On generalized (α, β)-derivations of semiprime rings

Faisal Ali and Muhammad Anwar Chaudhry

Abstract

We investigate some properties of generalized (α, β)-derivations on semiprime rings. Among some other results, we show that if g is a generalized (α, β)-derivation, with associated (α, β)-derivation δ, on a semiprime ring R such that $[g(x), \alpha(x)]=0$ for all $x \in R$, then $\delta(x)[y, z]=0$ for all $x, y, z \in R$ and δ is central. We also show that if α, ν, τ are endomorphisms and β, μ are automorphisms of a semiprime ring R and if R has a generalized (α, β)-derivation g, with associated (α, β)-derivation δ, such that $g([\mu(x), w(y)])=[\nu(x), w(y)]_{\alpha, \tau}$, where $w: R \rightarrow R$ is commutativity preserving, then $[y, z] \delta(w(p))=0$ for all $y, z, p \in R$.

Key Words: Semiprime ring, derivation, generalized derivation, generalized (α, β)-derivation.

1. Introduction

Throughout, R denotes a ring with centre $Z(R)$. We denote $[x, y]$ for $x y-y x, x, y \in R$. Let σ, τ be endomorphisms of R, then for $x, y \in R$ we write $[x, y]_{\sigma, \tau}$ for $x \sigma(y)-\tau(y) x$. Obviously $[x y, z]=$ $x[y, z]+[x, z] y,[x, y z]=y[x, z]+[x, y] z,[x y, z]_{\sigma, \tau}=x[y, z]_{\sigma, \tau}+[x, \tau(z)] y=x[y, \sigma(z)]+[x, z]_{\sigma, \tau} y$ and $[x, y z]_{\sigma, \tau}=\tau(y)[x, z]_{\sigma, \tau}+[x, y]_{\sigma, \tau} \sigma(z)$. We shall use these identities without further mention.

The ring R is prime if $a R b=\{0\}$ implies either $a=0$ or $b=0$; it is semiprime if $a R a=\{0\}$ implies $a=0$. A prime ring is obviously semiprime. An additive mapping δ from R into itself is called a derivation if $\delta(x y)=\delta(x) y+x \delta(y)$ for all $x, y \in R$. We call a mapping $f: R \rightarrow R$ central if $f(x) \in Z(R)$ for all $x \in R$. A mapping $f: R \rightarrow R$ is called strong commutativity preserving (SCP) on a set $S \subseteq R$ if $[f(x), f(y)]=[x, y]$ for all $x, y \in S$. For more information on SCP, we refer to [5,14] and references therein. We shall denote identity mapping of R by 1 .

A more general concept of (α, β)-derivations have been extensively studied in prime and semiprime rings. They have played an important role in the solution of functional equations (see [4] and references therein). Let α, β be mappings from R into itself. An additive mapping δ of R into itself is called an (α, β)-derivation if $\delta(x y)=\delta(x) \alpha(y)+\beta(x) \delta(y)$ for all $x, y \in R$. Of course, a (1,1)-derivation is a derivation.

Zalar [16] introduced the concept of a centralizer in a ring. An additive mapping from R into itself is called a left (right) centralizer if $f(x y)=f(x) y(f(x y)=x f(y))$ for all $x, y \in R . f$ is called a centralizer if

[^0]
ALİ, CHAUDHRY

it is a left as well as a right centralizer. Recently, Daif. et al. [7] have given the notion of a left θ-centralizer. An additive mapping f from R into itself is called a left θ-centralizer if $f(x y)=f(x) \theta(y)$ for all $x, y \in R$, where θ is a mapping from R into itself. For more information on centralizers we refer to $[1,15]$ and references therein.

The notion of a generalized derivation of a ring was introduced by Bre \breve{s} ar [3] and Hvala [12]. They have studied some properties of such derivations. An additive mapping g of R into itself is called a generalized derivation of R, with associated derivation δ, if there is a derivation δ of R such that $g(x y)=g(x) y+x \delta(y)$ for all $x, y \in R$. For more information on generalized derivations we refer to $[8,14]$ and references therein.

Chang [6] introduced the notion of a generalized (α, β)-derivation of a ring R and investigated some properties of such derivations. Let α, β be mappings of R into itself. An additive mapping g of R into itself is called a generalized (α, β)-derivation of R, with associated (α, β)-derivation δ, if there exists an (α, β) derivation δ of R such that $g(x y)=g(x) \alpha(y)+\beta(x) \delta(y)$ for all $x, y \in R$. Obviously this notion covers the notion of a generalized derivation (in case $\alpha=\beta=1$), notion of a derivation (in case $g=\delta, \alpha=\beta=1$), notion of a left centralizer (in case $\delta=0, \alpha=1$), notion of (α, β)-derivation (in case $g=\delta$) and the notion of left α-centralizer (in case $\delta=0$). Thus it is interesting to investigate properties of this general notion. For more properties of generalized (α, β)-derivations we refer to $[2,9,10,13]$ and references therein.

The purpose of this paper is to investigate some more properties of generalized (α, β) -derivations and to prove a generalization, in the setting of a semiprime ring, of the following result (Theorem A) of Jung and Park [13, Theorem 2.2 (page 103)].

Theorem A. Let R be a prime ring and I a nonzero ideal of R. Let α, ν, and τ be endomorphisms of R and β, μ automorphisms of R. If R admits a generalized (α, β)-derivation g with associated nonzero (α, β) derivation δ such that $g([\mu(x), y])=[\nu(x), y]_{\alpha, \tau}$ for all $x, y \in I$, then R is commutative.

Among some other results, we prove the following:
(i) Let R be a semiprime ring and α, β automorphisms of R. Let g be a generalized (α, β)-derivation, with associated (α, β)-derivation δ, of R such that $[g(x), \alpha(x)]=0$ for all $x \in R$, then $\delta(x)[y, z]=0$ for all $x, y, z \in R$ and δ is central.
(ii) Let R be a semiprime ring. Let α, ν, τ be endomorphisms and β, μ automorphisms of R. If R has a generalized (α, β)-derivation g, with associated derivation δ, such that $g([\mu(x), w(y)])=[\nu(x), w(y)]_{\alpha, \tau}$, where $w: R \rightarrow R$ is commutativity preserving, then $\delta(w(p))[y, z]=0$ for all $y, z, p \in R$ and $\delta(w(p)) \in Z(R)$ for all $p \in R$.

We also deduce Theorem A, when the ideal I is replaced by R, as a corollary of the result (ii).

2. Results

We now prove our results. First we state the following lemma which will be used in the sequel.

Lemma 2.1 [11, Lemma 1.1.4 (page 6)]. Suppose R is a semiprime ring and that $a \in R$ is such that $a[a, x]=0$ for all $x \in R$. Then $a \in Z(R)$.

Theorem 2.2 Let R be a semiprime ring and g a generalized (α, β)-derivation of R with associated (α, β) -

ALİ, CHAUDHRY

derivation δ, where α and β are automorphisms of R. If $[g(x), \alpha(x)]=0$ for all $x \in R$, then $\delta(x)[y, z]=0$ for all $x, y, z \in R$ and $\delta(x) \in Z(R)$ for all $x \in R$.
Proof. By hypothesis

$$
\begin{equation*}
[g(x), \alpha(x)]=0 \quad \text { for all } x \in R . \tag{1}
\end{equation*}
$$

Linearizing (1), we get

$$
\begin{equation*}
[g(x), \alpha(y)]+[g(y), \alpha(x)]=0 \quad \text { for all } x, y \in R . \tag{2}
\end{equation*}
$$

Replacing y by $y x$ in (2), we get $[g(x), \alpha(y x)]+[g(y x), \alpha(x)]=0$. That is, $[g(x), \alpha(y) \alpha(x)]+[g(y) \alpha(x)+$ $\beta(y) \delta(x), \alpha(x)]=0$. The last equation together with (1) implies $[g(x), \alpha(y)] \alpha(x)+[g(y), \alpha(x)] \alpha(x)+\beta(y)[\delta(x), \alpha(x)]-$ $[\beta(y), \alpha(x)] \delta(x)=0$, which along with (2) gives

$$
\begin{equation*}
\beta(y)[\delta(x), \alpha(x)]+[\beta(y), \alpha(x)] \delta(x)=0 \quad \text { for all } \quad x, y \in R . \tag{3}
\end{equation*}
$$

Replacing y by $z y$ in (3), we get $\beta(z) \beta(y)[\delta(x), \alpha(x)]+[\beta(z) \beta(y), \alpha(x)] \delta(x)=0$. That is, $\beta(z) \beta(y)[\delta(x), \alpha(x)]+$ $\beta(z)[\beta(y), \alpha(x)] \delta(x)+[\beta(z), \alpha(x)] \beta(y) \delta(x)=0$, which along with (3) implies

$$
\begin{equation*}
[\beta(z), \alpha(x)] \beta(y) \delta(x)=0 \quad \text { for all } \quad x, y, z \in R . \tag{4}
\end{equation*}
$$

Replacing z by $\beta^{-1}(z)$ and y by $\beta^{-1}(y)$ in (4), we get

$$
\begin{equation*}
[z, \alpha(x)] y \delta(x)=0 \text { for all } x, y, z \in R \tag{5}
\end{equation*}
$$

Since R is semiprime, equality (5) implies

$$
\begin{equation*}
\delta(x)[z, \alpha(x)]=0 \quad \text { for all } \quad x, z \in R \tag{6}
\end{equation*}
$$

Linearizing (6) in x and then using (6), we get $\delta(y)[z, \alpha(x)]+\delta(x)[z, \alpha(y)]=0$, which implies

$$
\begin{equation*}
\delta(y)[z, \alpha(x)]=-\delta(x)[z, \alpha(y)] \text { for all } x, y, z \in R . \tag{7}
\end{equation*}
$$

Replacing z by $u z$ in (6) and then using (6), we get

$$
\begin{equation*}
\delta(x) u[z, \alpha(x)]=0 \text { for all } x, u, z \in R \tag{8}
\end{equation*}
$$

Replacing u by $[z, \alpha(y)] u \delta(y)$ in (8), we get $\delta(x)[z, \alpha(y)] u \delta(y)[z, \alpha(x)]=0$, which along with (7) and semiprimeness of R implies that

$$
\begin{equation*}
\delta(x)[z, \alpha(y)]=0 \quad \text { for all } \quad x, y, z \in R . \tag{9}
\end{equation*}
$$

Replacing y by $\alpha^{-1}(y)$ in (9), we get

$$
\begin{equation*}
\delta(x)[z, y]=0 \quad \text { for all } \quad x, y, z \in R . \tag{10}
\end{equation*}
$$

From (10) and Lemma 2.1, we get $\delta(x) \in Z(R)$ for all $x \in R$.

Corollary 2.3 Let R be a semiprime ring and $g: R \rightarrow R$ a generalized (α, β)-derivation such that $[g(x), \alpha(x)]=$ 0 for all $x \in R$, where α and β are automorphisms of R, then $(g(x u)-g(x) \alpha(u)) \in Z(R)$ for all $x, u \in R$. If $Z(R)=\{0\}$, then g is a left α-centralizer.

ALİ, CHAUDHRY

Proof. From (10) we have $\beta(x) \delta(u)[z, y]=0$ for all $x, u, y, z \in R$. Since $g(x u)-g(x) \alpha(u)=g(x) \alpha(u)+\beta(x) \delta(u)-g(x) \alpha(u)=\beta(x) \delta(u)$, therefore, $(g(x u)-g(x) \alpha(u))[z, y]=0$ for all $x, u, y, z \in R$. By Lemma 2.1, $(g(x u)-g(x) \alpha(u)) \in Z(R)$. If $Z(R)=\{0\}$, then $g(x u)-g(x) \alpha(u)=0$. That is, $g(x u)=g(x) \alpha(u)$ for all $x, u \in R$. Thus g is a left α-centralizer.

Corollary 2.4 Let R be a semiprime ring. If R has a generalized (α, β)-derivation g with associated (α, β) derivation δ, where α and β are automorphisms of R, such that $[g(x), \alpha(x)]=0$ for all $x, y \in R$ and δ is strong commutativity preserving, then R is commutative.

Proof. Replacing z by $u z$ in (10) and then using(10), we get

$$
\begin{equation*}
\delta(x) u[z, y]=0 \quad \text { for all } \quad x, u, y, z \in R . \tag{11}
\end{equation*}
$$

Replacing u by $\delta(y) u$ and z by x in (11), we get

$$
\begin{equation*}
\delta(x) \delta(y) u[x, y]=0 \quad \text { for all } \quad x, y \in R . \tag{12}
\end{equation*}
$$

Multiplying (11) on the left by $\delta(y)$ after replacing z by x, we get

$$
\begin{equation*}
\delta(y) \delta(x) u[x, y]=0 \quad \text { for all } \quad x, u, y \in R . \tag{13}
\end{equation*}
$$

Subtracting (13) from (12), we get $[\delta(x), \delta(y)] u[x, y]=0$, which along with strong commutativity preserving property of δ and semiprimeness of R implies $[x, y]=0$ for all $x, y \in R$. Thus R is commutative.

Corollary 2.5 Let R be a prime ring with generalized (α, β)-derivation g having associated (α, β)-derivation δ, where α and β are automorphisms of R. If $[g(x), \alpha(x)]=0$ and $\delta \neq 0$, then R is commutative.

Proof. Proof follows from (11) and primeness of R.

Remark 2.6 Taking $\alpha=\beta=1$ in above theorem and corollaries, we get the corresponding results for generalized derivations.

Theorem 2.7 Let R be a semiprime ring. Let α, ν, τ be endomorphisms and β, μ automorphisms of R. If R has a generalized (α, β)-derivation g, with associated derivation δ, such that $g([\mu(x), w(y)])=[\nu(x), w(y)]_{\alpha, \tau}$, where w is a strong commutativity preserving endomorphism of R, then $\delta(w(p))[y, z]=0$ for all $y, z, p \in R$ and $\delta(w(p)) \in Z(R)$ for all $p \in R$.

Proof. By hypothesis

$$
\begin{equation*}
g([\mu(x), w(y)])=[\nu(x), w(y)]_{\alpha, \tau} . \tag{14}
\end{equation*}
$$

Replacing y by $z y$, we get $g([\mu(x), w(z y)])=[\nu(x), w(z y)]_{\alpha, \tau}$, which implies $g([\mu(x), w(z) w(y)])=[\nu(x), w(z) w(y)]_{\alpha, \tau}$. That is,

ALİ, CHAUDHRY

$g(w(z)[\mu(x), w(y)]+[\mu(x), w(z)] w(y))=[\nu(x), w(z) w(y)]_{\alpha, \tau}$. From the last relation we have $g(w(z)) \alpha[\mu(x), w(y)]+$ $\beta(w(z)) \delta[\mu(x), w(y)]+g([\mu(x), w(z)]) \alpha(w(y))+\beta[\mu(x), w(z)] \delta(w(y))=\tau(w(z))[\nu(x), w(y)]_{\alpha, \tau}+[\nu(x), w(z)]_{\alpha, \tau} \alpha(w(y)$ which along with (14) implies
$g(w(z)) \alpha[\mu(x), w(y)]+\beta(w(z)) \delta[\mu(x), w(y)]+\beta[\mu(x), w(z)] \delta(w(y))=\tau(w(z)) g([\mu(x), w(y)])$. Replacing x by $\mu^{-1}(w(y))$ in the last equation, we get $\beta[w(y), w(z)] \delta(w(y))=0$, which implies

$$
\begin{equation*}
[w(y), w(z)] \beta^{-1} \delta(w(y))=0 \tag{15}
\end{equation*}
$$

Since w is a strong commutativity preserving endomorphism, so the last equation gives

$$
\begin{equation*}
[y, z] \beta^{-1} \delta(w(y))=0 \tag{16}
\end{equation*}
$$

Linearizing (16), we have $[y+p, z] \beta^{-1} \delta(w(y+p))=0$. That is,
$([y, z]+[p, z])\left(\beta^{-1}(\delta(w(y)))+\beta^{-1}(\delta(w(p)))\right)=0$, which along with (16) implies

$$
\begin{equation*}
[y, z] \beta^{-1}(\delta(w(p)))+[p, z] \beta^{-1}(\delta(w(y)))=0 \tag{17}
\end{equation*}
$$

Now replacing z by $z r$ in (16), we get $[y, z r] \beta^{-1}(\delta(w(y)))=0$. That is, $(z[y, r]+[y, z] r) \beta^{-1}(\delta(w(y)))=0$, which along with (16) gives $[y, z] r \beta^{-1}(\delta(w(y)))=0$. Replacing r by $\beta^{-1}(\delta(w(p))) r(-[p, z])$ in the last equation, we get
$[y, z] \beta^{-1}(\delta(w(p))) r(-[p, z]) \beta^{-1}(\delta(w(y)))=0$, which along with (17) gives
$[y, z] \beta^{-1}(\delta(w(p))) r[y, z] \beta^{-1}(\delta(w(p)))=0$. Since R is semiprime, the last equation implies $[y, z] \beta^{-1}(\delta(w(p)))=$ 0 , which gives $[\beta(y), \beta(z)](\delta(w(p)))=0$. Replacing y by $\beta^{-1}(y)$ and z by $\beta^{-1}(z)$ in the last equation, we get

$$
\begin{equation*}
[y, z](\delta(w(p)))=0 \tag{18}
\end{equation*}
$$

Further, Lemma 2.1 implies $\delta(w(p)) \in Z(R)$.

Now we deduce Theorem A of Jung and Park [13], when ideal I is replaced by R, as a corollary of our Theorem 2.7.

Corollary 2.8 Let R be a prime ring. Let α, ν, τ be endomorphisms and β, μ automorphisms of R. If R admits a generalized (α, β)-derivation g with associated nonzero derivation δ such that $g([\mu(x), y])=$ $[\nu(x), y]_{\alpha, \tau}$, then R is commutative.
Proof. Taking $w=1$, all conditions of Theorem 2.7 are satisfied. Therefore from (18), we get

$$
\begin{equation*}
[y, z] \delta(p)=0 \quad \text { for all } \quad x, u, y \in R \tag{19}
\end{equation*}
$$

Replacing z by $z r, r \in R$, in (19) and using it, we get $[y, z] r \delta(p)=0$ for all $y, z, r, p \in R$. Since R is prime and $\delta \neq 0$, from the last equation, we get $[y, z]=0$ for all $y, z \in R$. Thus R is commutative.

Acknowledgment

The authors gratefully acknowledge the support provided by Bahauddin Zakariya University, Multan, Pakistan.

ALİ, CHAUDHRY

References

[1] Albas, E.: On T-centralizers of semiprime rings, Siberian Math. J. 48, 191-196 (2007).
[2] Argac, N., Albas, E.: On generalized (σ, τ)-derivations, Siberian. Math. J. 43,no.6, 977-984 (2002).
[3] Bres̆ar, M.: On the distance of the compositions of two derivations to the generalized derivations, Glasgow Math. J. 33,no.1, 89-93 (1991).
[4] Bres̆ar, M.: On the composition of (α, β)-derivations of rings to Von Neumann algebra, Acta. Sci.Math. 56, 369-375 (1992).
[5] Bres̆ar, M., Miers, C.R.: Strong commutativity preserving maps of semiprime rings, Canad. Math. Bull. 37, no.4, 457-460 (1994).
[6] Chang, J.C.: On the identity $h(x)=a f(x)+g(x) b$, Taiwanese J. Math. 7, no.1, 103-113 (2003).
[7] Daif, M.N., Tammam, M.S.: El-Sayiad and N. M. Muthana, An identity on θ-centralizers of semiprime rings, Int. Math. Forum 3, no.19, 937-944 (2008).
[8] Fillippis, V.D.: Generalized derivations in prime rings and non commutative Banach algebras, Bull. Korean Math. Soc. 45, no.4, 621-629 (2008).
[9] Gölbasi, $\ddot{O} .:$ Notes on generalized (α, β)-derivations in prime rings, Miskolc Mathematical Notes 8, no.1, 31-41 (2007).
[10] Gölbasi, Ö., Aydin, N.: Orthogonal generalized (σ, τ)-derivations of semiprime rings, Siberian Math. J. 48, no.6, 979-983 (2007).
[11] Herstein, I.N.: Rings with involution, The University of Chicago Press, London, (1976).
[12] Hvala, B.: Generalized derivations in rings, Comm. Algebra 26, no.4, 1147-1166 (1998).
[13] Jung, Y.S., Park,K.H.: On generalized (α, β)-derivations and commutitivity in prime rings, Bull. Korean Math. Soc. 43, no.1, 101-106 (2006).
[14] Ma, J., Xu, X.W.: Strong commutativity preserving generalized derivations on semiprime rings, Acta. Mathematica Sinica. English Series 24, no.11, 1835-1842 (2008).
[15] Vukman, J., Kosi-Ulbl, I.: On centralizers of semiprime rings, Aequationes Math. 66, no.3, 277-283 (2003).
[16] Zalar, B.: On centralizers on semiprime rings, Comment. Math. Univ. Carolinae 32, no.4, 609-614 (1991).
Faisal ALİ
Received: 16.06.2009
Centre for Advanced Studies
in Pure and Applied Mathematics
Bahauddin Zakariya University
Multan-PAKISTAN
e-mail: faisalali@bzu.edu.pk
Muhammad Anwar CHAUDHRY
Centre for Advanced Studies
in Pure and Applied Mathematics
Bahauddin Zakariya University
Multan-PAKISTAN
e-mail: chaudhry@bzu.edu.pk

[^0]: 2000 AMS Mathematics Subject Classification: 16N60, 16W25.

