

On generalized (α, β) -derivations of semiprime rings

Faisal Ali and Muhammad Anwar Chaudhry

Abstract

We investigate some properties of generalized (α, β) -derivations on semiprime rings. Among some other results, we show that if g is a generalized (α, β) -derivation, with associated (α, β) -derivation δ , on a semiprime ring R such that $[g(x), \alpha(x)] = 0$ for all $x \in R$, then $\delta(x)[y, z] = 0$ for all $x, y, z \in R$ and δ is central. We also show that if α, ν, τ are endomorphisms and β, μ are automorphisms of a semiprime ring R and if R has a generalized (α, β) -derivation g, with associated (α, β) -derivation δ , such that $g([\mu(x), w(y)]) = [\nu(x), w(y)]_{\alpha, \tau}$, where $w : R \to R$ is commutativity preserving, then $[y, z]\delta(w(p)) = 0$ for all $y, z, p \in R$.

Key Words: Semiprime ring, derivation, generalized derivation, generalized (α, β) -derivation.

1. Introduction

Throughout, R denotes a ring with centre Z(R). We denote [x, y] for xy - yx, $x, y \in R$. Let σ, τ be endomorphisms of R, then for $x, y \in R$ we write $[x, y]_{\sigma, \tau}$ for $x\sigma(y) - \tau(y)x$. Obviously $[xy, z] = x[y, z] + [x, z]y, [x, yz] = y[x, z] + [x, y]z, [xy, z]_{\sigma, \tau} = x[y, z]_{\sigma, \tau} + [x, \tau(z)]y = x[y, \sigma(z)] + [x, z]_{\sigma, \tau} y$ and $[x, yz]_{\sigma, \tau} = \tau(y)[x, z]_{\sigma, \tau} + [x, y]_{\sigma, \tau}\sigma(z)$. We shall use these identities without further mention.

The ring R is prime if $aRb = \{0\}$ implies either a = 0 or b = 0; it is semiprime if $aRa = \{0\}$ implies a = 0. A prime ring is obviously semiprime. An additive mapping δ from R into itself is called a derivation if $\delta(xy) = \delta(x)y + x\delta(y)$ for all $x, y \in R$. We call a mapping $f : R \to R$ central if $f(x) \in Z(R)$ for all $x \in R$. A mapping $f : R \to R$ is called strong commutativity preserving (SCP) on a set $S \subseteq R$ if [f(x), f(y)] = [x, y] for all $x, y \in S$. For more information on SCP, we refer to [5,14] and references therein. We shall denote identity mapping of R by 1.

A more general concept of (α, β) -derivations have been extensively studied in prime and semiprime rings. They have played an important role in the solution of functional equations (see [4] and references therein). Let α, β be mappings from R into itself. An additive mapping δ of R into itself is called an (α, β) -derivation if $\delta(xy) = \delta(x)\alpha(y) + \beta(x)\delta(y)$ for all $x, y \in R$. Of course, a (1, 1)-derivation is a derivation.

Zalar [16] introduced the concept of a centralizer in a ring. An additive mapping f from R into itself is called a left (right) centralizer if f(xy) = f(x)y(f(xy) = xf(y)) for all $x, y \in R$. f is called a centralizer if

²⁰⁰⁰ AMS Mathematics Subject Classification: 16N60, 16W25.

it is a left as well as a right centralizer. Recently, Daif. et al. [7] have given the notion of a left θ -centralizer. An additive mapping f from R into itself is called a left θ -centralizer if $f(xy) = f(x)\theta(y)$ for all $x, y \in R$, where θ is a mapping from R into itself. For more information on centralizers we refer to [1, 15] and references therein.

The notion of a generalized derivation of a ring was introduced by Bre \check{s} ar [3] and Hvala [12]. They have studied some properties of such derivations. An additive mapping g of R into itself is called a generalized derivation of R, with associated derivation δ , if there is a derivation δ of R such that $g(xy) = g(x)y + x\delta(y)$ for all $x, y \in R$. For more information on generalized derivations we refer to [8, 14] and references therein.

Chang [6] introduced the notion of a generalized (α, β) -derivation of a ring R and investigated some properties of such derivations. Let α, β be mappings of R into itself. An additive mapping g of R into itself is called a generalized (α, β) -derivation of R, with associated (α, β) -derivation δ , if there exists an (α, β) derivation δ of R such that $g(xy) = g(x)\alpha(y) + \beta(x)\delta(y)$ for all $x, y \in R$. Obviously this notion covers the notion of a generalized derivation (in case $\alpha = \beta = 1$), notion of a derivation (in case $g = \delta, \alpha = \beta = 1$), notion of a left centralizer (in case $\delta = 0, \alpha = 1$), notion of (α, β) -derivation (in case $g = \delta$) and the notion of left α -centralizer (in case $\delta = 0$). Thus it is interesting to investigate properties of this general notion. For more properties of generalized (α, β) -derivations we refer to [2, 9, 10, 13] and references therein.

The purpose of this paper is to investigate some more properties of generalized (α, β) -derivations and to prove a generalization, in the setting of a semiprime ring, of the following result (Theorem A) of Jung and Park [13, Theorem 2.2 (page 103)].

Theorem A. Let R be a prime ring and I a nonzero ideal of R. Let α, ν , and τ be endomorphisms of R and β, μ automorphisms of R. If R admits a generalized (α, β) -derivation g with associated nonzero (α, β) derivation δ such that $g([\mu(x), y]) = [\nu(x), y]_{\alpha, \tau}$ for all $x, y \in I$, then R is commutative.

Among some other results, we prove the following:

(i) Let R be a semiprime ring and α, β automorphisms of R. Let g be a generalized (α, β) -derivation, with associated (α, β) -derivation δ , of R such that $[g(x), \alpha(x)] = 0$ for all $x \in R$, then $\delta(x)[y, z] = 0$ for all $x, y, z \in R$ and δ is central.

(ii) Let R be a semiprime ring. Let α, ν, τ be endomorphisms and β, μ automorphisms of R. If R has a generalized (α, β) -derivation g, with associated derivation δ , such that $g([\mu(x), w(y)]) = [\nu(x), w(y)]_{\alpha, \tau}$, where $w: R \to R$ is commutativity preserving, then $\delta(w(p))[y, z] = 0$ for all $y, z, p \in R$ and $\delta(w(p)) \in Z(R)$ for all $p \in R$.

We also deduce Theorem A, when the ideal I is replaced by R, as a corollary of the result (ii).

2. Results

We now prove our results. First we state the following lemma which will be used in the sequel.

Lemma 2.1 [11, Lemma 1.1.4 (page 6)]. Suppose R is a semiprime ring and that $a \in R$ is such that a[a, x] = 0 for all $x \in R$. Then $a \in Z(R)$.

Theorem 2.2 Let R be a semiprime ring and g a generalized (α, β) -derivation of R with associated (α, β) -

derivation δ , where α and β are automorphisms of R. If $[g(x), \alpha(x)] = 0$ for all $x \in R$, then $\delta(x)[y, z] = 0$ for all $x, y, z \in R$ and $\delta(x) \in Z(R)$ for all $x \in R$.

Proof. By hypothesis

$$[g(x), \alpha(x)] = 0 \quad \text{for all} \quad x \in R.$$
(1)

Linearizing (1), we get

$$[g(x), \alpha(y)] + [g(y), \alpha(x)] = 0 \quad \text{for all} \quad x, y \in R.$$

$$\tag{2}$$

Replacing y by yx in (2), we get $[g(x), \alpha(yx)] + [g(yx), \alpha(x)] = 0$. That is, $[g(x), \alpha(y)\alpha(x)] + [g(y)\alpha(x) + \beta(y)\delta(x), \alpha(x)] = 0$. The last equation together with (1) implies $[g(x), \alpha(y)]\alpha(x) + [g(y), \alpha(x)]\alpha(x) + \beta(y)[\delta(x), \alpha(x)] + [\beta(y), \alpha(x)]\delta(x) = 0$, which along with (2) gives

$$\beta(y)[\delta(x), \alpha(x)] + [\beta(y), \alpha(x)]\delta(x) = 0 \quad \text{for all} \quad x, y \in R.$$
(3)

Replacing y by zy in (3), we get $\beta(z)\beta(y)[\delta(x), \alpha(x)] + [\beta(z)\beta(y), \alpha(x)]\delta(x) = 0$. That is, $\beta(z)\beta(y)[\delta(x), \alpha(x)] + \beta(z)[\beta(y), \alpha(x)]\delta(x) + [\beta(z), \alpha(x)]\beta(y)\delta(x) = 0$, which along with (3) implies

$$[\beta(z), \alpha(x)]\beta(y)\delta(x) = 0 \quad \text{for all} \quad x, y, z \in R.$$
(4)

Replacing z by $\beta^{-1}(z)$ and y by $\beta^{-1}(y)$ in (4), we get

$$[z, \alpha(x)]y\delta(x) = 0 \quad \text{for all} \quad x, y, z \in R.$$
(5)

Since R is semiprime, equality (5) implies

$$\delta(x)[z,\alpha(x)] = 0 \quad \text{for all} \quad x, z \in R.$$
(6)

Linearizing (6) in x and then using (6), we get $\delta(y)[z,\alpha(x)] + \delta(x)[z,\alpha(y)] = 0$, which implies

$$\delta(y)[z,\alpha(x)] = -\delta(x)[z,\alpha(y)] \quad \text{for all} \quad x, y, z \in R.$$
(7)

Replacing z by uz in (6) and then using (6), we get

$$\delta(x)u[z,\alpha(x)] = 0 \text{ for all } x, u, z \in R.$$
(8)

Replacing u by $[z, \alpha(y)]u\delta(y)$ in (8), we get $\delta(x)[z, \alpha(y)]u\delta(y)[z, \alpha(x)] = 0$, which along with (7) and semiprimeness of R implies that

$$\delta(x)[z,\alpha(y)] = 0 \quad \text{for all} \quad x, y, z \in R.$$
(9)

Replacing y by $\alpha^{-1}(y)$ in (9), we get

$$\delta(x)[z,y] = 0 \quad \text{for all} \quad x, y, z \in R.$$
(10)

From (10) and Lemma 2.1, we get $\delta(x) \in Z(R)$ for all $x \in R$.

Corollary 2.3 Let R be a semiprime ring and $g: R \to R$ a generalized (α, β) -derivation such that $[g(x), \alpha(x)] = 0$ for all $x \in R$, where α and β are automorphisms of R, then $(g(xu) - g(x)\alpha(u)) \in Z(R)$ for all $x, u \in R$. If $Z(R) = \{0\}$, then g is a left α -centralizer.

Proof. From (10) we have $\beta(x)\delta(u)[z,y] = 0$ for all $x, u, y, z \in R$. Since $g(xu) - g(x)\alpha(u) = g(x)\alpha(u) + \beta(x)\delta(u) - g(x)\alpha(u) = \beta(x)\delta(u)$, therefore, $(g(xu) - g(x)\alpha(u))[z,y] = 0$ for all $x, u, y, z \in R$. By Lemma 2.1, $(g(xu) - g(x)\alpha(u)) \in Z(R)$. If $Z(R) = \{0\}$, then $g(xu) - g(x)\alpha(u) = 0$. That is, $g(xu) = g(x)\alpha(u)$ for all $x, u \in R$. Thus g is a left α -centralizer. \Box

Corollary 2.4 Let R be a semiprime ring. If R has a generalized (α, β) -derivation g with associated (α, β) derivation δ , where α and β are automorphisms of R, such that $[g(x), \alpha(x)] = 0$ for all $x, y \in R$ and δ is strong commutativity preserving, then R is commutative.

Proof. Replacing z by uz in (10) and then using(10), we get

$$\delta(x)u[z,y] = 0 \quad \text{for all} \quad x, u, y, z \in R.$$
(11)

Replacing u by $\delta(y)u$ and z by x in (11), we get

$$\delta(x)\delta(y)u[x,y] = 0 \quad \text{for all} \quad x,y \in R.$$
(12)

Multiplying (11) on the left by $\delta(y)$ after replacing z by x, we get

$$\delta(y)\delta(x)u[x,y] = 0 \quad \text{for all} \quad x, u, y \in R.$$
(13)

Subtracting (13) from (12), we get $[\delta(x), \delta(y)]u[x, y] = 0$, which along with strong commutativity preserving property of δ and semiprimeness of R implies [x, y] = 0 for all $x, y \in R$. Thus R is commutative. \Box

Corollary 2.5 Let R be a prime ring with generalized (α, β) -derivation g having associated (α, β) -derivation δ , where α and β are automorphisms of R. If $[g(x), \alpha(x)] = 0$ and $\delta \neq 0$, then R is commutative. **Proof.** Proof follows from (11) and primeness of R.

Remark 2.6 Taking $\alpha = \beta = 1$ in above theorem and corollaries, we get the corresponding results for generalized derivations.

Theorem 2.7 Let R be a semiprime ring. Let α, ν, τ be endomorphisms and β, μ automorphisms of R. If R has a generalized (α, β) -derivation g, with associated derivation δ , such that $g([\mu(x), w(y)]) = [\nu(x), w(y)]_{\alpha, \tau}$, where w is a strong commutativity preserving endomorphism of R, then $\delta(w(p))[y, z] = 0$ for all $y, z, p \in R$ and $\delta(w(p)) \in Z(R)$ for all $p \in R$.

Proof. By hypothesis

$$g([\mu(x), w(y)]) = [\nu(x), w(y)]_{\alpha, \tau}.$$
(14)

Replacing y by zy, we get $g([\mu(x), w(zy)]) = [\nu(x), w(zy)]_{\alpha,\tau}$, which implies $g([\mu(x), w(z)w(y)]) = [\nu(x), w(z)w(y)]_{\alpha,\tau}$. That is,

 $g(w(z)[\mu(x), w(y)] + [\mu(x), w(z)]w(y)) = [\nu(x), w(z)w(y)]_{\alpha,\tau}.$ From the last relation we have $g(w(z))\alpha[\mu(x), w(y)] + \beta[w(z))\delta[\mu(x), w(y)] + g([\mu(x), w(z)])\alpha(w(y)) + \beta[\mu(x), w(z)]\delta(w(y)) = \tau(w(z))[\nu(x), w(y)]_{\alpha,\tau} + [\nu(x), w(z)]_{\alpha,\tau}\alpha(w(y))$ which along with (14) implies

 $g(w(z))\alpha[\mu(x), w(y)] + \beta(w(z))\delta[\mu(x), w(y)] + \beta[\mu(x), w(z)]\delta(w(y)) = \tau(w(z))g([\mu(x), w(y)]).$ Replacing x by $\mu^{-1}(w(y))$ in the last equation, we get $\beta[w(y), w(z)]\delta(w(y)) = 0$, which implies

$$[w(y), w(z)]\beta^{-1}\delta(w(y)) = 0.$$
(15)

Since w is a strong commutativity preserving endomorphism, so the last equation gives

$$[y, z]\beta^{-1}\delta(w(y)) = 0.$$
(16)

Linearizing (16), we have $[y+p,z]\beta^{-1}\delta(w(y+p)) = 0$. That is, $([y,z]+[p,z])(\beta^{-1}(\delta(w(y))) + \beta^{-1}(\delta(w(p)))) = 0$, which along with (16) implies

$$[y, z]\beta^{-1}(\delta(w(p))) + [p, z]\beta^{-1}(\delta(w(y))) = 0.$$
(17)

Now replacing z by zr in (16), we get $[y, zr]\beta^{-1}(\delta(w(y))) = 0$. That is, $(z[y, r] + [y, z]r)\beta^{-1}(\delta(w(y))) = 0$, which along with (16) gives $[y, z]r\beta^{-1}(\delta(w(y))) = 0$. Replacing r by $\beta^{-1}(\delta(w(p)))r(-[p, z])$ in the last equation, we get

 $[y, z]\beta^{-1}(\delta(w(p)))r(-[p, z])\beta^{-1}(\delta(w(y))) = 0$, which along with (17) gives

 $[y, z]\beta^{-1}(\delta(w(p)))r[y, z]\beta^{-1}(\delta(w(p))) = 0$. Since R is semiprime, the last equation implies $[y, z]\beta^{-1}(\delta(w(p))) = 0$, which gives $[\beta(y), \beta(z)](\delta(w(p))) = 0$. Replacing y by $\beta^{-1}(y)$ and z by $\beta^{-1}(z)$ in the last equation, we get

$$[y, z](\delta(w(p))) = 0.$$
 (18)

Further, Lemma 2.1 implies $\delta(w(p)) \in Z(R)$.

Now we deduce Theorem A of Jung and Park [13], when ideal I is replaced by R, as a corollary of our Theorem 2.7.

Corollary 2.8 Let R be a prime ring. Let α, ν, τ be endomorphisms and β, μ automorphisms of R. If R admits a generalized (α, β) -derivation g with associated nonzero derivation δ such that $g([\mu(x), y]) = [\nu(x), y]_{\alpha, \tau}$, then R is commutative.

Proof. Taking w = 1, all conditions of Theorem 2.7 are satisfied. Therefore from (18), we get

$$[y, z]\delta(p) = 0 \quad \text{for all} \quad x, u, y \in R.$$
(19)

Replacing z by $zr, r \in R$, in (19) and using it, we get $[y, z]r\delta(p) = 0$ for all $y, z, r, p \in R$. Since R is prime and $\delta \neq 0$, from the last equation, we get [y, z] = 0 for all $y, z \in R$. Thus R is commutative.

Acknowledgment

The authors gratefully acknowledge the support provided by Bahauddin Zakariya University, Multan, Pakistan.

References

- [1] Albas, E.: On T-centralizers of semiprime rings, Siberian Math. J. 48, 191-196 (2007).
- [2] Argac, N., Albas, E.: On generalized (σ, τ) -derivations, Siberian. Math. J. 43, no.6, 977-984 (2002).
- [3] Brešar, M.: On the distance of the compositions of two derivations to the generalized derivations, *Glasgow Math. J.* 33, no.1, 89-93 (1991).
- [4] Bre \check{s} ar, M.: On the composition of (α, β) -derivations of rings to Von Neumann algebra, Acta. Sci. Math. 56, 369-375 (1992).
- [5] Brešar, M., Miers, C.R.: Strong commutativity preserving maps of semiprime rings, *Canad. Math. Bull.* 37, no.4, 457-460 (1994).
- [6] Chang, J.C.: On the identity h(x) = af(x) + g(x)b, Taiwanese J. Math. 7, no.1, 103-113 (2003).
- [7] Daif, M.N., Tammam, M.S.: El-Sayiad and N. M. Muthana, An identity on θ-centralizers of semiprime rings, Int. Math. Forum 3, no.19, 937-944 (2008).
- [8] Fillippis, V.D.: Generalized derivations in prime rings and non commutative Banach algebras, Bull. Korean Math. Soc. 45, no.4, 621-629 (2008).
- [9] Gölbasi, Ö.: Notes on generalized (α, β)-derivations in prime rings, Miskolc Mathematical Notes 8, no.1, 31-41 (2007).
- [10] Gölbasi, Ö., Aydin, N.: Orthogonal generalized (σ, τ)-derivations of semiprime rings, Siberian Math. J. 48, no.6, 979-983 (2007).
- [11] Herstein, I.N.: Rings with involution, The University of Chicago Press, London, (1976).
- [12] Hvala, B.: Generalized derivations in rings, Comm. Algebra 26, no.4, 1147-1166 (1998).
- [13] Jung, Y.S., Park,K.H.: On generalized (α, β)-derivations and commutitivity in prime rings, Bull. Korean Math. Soc. 43, no.1, 101-106 (2006).
- [14] Ma, J., Xu, X.W.: Strong commutativity preserving generalized derivations on semiprime rings, Acta. Mathematica Sinica. English Series 24, no.11, 1835-1842 (2008).
- [15] Vukman, J., Kosi-Ulbl, I.: On centralizers of semiprime rings, Aequationes Math. 66, no.3, 277-283 (2003).
- [16] Zalar, B.: On centralizers on semiprime rings, Comment. Math. Univ. Carolinae 32, no.4, 609-614 (1991).

Faisal ALI

Received: 16.06.2009

Centre for Advanced Studies in Pure and Applied Mathematics Bahauddin Zakariya University Multan-PAKISTAN e-mail: faisalali@bzu.edu.pk Muhammad Anwar CHAUDHRY Centre for Advanced Studies in Pure and Applied Mathematics Bahauddin Zakariya University Multan-PAKISTAN e-mail: chaudhry@bzu.edu.pk