M is called C3 [7] if, whenever N and K are direct summands of M with N N K =0 then
N @ K is also a direct summand of M. We call a module M PC5 if every principal submodule of M that
is isomorphic to a direct summand of M is itself a direct summand of M. And we call a module M PCj if,
whenever N and K are direct summands of M with NN K = 0 and K is principal, then N @& K is also a

direct summand of M .

Theorem 10 FEvery PPQ-injective module is PCy and PCj.

Proof. Let Mp be PPQ-injective with S = End(Mp). If K is a principal submodule of M and K = eM
where €2 = e € S, then eM is PP- M -injective by proposition 7 and hence K is also PP- M -injective, which
follows that K is a direct summand of M because K is principal. This proves PCy. Now let N and K be
direct summands of M with NN K = 0 and K principal. Write N = eM and K = fM, where e, f are
idempotents in S, then eM @ fM =eM & (1 —e)fM . Since (1 —e)fM = fM is principal, (1 —e)fM = hM
for some h? =h € S by PCy. Let g= e+ h — he, then g> = g and eM @ fM = gM , as required. O

Recall that a right R-module M is said to be weakly injective [3] if for every finitely generated submodule
Nr C E(M), we have N C Xp C E(M) for some Xp = M.

Corollary 11 Let Mg be a cyclic module. Then M 1is injective if and only if it is weakly injective and
PPQ-injective.

Proof. = We need only to prove the sufficiency. Let x € E(M), then there exists X C E(M) such that
M+zRC X =2 M. Since M is PPQ-injective, X is PPQ-injective too. By Theorem 10, X is PCs and hence
M is a direct summand of X because M is a cyclic submodule of X . But M C¢* E(M), so M C* X . Thus
M = X, and then x € M. Therefore, M = E(M) is injective. O

Recall that a module Mg is regular [10] if for every m € M, mR is projective and is a direct summand

of M. Clearly, a ring R is regular if and only if the module Rp is regular.

Proposition 12 Let Mp be a projective module whose cyclic submodules are its images. Then M is reqular
if and only if M is PCy and mR is M -projective for every m € M .
Proof. =. If M is regular. Then every cyclic submodule of M is projective and is a direct summand of
M , so the necessity is obvious.

<. Since mR is M -projective and is an image of M for every m € M, mR is isomorphic to a direct
summand of M. But M is PCy, mR is a direct summand of M. Observing that M is projective, mR is also

projective. |

A ring R is a right PP ring if every principal right ideal of R is projective. The next result extends [9,

Theorem 3] from a right P-injective ring to a right Cy ring.
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Corollary 13 A ring R is reqular if and only if R is a right Co and right PP ring.

Corollary 14 Let My be a PPQ-injective cyclic module, then
(1) Mg is a Cy module.
(2) J(S) = W(S).
(3) If Mg has finite Goldie dimension then S is semilocal.
(4) If Mg is uniform, then S is local.

Proof. (1) Since My is cyclic, each direct summand of My is also cyclic, so (1) follows because Mg is PCs
by Theorem 10.

(2) By Theorem 4(1), J(S) C W(S). But My is Cy by (1), so W(S) C J(S) by [8, 41.22]. Therefore,
J(S) =W (S).

(3) Let s be any injective endomorphism of M. Then s¥M =2 M for each positive integer k, and so s* M
is a direct summand of My for Mg is a Co module by (1). Since Mg has finite Goldie dimension, it contains
no infinite direct sum of its submodules, and thus it satisfies the descending conditions on direct summands.
Hence s"M = s"1 M for some positive integer n. This follows that s is bijective. Therefore, S is semilocal
by [2, Theorem 3].

(4) Let s € S and S # Ss. Then Ker(s) # 0 by [14, Theorem 4] since Mp is GCs. So, since M is
uniform, Ker(s) € M. Thus s € W(S) = J(S). This means that S is local. O

Theorem 15 Let My be a cyclic module, and let My & Mo be a PPQ-injective module and o : My — My be
a monomorphism. Then o splits and My is PQ-injective.

Proof. Since o :o(My) — My @ M, given by a(o(z)) = (x,0),z € My, is a monomorphism, it can be ex-
tended to an endomorphism a* of My ® M. If v : My — M1 & My and 7 : My @ Ms — M; are natural injection
and projection, respectively, then 7 = wa*¢ is such that 70 = 1, . Hence o splits. Let My = o(M;) & N;.
Then My ® My = My ®o(M;)® N1, and so N = My @ o(M,) is PPQ-injective by Corollary 8. Let K be any
principal submodule of M; and f : K — M; be an R-homomorphism, then the mapping 5 : K — My ®o (M)
given by f(z) = (z,0f(z)),x € K, is a monomorphism. Hence it can be extended to an endomorphism v of
N. Let ¢g: My — N and p: N — o(M;) are natural injective and projection respectively, then u = 7pyq is
an endomorphism of M; which extend f. Hence M; is PQ-injective. O

Corollary 16 If M is a cyclic right R-module such that M @& M is PPQ-injective, then M is PQ-injective.
The proofs of the following theorems, Theorems 17 and 18 are similar to the proofs of Propositions 1.2

and 1.5 in [6] respectively, here we omit them.

Theorem 17 Let Mgr be PPQ-injective and let m,n € M .
(1) If nR embeds in mR, then Sn is an image of Sm.
(2) If nR= mR, then Sn = Sm.
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Theorem 18 Let Mg be PPQ-injective with S = End(Mg), and assume that the sum Y ., Sm; is direct,
m; € M. Then any monomorphism « : Y ., m;R — M can be extended to M.

By using the same way as the proof of [13, Theorem 2.9], we have the following proposition.

Proposition 19  Let M be a right R-module which has the following two properties:
(a) J(S) € W(S).
(b) If s ¢ W(S), then the inclusion ker(s) C ker(s — sts) is strict for some t € S.
Then the following conditions are equivalent:
(1) S is right perfect.

(2) For any sequence {s1,S2,...} C 5, the chain ker(s1) C ker(szs1) C --- terminates.

Lemma 20 Let Mpr be PPQ-injective. If s ¢ W(S), then the inclusion ker(s) C ker(s — sts) is strict for
some t € S.

Proof. If s ¢ W(S), then ker(s) NmR = 0 for some 0 # m € M. Thus rr(m) = rr(sm), and so
Sm = S(sm) as left S-modules because Mg is PPQ-injective. Write m = t(sm), where ¢ € S, then

(s — sts)m = 0. Therefore, the inclusion ker(s) C ker(s — sts) is strict. O

By Theorem 4, Proposition 19 and Lemma 20, we have immediately the following theorem.

Theorem 21 Let Mgy be a PPQ -injective module, then the following conditions are equivalent:

(1) S is right perfect.

(2) For any sequence {s1,S2,...} C .5, the chain ker(s1) C ker(szs1) C --- terminates.

Following [13], for a module Mg, we call a submodule K of M a kernel submodule if K = ker(f) for
some f € End(Mpg), and we call a submodule K of M an annihilator submodule if K = rj;(A) for some
subset A of End(Mg).

Lemma 22 Let M be a right R-module. If M has ACC' on annihilator submodules, then W(S) is nilpotent.
Proof. As W(S) 2 W2%S) D -, we get ryr(W(S)) C rayy(W2(S)) C ---, so let ry(Wn(S)) =

ra(WnH(S)), we show that W™ (S) = 0. Suppose that W™ (S) # 0, then W"T1(S) #£ 0. Let W"(S)a # 0 for
some a € S, and choose Ker(b) maximal in {Ker(b) | W™(S)b # 0}. If z € W(S) then Ker(z) C*° Mg, so
Ker(z) NbM # 0, say 0 # bm with zbm = 0. Thus Ker(b) C Ker(zb), so, by the choice of b, W™(S)zb = 0.
As z € W(S) is arbitrary, this shows that W"t1(S)b = 0, whence bM C rp(W"T1(S)) = rp(W™(S)). It
follows that W™(S)b = 0, a contradiction. O

Corollary 23 Let Mg be a PPQ -injective module. Then
(1) If Mg satisfies ACC on kernel submodules, then S is right perfect.
(2) If Mg satisfies ACC on annihilator submodules, then S is semiprimary.

Proof. (1) follows from Theorem 21. (2) follows from (1), Theorem 4(1) and Lemma 22. O
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