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On generalized Witt algebras in one variable

Ki-Bong Nam, Jonathan Pakianathan

Abstract

We study a class of infinite dimensional Lie algebras called generalized Witt algebras (in one variable).

These include the classical Witt algebra and the centerless Virasoro algebra as important examples.

We show that any such generalized Witt algebra is a semisimple, indecomposable Lie algebra which does

not contain any abelian Lie subalgebras of dimension greater than one.

We develop an invariant of these generalized Witt algebras called the spectrum, and use it to show

that there exist infinite families of nonisomorphic, simple, generalized Witt algebras and infinite families of

nonisomorphic, nonsimple, generalized Witt algebras.

We develop a machinery that can be used to study the endomorphisms of a generalized Witt algebra

in the case that the spectrum is “discrete.” We use this to show that, among other things, every nonzero

Lie algebra endomorphism of the classical Witt algebra is an automorphism and every endomorphism of the

centerless Virasoro algebra fixes a canonical element up to scalar multiplication.

However, not every injective Lie algebra endomorphism of the centerless Virasoro algebra is an automor-

phism.

Key Words: Infinite dimensional Lie algebra, Virasoro algebra

1. Introduction

Throughout this paper, we will work over a field k of characteristic zero. Also note that there will be
no finiteness constraints on the dimension of the Lie algebras in this paper — in fact, most of the Lie algebras
that we will consider will be infinite dimensional.

We now sketch the basic results and ideas of this paper in this introductory section. Precise definitions
of the concepts can be found within the paper.

Let R be the field of fractions of the power series algebra k[[x]] .

Following [6], we define a stable algebra to be a subalgebra of R which is closed under formal differenti-
ation ∂ . Notice that we confine ourselves to the one variable case throughout this paper.

Important examples of stable algebras are the polynomial algebra k[x] , the power series algebra k[[x]]

and the Laurent polynomial algebra k[x, x−1] .

1991 AMS Mathematics Subject Classification: Primary: 17B65, 17C20; Secondary: 17B40.
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Following [8] and [10], to every stable algebra A , we associate a Lie algebra Witt(A). We refer to Witt(A)
as a generalized Witt algebra. (The reader is warned that there are different definitions of a generalized Witt
algebra in the literature. Please look at Definition 3.1 for ours.)

Witt(k[x]) is the classical Witt algebra, (See [2]) and Witt(k[x, x−1]) is called the centerless Virasoro
algebra in the literature. (See [7].)

A Lie algebra is called self-centralizing if it contains no abelian Lie subalgebras of dimension greater than
one. We prove:

Theorem 1.1 (Theorem 3.8 and Proposition 3.11) Every generalized
Witt algebra is self-centralizing.

Furthermore, if it is infinite dimensional (which is the case for all but one trivial example where A = k),
then a generalized Witt algebra must be semisimple and indecomposable.

To contrast, over an algebraically closed field, it is shown that the only finite dimensional Lie algebra
which is self-centralizing, semisimple and indecomposable is sl2 , the Lie algebra of 2× 2 matrices of trace zero.

However a generalized Witt algebra need not be simple; some are and some are not.

If a generalized Witt algebra has a nonzero ad-diagonal element, i.e., nonzero α such that ad(α) is
diagonal in some basis, we show that the set of eigenvalues of ad(α) possesses the algebraic structure of a
pseudomonoid.

We call this pseudomonoid the spectrum of α . We then show in Proposition 7.10 that any other nonzero
ad-diagonal element of this Lie algebra has to have an equivalent spectrum. This allows us to define the spectrum
of L to be the spectrum of any nonzero ad-diagonal element. It is then shown that this is indeed an invariant
for these kinds of Lie algebras, i.e., isomorphic Lie algebras have equivalent spectra.

The constraint that the Lie algebra possesses a nonzero ad-diagonal element, is not so bad as all the
classical examples possess this property.

In these pseudomonoids, one can define the notion of an ideal subset. We show the following proposition.

Proposition 1.2 (Proposition 6.5) Let L be a generalized Witt algebra with nonzero ad-diagonal element
and let G be its spectrum. Then there is a one-to-one correspondence between the ideal subsets of G and the
ideals of L .

If G is actually an abelian group then it is simple as a psuedomonoid and hence L is simple.

Since the classical Witt algebra and centerless Virasoro algebra have nonzero ad-diagonal elements, and
their spectra are simple pseudomonoids, we recover the well-known fact that they are simple, as a corollary.

Using this spectrum invariant, we can distinguish between nonisomorphic generalized Witt algebras and
show that there is a rich variety of such algebras (with nonzero ad-diagonal element) by way of the following
proposition.

Proposition 1.3 (Examples 5.9, 7.15 and 7.16) There exist infinite families of nonisomorphic, simple,
generalized Witt algebras and there exist infinite familes of nonisomorphic, nonsimple, generalized Witt algebras.

In fact for every submonoid of (k, +) , there is a generalized Witt algebra with that monoid as its spectrum.
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Thus, in particular since every torsion-free abelian group embeds into the additive group of some rational
vector space, we may get any torsion-free abelian group as the spectrum of a generalized Witt algebra in one
variable by suitable choice of the base field k.

A machinery is obtained to find the set of eigenvalues of any element in a generalized Witt algebra. It
uses formal calculus and in particular, the logarithmic derivative. It is stated in Theorem 5.11.

Finally, motivated by [12], we discuss injective Lie algebra endomorphisms of generalized Witt algebras.

In the case where the generalized Witt algebra possesses a “discrete” spectrum, one can show that such
an endomorphism must essentially fix a nonzero ad-diagonal element. (See Theorem 8.7.)

As corollaries of this fact, we can easily obtain information about endomorphisms of these Lie algebras
and prove things such as this theorem:

Theorem 1.4 (Corollaries 8.8 and 8.9) Any nonzero Lie algebra endomorphism f of the classical Witt
algebra is actually an automorphism and furthermore,

f(x∂) = (x + b)∂

for some b ∈ k.

If f is a nonzero Lie algebra endomorphism of the centerless Virasoro algebra, then f is injective and

f(x∂) =
1
a
x∂

for some nonzero integer a . However f need not be onto.

More precisely, the centerless Virasoro algebra possesses injective Lie algebra endomorphisms which are
not automorphisms.

One should compare this to the Jacobian conjecture for the classical Weyl algebra which states that any
nonzero algebra endomorphism is an automorphism. This conjecture is still open. The classical Witt algebra is
the Lie algebra of derivations of the classical Weyl algebra. (See [2].)

We remark that the automorphisms of the centerless Virasoro algebra were known and studied for example
in [3].

This completes the introductory overview.

2. Generalized Weyl algebras

Let k[[x]] be the power series algebra over k , and let R be its field of fractions. Note, since k[[x]] is a
local ring with maximal ideal (x), R is obtained from k[[x]] by inverting x . Thus every element g ∈ R can
be written in the form

g =
∞∑

i=N

αix
i,

for suitable αi ∈ k and N ∈ Z .
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Notice that R acts on itself by left multiplication and this gives us a monomorphism of k vector spaces:

τ : R → Endk(R).

Furthermore, there also exists ∂ ∈ Endk(R) which corresponds to formal differentiation with respect to
x , i.e.

∂(
∞∑

i=N

αix
i) =

∞∑
i=N

iαix
i−1.

It is easy to verify that ∂(g) = 0 if and only if g is a constant.

Definition 2.1 A stable algebra A is a subalgebra of R with the property that ∂(A) ⊆ A .

Remark 2.2 Three important examples of stable algebras are the polynomial algebra k[x] , the power series

algebra k[[x]] , and the Laurent polynomial algebra k[x, x−1] . (Recall a Laurent polynomial is an element of the

form
∑M

i=N αix
i for suitable N, M ∈ Z and αi ∈ k.)

Definition 2.3 Given a stable algebra A , we define Weyl(A) to be the subalgebra of Endk(R) generated by
τ (A) and ∂ . Thus, Weyl(A) is an associative algebra with identity element equal to the identity endomorphism
of R . We will identify A with its image τ (A) ⊆ Endk(R) from now on.

Lemma 2.4 Let A be a stable algebra. For any f ∈ A , one has ∂f − f∂ = f ′ in Weyl(A) . Thus for any

α ∈ Weyl(A) , one has α =
∑N

i=0 αi∂
i for suitable N ∈ N and αi ∈ A .

Furthermore, if {ei|i ∈ I} is a k-basis for A , then {ei∂
j|i ∈ I, j ∈ N} is a k-basis for Weyl(A) .

Proof. The proof is standard and is left to the reader. �

Remark 2.5 Weyl(k[x]) is the classical Weyl algebra. It is a simple algebra which has no zero divisors (see [2]).
In general, one can define an order on Weyl(R) such that the order of a nonzero element is equal to the highest
exponent of ∂ in its canonical expression and is defined to be −∞ for the zero element.

Then one shows that ord(αβ) = ord(α) + ord(β) for any α, β ∈ Weyl(R) (see [2]) and it easily follows
that Weyl(R) has no zero divisors. Hence, Weyl(A) , which is a subalgebra of Weyl(R) , has no zero divisors
in general. Note however, that in general, Weyl(A) need not be simple.

3. Generalized Witt algebras

Definition 3.1 Let Witt(A) be the subspace of Weyl(A) consisting of the order 1 elements together with zero.
Thus α ∈ Witt(A) if α can be written as f∂ for some f ∈ A .

It is easy to check that Witt(A) is a Lie subalgebra of Weyl(A). (Note, it is not a subalgebra of
Weyl(A).)
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If {ei}i∈I is a k-basis for A then {ei∂}i∈I is a k-basis for Witt(A).

Proposition 5.12 shows how our definition is related to the one found in [3].

Remark 3.2 Witt(k[x]) is the classical Witt algebra. It is the Lie algebra of derivations of the classical
Weyl algebra (see [2]), and is a simple Lie algebra. However, in general, Witt(A) is not neccessarily simple.

Witt(k[x, x−1]) is called the centerless Virasoro algebra in the literature. (See [7].)

In general, we cannot claim that Witt(A) is simple, but these generalized Witt algebras do share one
important common property: they are self-centralizing.

Definition 3.3 Given a Lie algebra L and an element l ∈ L , we define the centralizer of l , C(l) = {x ∈
L|[l, x] = 0} . Notice, by the Jacobi identity, C(l) is always a Lie subalgebra of L containing l .

Proposition 3.4 Given a Lie algebra L , the following conditions are equivalent.
(a) For any nonzero l ∈ L , [l, x] = 0 implies x = βl for some β ∈ k.
(b) C(l) is one dimensional for all nonzero l ∈ L .
(c) L does not contain any abelian Lie algebras of dimension greater than one.
(d) If α, β ∈ L are linearly independent, then [α, β] �= 0 .

Proof. The proof is easy and left to the reader. �

Definition 3.5 A Lie algebra L is said to be self-centralizing if it satisfies any of the equivalent conditions of
Proposition 3.4.

Remark 3.6 Thus a self-centralizing Lie algebra is one where the centralizers have as small a dimension as
possible. Notice that a self-centralizing Lie algebra of dimension strictly greater than one must have trivial
center. Furthermore, a Lie algebra isomorphic to a self-centralizing one is itself self-centralizing.

Remark 3.7 It is easy to check that the nonabelian Lie algebra of dimension two is self-centralizing but is
not simple. Similarly sln , the Lie algebra of n × n , trace zero matrices is simple but contains an abelian Lie
subalgebra of dimension greater than one for n ≥ 3 and hence is not self-centralizing.

We now make a useful observation

Theorem 3.8 For any stable algebra A , Witt(A) is a self-centralizing Lie algebra.

Proof. Let f∂ be a nonzero element of Witt(A). Suppose [f∂, g∂] = 0. Then as [f∂, g∂] = (fg′ − gf ′)∂ ,
we conclude that fg′ − gf ′ = 0 in A ⊆ R .

Then we can rewrite fg′ − gf ′ = 0 as (g/f)′f2 = 0 in R which is possible since f is not the zero
element. Since the only elements in R which have zero derivative, are the constants, we conclude that g/f is a
constant or that g is a multiple of f . Thus we conclude C(f∂) is one dimensional. This concludes the proof. �
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Remark 3.9 It follows immediately from Theorem 3.8, that the classical Witt algebra and the centerless
Virasoro algebra are self-centralizing.

Definition 3.10 Recall that a Lie algebra is called semisimple if it does not possess any nontrivial solvable
ideals. It is a standard fact that a Lie algebra is semisimple if it does not possess any nontrivial abelian ideals.
(See [5].)

Let us record some consequences of the self-centralizing property in the following proposition.

Proposition 3.11 Let L be a self-centralizing Lie algebra. Then:

(a) Any Lie subalgebra is also self-centralizing.

(b) If L possesses a finite dimensional ideal I of dimension n > 1 , then dim(L) ≤ n2 . If L possesses an ideal
of dimension 1, then dim(L) ≤ 2 .
(c) If L is infinite dimensional, then L does not possess any finite dimensional, nontrivial ideals.
(d) If α, β are two linearly independent elements of L and x is a common eigenvector of ad(α) and ad(β) ,
then x is a multiple of [α, β] .
(e) If α, β are two linearly independent elements of L , then there is no basis for L , in which both α and β are
ad-diagonal.
(f) L is indecomposable i.e., L cannot be written as a direct sum of two nonzero Lie algebras.
(g) If dim(L) > 2 then L is semisimple.
(h) If L is finite dimensional and k is algebraically closed, then L is either isomorphic to the nonabelian Lie
algebra of dimension two, sl2 , or a Lie algebra of dimension less than or equal to one.

Proof. (a) follows at once from the definition of a self-centralizing Lie algebra. To prove (b), suppose I is a
nontrivial, finite dimensional ideal of dimension n . Then define θ : L → Endk(I) by

θ(x) = ad(x)|I .

Note that Endk(I) is finite dimensional of dimension n2 . If n > 1, then θ is injective by the self-centralizing
property of L . This is because if z were a nonzero element in Ker(θ), then I ⊆ C(z). However, C(z) has
dimension 1 as L is self-centralizing, while I is assumed to have dimension bigger than 1 giving a contradiction.
It follows easily from the injectivity of θ that

dim(L) ≤ dim(Endk(I)) = n2.

If n = 1 and x is a generator of I , then Ker(θ) is codimension at most one in L . However, Ker(θ) = C(x) = I

since L is self-centralizing. Thus dim(L) ≤ 2.

(c) follows quickly from (b). (d) and (e) follow from quick calculations and the self-centralizing property.
(f) is a trivial verification.

For (g), note that if dim(L) > 2, then by (b), L does not possess any nontrivial ideals of dimension one.
On the other hand, because L is self-centralizing, it cannot possess any abelian ideals of dimension greater than
one and so we conclude that L does not possess any nontrivial abelian ideals and hence is semisimple.

For (h), note that if dim(L) ≤ 2, the result is easy. So we can assume 2 < dim(L) < ∞ , and so by (g),
L is semisimple. From standard results (see [5] or [4]), since we are over a field of characteristic zero, L is the
direct sum of simple Lie algebras. However by (f), we see that in fact L must be simple.
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If we assume k to be algebraically closed, then the Cartan subalgebra of L is abelian, and since L is
self-centralizing, it must have rank one. From the classification of simple finite dimensional Lie algebras over
an algebraically closed field, we see that L is isomorphic to sl2 . �

Remark 3.12 By Proposition 3.11, we see that there aren’t very many finite dimensional self-centralizing Lie
algebras. Thus it is somewhat striking that all of the generalized Witt algebras are self-centralizing.

We will see later that we can find infinitely many nonisomorphic generalized Witt algebras so that the class
of self-centralizing Lie algebras is pretty rich. In the class of infinite dimensional Lie algebras, Proposition 3.11
shows that being self-centralizing is a stronger condition than being semisimple and yet is usually easier to verify
than simplicity.

Since stable algebras A are infinite dimensional in all but some trivial cases, Witt(A) is usually infinite
dimensional and since it is self-centralizing by Theorem 3.8, it follows by Proposition 3.11, that Witt(A) is both
semisimple and indecomposable. However there are examples where Witt(A) is simple and there are examples
where it is not. We will discuss this more later on.

4. Eigenvalues and eigenspaces

We have seen that all generalized Witt algebras are self-centralizing. Given a Lie algebra L , and α ∈ L ,
let Ea(α) ⊆ L be the eigenspace of ad(α) corresponding to the eigenvalue a ∈ k .

In this language, a self-centralizing Lie algebra L is one such that

dim(E0(α)) = 1

for all nonzero α ∈ L . We have seen that a generalized Witt algebra is self-centralizing and hence satisfies
this condition on the eigenspaces. We will now extend this result by studying further constraints on these
eigenspaces in a generalized Witt algebra.

Before we can do this, we need to recall the concept of the logarithmic derivative on R , and some of its
basic properties.

Definition 4.1 Let R� denote the group of nonzero elements in the field R under multiplication. (Recall R

is the field of fractions of k[[x]] .) The logarithmic derivative LD : R� → R is defined by

LD(f) =
f ′

f
,

where f ′ is the formal derivative of f . It is easy to check that LD is a group homomorphism from (R�,×) to
(R, +) .

It is also routine to see that Ker(LD) is exactly the constant functions. Thus if u, v ∈ R� have
LD(u) = LD(v) , then u is a scalar multiple of v .

Now we are ready to prove an important lemma which generalizes Theorem 3.8.
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Lemma 4.2 If f∂ ∈ Witt(R) is a nonzero element, then dim(Ea(f∂)) ≤ 1 for all a ∈ k. Furthermore, if g∂

is a nonzero element in Ea(f∂) , then g = fu where LD(u) = a/f .

Proof. Suppose g∂ is a nonzero element in Ea(f∂). Then

[f∂, g∂] = ag∂

(fg′ − gf ′)∂ = ag∂

(g/f)′f2 = ag.

Thus we conclude (g/f)′f = a(g/f). If we let u = g/f , this becomes u′f = au or LD(u) = a/f . Thus
we conclude g = fu where LD(u) = a/f . If h∂ is another nonzero element in Ea(f∂), then similarly we would
conclude h = fv where LD(v) = a/f . However, LD(u) = LD(v) = a/f so v is a scalar multiple of u and
hence h is a scalar multiple of g . Thus we see dim(Ea(f∂)) ≤ 1 as we sought to show. �

Lemma 4.2 shows that for any nonzero f∂ ∈ Witt(R), and a ∈ k , the eigenspace of ad(f∂) corresponding
to a is at most one dimensional. It remains to decide when this eigenspace is one dimensional and when it is
zero dimensional. To do this, it turns out we need to find the image of LD : R� → R . We will now introduce
a few more concepts in formal calculus that will let us do this.

Definition 4.3 Given a nonzero f ∈ R , we can write

f =
∞∑

i=N

αix
i,

where αi ∈ k for all i ≥ N and αN �= 0 . N is called the Weierstrass degree (see [9]) of f and will be denoted
by W (f) . α−1 is called the residue of f and will be denoted res(f) . We also define W (0) = ∞ and res(0) = 0 .

Definition 4.4 Let U = {f ∈ R|W (f) = 0} . Then f ∈ U if and only if f ∈ k[[x]] and f(0) �= 0 and this
happens if and only if f is a unit of k[[x]] . Thus U is the group of units of k[[x]] under multiplication.

We now collect some elementary properties of the Weierstrass degree in the next lemma. The proof is
simple and will be left to the reader.

Lemma 4.5 Given nonzero f ∈ R , we can write

f = xW(f)u

with u ∈ U . Furthermore such an expression for f is unique.
Given f, g ∈ R ,

W (fg) = W (f) + W (g).

We now define formal integration.
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Definition 4.6 Recall (x) is the unique maximal ideal of k[[x]] . We define formal integration
∫

: k[[x]] → (x)
by

∫
(

∞∑
i=0

αix
i) =

∞∑
i=0

αi
xi+1

i + 1

=
∞∑

i=1

αi−1
xi

i
.

It follows easily that
∫
∈ Endk(k[[x]]) and that, if f ∈ k[[x]] is nonzero,

W (
∫

f) = W (f) + 1.

Furthermore, we have of course

∂(
∫

f) = f

for all f ∈ k[[x]] .

We will also need to compose two power series. Recall that given g ∈ k[[x]] and f ∈ (x), we have a

well-defined composition power series g ◦ f ∈ k[[x]] given in the following manner: If g =
∑∞

i=0 αix
i then

g ◦ f ∈ k[[x]] is given formally by
∑∞

i=0 αif
i .

We collect well-known results on this composition in the following proposition.

Proposition 4.7 If g ∈ k[[x]] and f ∈ (x) . Then there exists a series g ◦ f ∈ k[[x]] such that

(g ◦ f)′ = (g′ ◦ f)f ′ .

Furthermore, (g ◦ f)(0) = g(0) and g ◦ x = g .

We are now ready to study the image of the logarithmic derivative LD : R� → R .

Lemma 4.8 Let u ∈ R� ,
(a) If W (u) �= 0 then W (LD(u)) = −1 and res(LD(u)) is equal to W (u) which is of course an integer.
(b) If W (u) = 0 then W (LD(u)) ≥ 0 .

(c) If W (g) < −1 or if W (g) = −1 and res(g) is not an integer, then g is not in the image of LD : R� → R .

Proof. The proof will be left to the reader. It follows from writing u as a Laurent series and explicitly
calculating LD(u). �

We have seen in Lemma 4.8, conditions that ensure an element g ∈ R is not in the image of LD : R� → R .
We now show that, in the remaining situations, the element g is in the image.

First recall ex ∈ k[[x]] is the power series given by

ex =
∞∑

i=0

xi

i!
.
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It is easy to verify that ∂ex = ex and that ex evaluated at x = 0 is 1.

Given g ∈ k[[x]] ,
∫

g lies in (x), the maximal ideal of k[[x]] . Thus by Proposition 4.7 we can form the

power series ex ◦ (
∫

g) which we will denote by e
�

g . It follows from the same proposition that

∂e
�

g = e
�

g∂(
∫

g) = ge
�

g.

Furthermore, since e
�

g(0) = ex(0) = 1, we see that e
�

g ∈ U for all g ∈ k[[x]] .

We will use these facts in the next theorem.

Theorem 4.9 Let g ∈ R . Then either:

(a) W (g) ≥ 0 and g = LD(e
�

g) .

(b) W (g) = −1 and res(g) is an integer then g = res(g)
x

+ u for some unique u ∈ k[[x]] and we have

g = LD(xres(g)e
�

u) .
(c) W (g) < −1 or W (g) = −1 and res(g) is not an integer, in which case g is not in the image of

LD : R� → R .

Proof. (c) follows from Lemma 4.8. For (a), assume g has W (g) ≥ 0 so that e
�

g ∈ U . Then we calculate

LD(e
�

g) =
∂e

�
g

e
�

g
=

ge
�

g

e
�

g
= g

and so (a) is proven.

Assume g as in the statement of (b). Then it is obvious that we may write g = res(g)
x

+u with u ∈ k[[x]]

determined uniquely. Since res(g) is an integer xres(g)e
�

u certainly defines an element in R� . We compute

LD(xres(g)e
�

u) = res(g)LD(x) + LD(e
�

u), since LD is a homomorphism

= res(g)
1
x

+ u, using the calculation in (a)

= g.

Thus we are done.

�

We are now ready to complete the analysis of the eigenspaces of elements in ad(Witt(R)) which was
started in Lemma 4.2.

Theorem 4.10 (Spectral theorem for R) Let f∂ be a nonzero element in Witt(R) . Then:
(a) If W (f) > 1 , then dim(Ea(f∂)) = 0 for all nonzero a ∈ k and

dim(E0(f∂)) = 1.
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(b) If W (f) ≤ 0 , then dim(Ea(f∂)) = 1 for all a ∈ k. Furthermore,

fe
�

a
f ∂ ∈ Ea(f∂).

(c) If W (f) = 1 then dim(Ea(f∂)) = 0 if a �= Nf ′(0) for some integer N . dim(ENf ′(0)(f∂)) = 1 for all
N ∈ Z . Furthermore

fxNe
�

(
N(f′(0)x−f)

fx )∂ ∈ ENf ′(0)(f∂)

for all N ∈ Z .

Proof. Let f∂ ∈ Witt(R) be nonzero and let a ∈ k . Then by Lemma 4.2, we see that dim(Ea(f∂)) is

either zero or one and it is one if and only if a
f = LD(u) for some u ∈ R� . Furthermore, in this case, fu∂ is

a nonzero element of Ea(f∂). Since we know dim(E0(f∂)) = 1 we can assume a �= 0 for the rest of the proof.
It follows that W ( a

f ) = −W (f).

If W (f) > 1 then W ( a
f ) < −1 and so by Theorem 4.9, a

f is not in the image of the logarithmic derivative

and hence we have proven (a).

If W (f) ≤ 0 then W ( a
f ) ≥ 0 and so a

f = LD(e
�

a
f ) by Theorem 4.9 giving us (b).

If W (f) = 1 then we can write f = xf ′(0)v where v ∈ U has v(0) = 1. Then W ( a
f ) = −1 and

res( a
f
) = a

f ′(0)
. Again by Theorem 4.9, a

f
is in the image of the logarithmic derivative if and only if this residue

is an integer which happens if and only if a is an integral multiple of f ′(0). If this is the case, then a = Nf ′(0)
and we can write

Nf ′(0)
f

=
N

x
+ w

where w ∈ k[[x]] . Theorem 4.9 then shows that Nf ′(0)
f

= LD(xNe
�

w). Now it remains only to note that

w =
Nf ′(0)

f
− N

x
=

N(f ′(0)x − f)
fx

,

and we are done. �

5. Spectra

We now discuss the concept of a spectrum which we will find to be very useful in the remainder of this
paper.

Definition 5.1 Given a Lie algebra L , and α ∈ L , we define the L-spectrum of α to be

specL(α) = {a ∈ k| dim(Ea(α)) �= 0}.

We write spec(α) for specL(α) when there is no danger of confusion. Thus the spectrum of α is the set of
eigenvalues of ad(α) ∈ Endk(L) .
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Notice that in a nonzero Lie algebra L , spec(0) = {0} and 0 ∈ spec(α) for all α ∈ L . In general the
spectrum possesses no significant algebraic structure. However, we will soon see that if L is self-centralizing,
spec(α) possesses the structure of a pseudomonoid (which we will define shortly) for all α ∈ L .

Definition 5.2 A subset P of k is a pseudomonoid if it satisfies the following conditions:
(a) 0 ∈ P .
(b) If a, b ∈ P and a �= b then a + b ∈ P where + is addition in k.

Remark 5.3 Notice that a pseudomonoid differs from a monoid because in a monoid we may also add an
element to itself, i.e., if a ∈ P and P is a monoid under + then a + a ∈ P . This need not hold for a
pseudomonoid as can be seen by the following example:
Let A = {−1, 0, 1, . . .} be the set of integers greater than or equal to negative one. This set is a pseudomonoid
under addition but is not a monoid as

(−1) + (−1) = −2 /∈ A.

The concept of a pseudomonoid turns out to be important for us because of the following lemma.

Lemma 5.4 Let L be a Lie algebra, and α ∈ L be a nonzero element. Then for any a, b ∈ k, we have
[Ea(α), Eb(α)] ⊆ Ea+b(α) .

Thus if L is self-centralizing, then spec(α) is a pseudomonoid for all α ∈ L .

Proof. For a proof of the first statement, take α ∈ L and a, b ∈ k . Then for ea ∈ Ea(α) and eb ∈ Eb(α) we
have by the Jacobi identity:

[α, [ea, eb]] = [[α, ea], eb] + [ea, [α, eb]]

= [aea, eb] + [ea, beb]

= (a + b)[ea, eb].

Thus we see that [ea, eb] ∈ Ea+b(α) which proves the first statement.

Now suppose that L is self-centralizing. spec(0) = {0} is a pseudomonoid so assume α �= 0. Let
a, b ∈ spec(α) with a �= b . Then if we take nonzero ea ∈ Ea(α) and eb ∈ Eb(α), since a �= b it follows that
ea, eb are linearly independent. Thus since L is self-centralizing, it follows that [ea, eb] �= 0, which shows that
Ea+b(α) �= 0. Thus a + b ∈ spec(α) and so spec(α) is a pseudomonoid. �

Definition 5.5 Let α ∈ L . Then we define

ML(α) = ⊕a∈kEa(α).

Thus ML(α) is the subspace of L spanned by the eigenspaces of α . It is the maximal subspace on which ad(α)
is diagonal (with respect to some basis).
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It is easy to argue that we can also write

ML(α) = ⊕a∈spec(α)Ea(α).

It follows from Lemma 5.4 that ML(α) is a Lie subalgebra of L . We will write M(α) for ML(α) when there
is no danger of confusion.

We will now look at a few examples before proceeding any further. To do this, it is useful to introduce
the concept of a differential spanning set.

Definition 5.6 S ⊆ R is called a differential spanning set if it satisfies the following conditions:
(a) 1 ∈ S .
(b) If f, g ∈ S , then fg ∈ S .
(c) If f ∈ S then ∂f is a linear combination of elements in S .

Given a differential spanning set S , the vector space A spanned by S in R is easily seen to be a stable
algebra.

Example 5.7 Let S = {xn|n ∈ N} , then it is easy to check that S is a differential spanning set which spans the
polynomial stable algebra k[x] and is in fact a basis for this algebra. In Witt(k[x]) , one calculates the relation

[xn∂, xm∂] = (xn(xm)′ − xm(xn)′)∂

= (m− n)xm+n−1∂.

Thus we see easily that M(x∂) = Witt(k[x]) and that spec(x∂) = {−1, 0, 1, . . .} .

Example 5.8 Let S = {xn|n ∈ Z} , then S is a differential spanning set which forms a basis for the Laurent

polynomial stable algebra k[x, x−1] . Exactly as in Example 5.7, one can show that M(x∂) = Witt(k[x, x−1])
and that spec(x∂) = {. . . ,−2,−1, 0, 1, 2, . . .} = Z .

Note that the spectrum of x∂ depends on which Lie algebra we are in and so we stress that the reader
should keep in mind the surpressed subscript L in the notation for spec.

Example 5.9 Let G be a submonoid of (k, +) , then S = {eax|a ∈ G} , is a differential spanning set (since

e(a+b)x = eaxebx as the reader can verify). Let A(G) be the stable algebra that this spanning set spans. In
Witt(A(G)) , we calculate

[eax∂, ebx∂] = (eaxbebx − ebxaeax)∂

= (b − a)e(a+b)x.

From this, it follows that M(1∂) = Witt(A(G)) and that spec(1∂) = G . Since ebx∂ ∈ Eb(1∂) for all b ∈ G , it
also follows that S is a basis for A(G) .

Remark 5.10 It is a standard fact that every torsion-free abelian group embeds into a torsion-free divisible
group and that a torsion-free divisible group is isomorphic to the additive group of a rational vector space
(see [11]).
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Any rational vector space is isomorphic to a subgroup of (k, +) for suitable choice of k. (We need the
dimension of k over its characteristic subfield Q to be big enough.)

Thus by Example 5.9, we conclude that every torsion-free abelian group is the spectrum of some ad-
diagonal element in some generalized Witt algebra in one variable.

Finally we state a general spectral theorem for generalized Witt algebras. It is based on Theorem 4.10.

Theorem 5.11 (Spectral theorem) Let Witt(A) be a generalized Witt algebra and f∂ be a nonzero element
in Witt(A) . Then for all a ∈ k,

dim(Ea(f∂)) ≤ 1,

and
(a) If W (f) > 1 , then spec(f∂) = {0} .
(b) If W (f) ≤ 0 then for all a ∈ k,

a ∈ spec(f∂) ⇐⇒ fe
�

a
f ∈ A.

(c) If W (f) = 1 then spec(f∂) ⊆ Zf ′(0) , where Zf ′(0) stands for the set of integral multiples of f ′(0) ∈ k.
Furthermore, for all N ∈ Z ,

Nf ′(0) ∈ spec(f∂) ⇐⇒ fxNe
� N(f′ (0)x−f)

fx ∈ A.

Proof. First note that A ⊆ R so Witt(A) is a Lie subalgebra of Witt(R). Then if f∂ ∈ Witt(A), and
a ∈ k , the a-eigenspace of ad(f∂) for Witt(A) lies inside the one for Witt(R). Thus specWitt(A)(f∂) ⊆
specWitt(R)(f∂) and a ∈ specWitt(R)(f∂) lies in specWitt(A)(f∂) if and only if one of the eigenvectors in R

corresponding to a actually lies in A . With these comments, the rest now follows from Theorem 4.10. �

Theorem 5.11 will show that our definition of generalized Witt algebras is related to the definition in
papers such as [3]. We do this in the next proposition.

Proposition 5.12 Let Witt(A) be a generalized Witt algebra and let f∂ be a nonzero element of Witt(A) .
Then there exists a basis {ea}a∈spec(f∂) of M(f∂) such that

[ea, eb] = (b − a)ea+b

for all a, b ∈ spec(f∂) . (Here, (b− a)ea+b is considered to be zero for a = b even though a + b might not be in
spec(f∂) .) Furthermore, we can take ea ∈ Ea(f∂) for all a ∈ spec(f∂) and e0 = f∂ .

Proof. By Theorem 5.11, if W (f) > 1, then spec(f∂) = {0} and the result is obvious.

If W (f) ≤ 0, then set

ea = fe
�

a
f ∂

for all a ∈ spec(f∂).
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Then by Theorem 5.11, {ea}a∈spec f∂ is a basis for M(f∂).

One computes using [g∂, h∂] = (gh′ − hg′)∂ , that indeed

[ea, eb] = (b − a)ea+b.

Similarly, in the remaining case where W (f) = 1, we set

eNf ′(0) = fxNe
� N(f′ (0)x−f)

fx ∂

for all Nf ′(0) ∈ spec(f∂), and again compute that

[eNf ′(0), eMf ′(0)] = (M − N)f ′(0)e(N+M)f ′(0)

for all Mf ′(0), Nf ′(0) ∈ spec(f∂). �

We are now ready to study the issue of simplicity of a generalized Witt algebra. We will do this in the
next section.

6. Simplicity

Definition 6.1 A Lie algebra L is said to be strongly graded if there exists a pseudomonoid G and a vector
space decomposition:

L = ⊕a∈GEa

with the properties
(a) dim(Ea) = 1 for all a ∈ G .
(b) There is a basis {ea}a∈G of L such that ea ∈ Ea for all a ∈ G and

[ea, eb] = (b − a)ea+b.

Note that this means that spec(e0) = G .

Remark 6.2 Of course, by Theorem 5.11 and Proposition 5.12, if Witt(A) is a generalized Witt algebra, and
α ∈ Witt(A) is nonzero, then M(α) is a strongly graded Lie algebra, graded by the pseudomonoid spec(α)
where α plays the role of e0 .

Remark 6.3 It is obvious that two strongly graded Lie algebras, graded by the same pseudomonoid G ⊆ k, are
isomorphic as Lie algebras.

Now we set out to get a complete correspondence between the ideals of a strongly graded Lie algebra and
the ideals of the pseudomonoid which grades it.

Definition 6.4 Let G be a pseudomonoid.
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Then S ⊆ G is called a closed subset if for all distinct a, b ∈ S , we have a + b ∈ S . Note that a closed
subset S need not be a subpseudomonoid of G since we do not require that 0 ∈ S . In fact the empty set ∅ is
always a closed subset.

I ⊆ G is called an ideal subset if for all a ∈ I and all b ∈ G such that b �= a , we have a + b ∈ I . Again
the empty set is always an ideal subset and G is always an ideal subset of G . These are called the trivial ideal
subsets.

A pseudomonoid G which has no nontrivial ideal subsets is called a simple psuedomonoid.

A nonzero element x ∈ G is called invertible if −x ∈ G . (Recall, all pseudomonoids are by definition in
k and hence −x exists in k and is distinct from x .)

Fix a strongly graded Lie algebra L , graded by a pseudomonoid G , then L = ⊕g∈GEg such that there
is e0 ∈ E0 , with spec(e0) = G and Eg equal to the eigenspace of ad(e0) corresponding to g .

Then for any S ⊂ G , we define:

Θ(S) = ⊕a∈SEa.

(We use the convention that Θ(∅) = 0.)

Thus Θ is a map from the subsets of G to the subspaces of L , which is obviously injective.

Notice that if S is a closed subset of G , then Θ(S) is a Lie subalgebra of L (because [Ea, Ea] = 0 for
all a ∈ G). Furthermore, if 0 ∈ S , then e0 ∈ Θ(S).

Similarly, if I is an ideal subset of G , then Θ(I) is an ideal of L .

Proposition 6.5 Let L be a strongly graded Lie algebra, graded by the pseudomonoid G .

The map Θ defined above takes closed subsets of G to Lie subalgebras of L and this correspondence is
injective.

The map Θ takes closed subsets of G containing 0 , to Lie subalgebras of L containing e0 and this
correspondence is bijective.

The map Θ takes ideal subsets of G to ideals of L and this correspondence is bijective.

Proof. All but the surjectivity of the last two correspondences has been proven.

So assume J is an ideal of L (or a Lie subalgebra containing e0 ). First, let us show that there is a subset
I of G such that Θ(I) = J . We can of course assume J �= 0 as Θ(∅) = 0.

Define I ⊂ G as follows. Recall that by the grading, for any x ∈ L , we can write x uniquely as

x =
∑
a∈G

xa,

with xa ∈ Ea and only finitely many xa nonzero. We call xa the a-th component of x . Then set

I = {a ∈ G such that there exists y ∈ J whose a-th component is nonzero}.

It is clear that J ⊆ Θ(I). So it remains only to show Θ(I) ⊆ J . We do this by showing that Ea ⊆ J for
any a ∈ I . This follows immediately from the following fact:

Fact: If y ∈ J , then all of the components of y are also in J .

420



NAM, PAKIANATHAN

We will prove this fact by induction on n , the number of nonzero components of y . If n = 0, 1, it follows
trivially. So assume n > 1 and we have proven the fact for all smaller n . So let y ∈ J and assume we can write

y =
n∑

i=1

yai ,

with yai ∈ Eai nonzero and {ai}n
i=1 a set of distinct elements in I . Also, without loss of generality, a1 �= 0.

Then

[e0, y] =
n∑

i=1

aiyai

is in J and so

y − 1
a1

[e0, y] =
n∑

i=2

(1 − ai

a1
)yai

is in J . However by induction, it follows that the components of y − 1
a1

[e0, y] lie in J and hence that yai lie

in J for all 2 ≤ i ≤ n . However y = ya1 +
∑n

i=2 yai , so it also follows that ya1 is in J . Thus by induction, we
have proven the fact and hence that J = Θ(I).

All that remains is to show that I is an ideal subset if J is an ideal or that I is a closed subset containing
zero if J is a Lie subalgebra containing e0 . We prove only the former, the proof of the latter being similar.

If a ∈ I then by definition, there is y ∈ J such that y =
∑

g∈G yg with yg ∈ Eg and ya �= 0. If b ∈ G

and b �= a , take nonzero zb ∈ Eb . Then [zb, y] =
∑

g∈G[zb, yg] ∈ J as J is an ideal. Notice that since our

pseudomonoids are defined to be subpseudomonoids of (k, +), the only term in the sum that can lie in Ea+b is
[zb, ya] which is nonzero as zb, ya are nonzero and since we are in a strongly graded Lie algebra. All the other
terms live in other eigenspaces and so we conclude [zb, ya] has nonzero (a + b)-component and hence a + b ∈ I

showing that I , is an ideal subset of G .

�

Corollary 6.6 If L is a strongly graded Lie algebra, graded by a pseudomonoid G . Then L is simple if and
only if G is simple.

Let Witt(A) be a generalized Witt algebra and α ∈ Witt(A) be nonzero, then M(α) is a simple
Lie algebra if and only if spec(α) is a simple pseudomonoid. (Note it is easy to see that specM(α)(α) =

specWitt(A)(α) .)

Proof. Follows immediately from previous remarks and Proposition 6.5. �

So we see that it would be useful to have some conditions that ensure the simplicity of a pseudomonoid.
This is the purpose of the next lemma.

Lemma 6.7 Let G be a pseudomonoid. Then:
(a) If I is an ideal subset, and 0 ∈ I then I = G .
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(b) If I is an ideal subset, and there is an invertible element x ∈ I then I = G .
(c) A pseudomonoid which is a group is a simple pseudomonoid.

Proof. Let I be an ideal subset with 0 ∈ I . Then for any nonzero a ∈ G , we have 0 + a = a ∈ I since I is
an ideal subset. Thus I = G . This proves (a).

Suppose I contained an invertible element x . Then as x �= −x , and −x ∈ G , we have x + (−x) = 0 ∈ I

as I is an ideal subset. Thus I = G by (a). So this proves (b).

If G is an (abelian) group and I a nonempty ideal subset. Then take a ∈ I . If a = 0 then I = G by
(a) and if a is nonzero then a is invertible as G is a group, and so I = G by (b). Thus we conclude G is a
simple pseudomonoid. �

Corollary 6.8 If L is a strongly graded Lie algebra, graded by an abelian group A ⊆ k, then L is simple.

In Example 5.7 we saw that the classical Witt algebra, Witt(k[x]) is strongly graded, graded by the
pseudomonoid G = {−1, 0, 1, . . .} . If I is a nonempty ideal subset of this pseudomonoid, by adding −1
repeatedly to an element in I if necessary, we see −1 ∈ I . Since −1 is invertible in G , we conclude by
Lemma 6.7, that I = G . So G is a simple pseudomonoid and so the classical Witt algebra is a simple Lie
algebra.

In Example 5.8 we saw that the centerless Virasoro algebra, Witt(k[x, x−1]) is strongly graded, graded
by the pseudomonoid Z . Since this is a group, it is simple as a pseudomonoid and we have proven the following
corollary.

Corollary 6.9 The classical Witt algebra and the centerless Virasoro algebra are simple.

Example 6.10 The natural numbers N = {0, 1, 2, . . .} is a monoid which is not simple as a pseudomonoid. In
fact if we define Ik = {k, k +1, . . .} for all k ∈ N , then the reader can easily verify that Ik is an ideal subset of
N . (There is exactly one more nonempty ideal subset not covered by these which we leave the reader to find if
they wish.) So from Example 5.9, Witt(A(N)) gives us an example of a generalized Witt algebra which is not
simple.

Definition 6.11 Two subsets S1 , S2 of k are said to be equivalent if there exists nonzero k ∈ k such that

S1 = kS2 ≡ {kx|x ∈ S2}.

It is easy to see that this defines an equivalence relation on the subsets of k. We write [[S]] for the equivalence
class of the set S under this equivalence relation.

For any Lie algebra L , nonzero α ∈ L , and nonzero k ∈ k , it is easy to see that M(α) = M(kα) and
spec(kα) = k spec(α). Thus we have

[[spec(kα)]] = [[spec(α)]].

It is also easy to see that two strongly graded Lie algebras, graded by equivalent pseudomonoids, are
isomorphic as Lie algebras.
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Given a strongly graded Lie algebra L , graded by the pseudomonoid G , we have L = M(e0) with
spec(e0) = G ⊆ k where e0 is obtained from the definition of a strongly graded Lie algebra.

We would like to define [[spec(e0)]] as an invariant of L . However, it turns out that this is not apriori,
intrinsic enough to be useful, i.e., it is not obvious that we might not find another nonzero element f such that
L = M(f) and [[spec(f)]] �= [[spec(e0)]] .

In the next section, we show that this in fact cannot occur, and hence define an invariant which helps us
find infinite families of nonisomorphic generalized Witt algebras!

7. Invariance of the spectrum

Before we proceed any further, we need to develop a somewhat technical tool. We need to weakly order
any field (of characteristic zero). We define this notion now.

Definition 7.1 A weak order on k is a linear order � on k such that if x � y then x + z � y + z for all
z ∈ k. (Recall a linear order is a partial order with the property that for any two elements e, f either e � f or
f � e (or both).)

Note the field of real numbers R has a weak order (the usual one) and so any subfield of R has a weak
order.

A weak order on an abelian group is defined in exactly the same way.

As is common, we will write x ≺ y if x � y and x �= y .

There is also a stronger notion of ordered field in the literature (see [9]). However for example C , the
field of complex numbers, cannot be made into an ordered field. However, we show in the next proposition,
that any field (of characteristic zero) has a weak order.

Proposition 7.2 Any field k (of characteristic zero) possesses a weak order.

Proof. We identify the characteristic subfield of k with the rational numbers Q as is usual. Then of course,
k is a vector space over Q . Define the set S as

S = {(A,�)|A is a Q-subspace of k and � is a weak order on A.}.

We make S into a partially ordered set (S,≤) as follows:

(A1,�1) ≤ (A2,�2) ⇐⇒ A1 ⊆ A2 and �2 |A1 =�1 .

The characteristic subfield Q of k can be viewed as the characteristic subfield of the real numbers and
so we can put the standard order on it. Thus S is not empty.

It is easy to verify that any chain {(Ai,�i)i∈I} in (S,≤) has an upper bound (∪i∈IAi,�) and thus
Zorn’s lemma gives us a maximal element (M,�) of (S,≤).

Suppose M �= k , then we can find a ∈ k \ M and thus M ′ = M ⊕ Qa is a Q-subspace of k . We define
�′ on M ′ as follows:

m1 + q1a ≺′ m2 + q2a ⇐⇒ m1 ≺ m2 or m1 = m2 and q1 < q2.

423



NAM, PAKIANATHAN

It is easy to verify that �′ is a weak order on M ′ which restricts to � on M .

Thus (M,�) < (M ′,�′) which is a contradiction as (M,�) is maximal. Thus we conclude M = k and
hence that we can weakly order k . �

We now use Proposition 7.2 to weakly order any pseudomonoid.

Definition 7.3 Let G ⊆ k be a psuedomonoid. A weak order on G is the restriction of some weak order on
k.

Proposition 7.2 shows all pseudomonoids possess a weak order (since we require our pseudomonoids to
be in k , by definition).

Definition 7.4 Let G be a pseudomonoid with weak order �.

We say that x ∈ (G,�) is positive if 0 ≺ x and we say x is negative if x ≺ 0 .

If we set P to be the set of positive elements in (G,�) and N to be the set of negative elements in
(G,�) , then it is easy to see that {P, N, {0}} is a partition of G .

A maximum element M of (G,�) is an element such that x � M for all x ∈ G . Similarly, a minimum
element m of (G,�) is an element such that m � x for all x ∈ G . Notice that if there is a maximum element,
it is unique as � is a linear order and similarly for a minimum element.

An extreme element of (G,�) is either a maximum or a minimum element.

We collect in the next lemma some basic but useful facts about ordered psuedomonoids.

Lemma 7.5 Let (G,�) be a pseudomonoid with a weak order. Then:
(a) If G possesses a minimum element m then either m = 0 or m is the unique negative element in (G,�) .
(b) If G possesses a maximum element M then either M = 0 or M is the unique positive element in (G,�) .
(c) If G possesses a minimum and a maximum element then the order of G is less than or equal to 3.
(d) If the order of G is infinite, then G possesses at most one extreme element.
(e) If G is a finite pseudomonoid, then the order of G is either one, two or three. Furthermore, for each of
these orders, there is a unique pseudomonoid up to equivalence.

Proof. For (a), let m be a minimum element and assume m is not zero. Then we must have m ≺ 0 as m

is a minimum element.

Suppose there were x ≺ 0 with x �= m , then x+m ≺ 0+m = m with x+m ∈ G as G is a pseudomonoid.
This contradicts the minimality of m and thus we conclude there is no such x , i.e., m is the unique negative
element.

The proof of (b) is similar to (a) and is left to the reader. For (c), note that if G has a minimum element
m and a maximum element M then it follows that the set of nonpositive elements is {0, m} by (a) and the set
of nonnegative elements is {0, M} by (b). Thus G = {0, m, M} and hence G has order less than or equal to 3.
(Exact order depends on whether or not the elements {0, m, M} are distinct or not.)

(d) follows immediately from (c). The first part of (e) also follows immediately from (c) since any weak
order on a finite pseudomonoid has a maximum and a minimum element.
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Note that if the order of G is three and G = {0, m, M} , then we must have M = −m since M +m ∈ G .
Thus it is easy to see that [[G]] = [[{−1, 0, 1}]] . If G has order two, obviously [[G]] = [[{0, 1}]] and if G has
order one, then G = {0} . So we are done. �

Remark 7.6 From Proposition 3.11, we have a complete list of finite dimensional, self-centralizing Lie algebras
(in the case that k is algebraically closed). The reader can easily verify that each of these is strongly graded,
graded by a finite pseudomonoid of size one, two or three.

Definition 7.7 Let L = ⊕g∈GEg be a strongly graded Lie algebra and suppose we have a weak order � on the
pseudomonoid G . Then if α ∈ L is nonzero we can uniquely write

α =
n∑

i=1

egi

where g1 ≺ g2 ≺ · · · ≺ gn ∈ G and egi ∈ Egi is nonzero for all 1 ≤ i ≤ n .

We call g1 ∈ (G,�) the initial index of α and write g1 = Init(α) .

We call gn ∈ (G,�) the terminal index of α and write gn = Term(α) .

Lemma 7.8 Let L be a strongly graded Lie algebra, graded by a weakly ordered pseudomonoid (G,�) . Then
if x, y are nonzero elements of L , we have:
(a) If Term(x) �= Term(y) then [x, y] �= 0 and

Term([x, y]) = Term(x) + Term(y).

(b) If Init(x) �= Init(y) then [x, y] �= 0 and Init([x, y]) = Init(x) + Init(y) .

Proof. L = ⊕g∈GEg so we can take a basis {eg}g∈G of L with eg ∈ Eg for all g ∈ G . First we expand x

in the basis {eg}g∈G . Thus

x =
n∑

i=1

xgiegi ,

with g1 ≺ g2 ≺ · · · ≺ gn and xgi �= 0 for all 1 ≤ i ≤ n . Thus Init(x) = g1 and Term(x) = gn .

We can expand y in a similar manner.

y =
m∑

j=1

yhj ehj

with h1 ≺ · · · ≺ hm and yhj �= 0 all 1 ≤ j ≤ m . Thus Init(y) = h1 and Term(y) = hm .

Then we calculate that

[x, y] =
n∑

i=1

m∑
j=1

xgiyhj [egi , ehj ].
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Hence, if gn �= hm then 0 �= [egn , ehm ] ∈ Egn+hm and gn + hm is easily seen to be the terminal index of
[x, y] , and similarly, if g1 �= h1 then g1 + h1 is the initial index of [x, y] . �

Corollary 7.9 Let L be as in Lemma 7.8. Suppose α ∈ L is nonzero. Then:
(a) If Init(α) �= 0 then every eigenvector x of ad(α) has Init(x) = Init(α) .
(b) If Term(α) �= 0 then every eigenvector x of ad(α) has Term(x) = Term(α) .
(c) dim(Ea(α)) ≤ 1 for all a ∈ k.

Proof. For (a), let α have Init(α) �= 0 and assume x is an eigenvector of ad(α) with Init(x) �= Init(α).
Then by Lemma 7.8 we have [α, x] is nonzero and

Init([α, x]) = Init(x) + Init(α).

However, as x is an eigenvector, we also have [α, x] = μx for some μ ∈ k . Since [α, x] �= 0 we conclude μ �= 0
and hence that

Init(α) + Init(x) = Init([α, x]) = Init(μx) = Init(x).

Thus Init(α) = 0 which contradicts our hypothesis. Thus we conclude every eigenvector of α must have the
same initial index as α . The proof of (b) is similar and is left to the reader.

For (c), note that if both Init(α) and Term(α) are zero, then α is a nonzero scalar multiple of e0 and
the result is clear. So we can assume one of Init(α) or Term(α) is nonzero. For concreteness, let us assume
Init(α) �= 0, the proof for the case where Term(α) �= 0 being similar and left to the reader.

Then if dim(Ea(α)) ≥ 2 for some a ∈ k . We can find linearly independent x, y ∈ Ea(α). By (a),
we have Init(x) = Init(y) = Init(α). Then it is clear we can form a nonzero linear combination of x and y

whose Init(α)-component is zero. Call this element z then this means that Init(z) is not Init(α). This is a
contradiction as z is nonzero and in Ea(α) and so, by (a) again, must have Init(z) = Init(α). �

We are now ready to prove an important proposition. This proposition will enable us to define the
spectrum of a strongly graded Lie algebra and use it as a tool to distinguish between two such Lie algebras.

Proposition 7.10 Let L be an infinite dimensional, strongly graded Lie algebra, graded by a pseudomonoid
G . Choose a weak order � on G and let {eg}g∈G be the usual basis of L .

Suppose we have nonzero α ∈ L such that M(α) = L , then:
(a) If (G,�) has no nonzero extreme elements, α = ke0 for some nonzero k ∈ k. Thus spec(α) = k spec(e0)
and

[[spec(α)]] = [[spec(e0)]] = [[G]].

(b) If (G,�) has a nonzero extreme element m, then m is unique and

α = ke0 + k′em

for some k, k′ ∈ k with k �= 0 . Furthermore we still have

[[spec(α)]] = [[spec(e0)]] = [[G]].
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Proof. Assume the setup as in the statement of the proposition.

First note that if Init(α) �= 0 then Corollary 7.9 shows that all the eigenvectors of α have initial index
equal to Init(α). However these eigenvectors span L as M(α) = L and so it follows easily that Init(α) is a
nonzero minimal element of (G,�).

Similarly if Term(α) �= 0 then Term(α) is a nonzero maximal element of (G,�).

For (a), note that our previous arguments show that if (G,�) has no nonzero extreme elements, that
Init(α) = 0 = Term(α) and hence that α = ke0 for some nonzero k ∈ k from which the rest of the conclusion
in (a), is obvious.

For (b), note that we can assume that at least one of Term(α), Init(α) is a nonzero extreme element of
(G,�) or else the conclusion would follow from our argument for (a).

Since L is infinite dimensional, G is infinite and hence (G,�) can possess at most one extreme element
by Lemma 7.5, part (d). Thus for (b), we can assume (G,�) has exactly one extreme element m and that it is
a minimum. (If it was a maximum, reorder G by setting x ≺′ y ⇐⇒ y ≺ x . This reordering switches Init(α)
and Term(α) but does not change the conclusions of this proposition.)

Thus we have that without loss of generality, Init(α) = m ≺ 0 is the minimum of (G,�) and that
Term(α) = 0 (Recall if Term(α) �= 0, we showed before that it would be a nonzero maximum which is a
contradiction to our assumption). Thus we have

α = k′em + T + ke0

where k, k′ ∈ k are nonzero and T consists of terms which have components corresponding to elements in
g ∈ G which have m ≺ g ≺ 0. By Lemma 7.5, part (a), there are no such elements g , and so we conclude that
α = k′em + ke0 .

It remains to show that [[spec(α)]] = [[G]] . Since [[spec(α)]] does not change if we scale α , we will
assume from now on that k = 1. So α = k′em + e0 .

Suppose x is an eigenvector of ad(α) corresponding to eigenvalue μ ∈ k with 0 ≺ Term(x). Then
x = aeTerm(x) + D where D has nonzero components only in indices g ∈ G with g ≺ Term(x), and a ∈ k is
nonzero. Then

[α, x] = [k′em + e0, aeTerm(x) + D] = a Term(x)eTerm(x) + D′.

where D′ has nonzero components only in indices g ∈ G with g ≺ Term(x).

However, [α, x] = μx and so we have

a Term(x)eTerm(x) + D′ = μaeTerm(x) + μD

from which it follows that μ = Term(x) ∈ G .

Now if x is an eigenvector of ad(α) with Term(x) � 0 then x = cem + de0 and it is easy to check that
x must be a scalar multiple of em or of α corresponding to the eigenvalues m and 0 respectively. In any case,
we have [α, x] = Term(x)x .

Thus we see that if x is any eigenvector of ad(α), then x corresponds to the eigenvalue Term(x) ∈ G .
So spec(α) ⊆ spec(e0) = G . Furthermore, m, 0 ∈ spec(α), with m a minimum element of spec(α) under the
ordering inherited from G .
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However, we also see that if x, y are eigenvectors of ad(α) corresponding to different eigenvalues, then
Term(x) �= Term(y) and we must have [x, y] �= 0 by Lemma 7.8. Since M(α) = L and dim(Ea(α)) ≤ 1 for all
a ∈ k by Corollary 7.9, we conclude that L is strongly graded with respect to the eigenspaces of α .

Thus reversing the roles of α and e0 in the part of the proof where we showed spec(α) ⊆ spec(e0), and
noting that e0 = α − k′em , we conclude that spec(e0) ⊆ spec(α) and hence that spec(e0) = spec(α) and thus
we are done. �

Definition 7.11 Let L be a strongly graded Lie algebra. We define

spec(L) = [[spec(α)]]

where α is a nonzero element in L with M(α) = L .

Note that spec(L) is well-defined if L is infinite dimensional, by Proposition 7.10.

If L is finite dimensional, then Corollary 7.9, part (c), shows that

dim(Ea(α)) ≤ 1

for all a ∈ k and so we must have the order of spec(α) is equal to the dimension of L for any nonzero α with
M(α) = L . Since there is exactly one pseudomonoid of order spec(α) up to equivalence by Lemma 7.5, spec(L)
is well-defined in this case also.

We now show that spec(L) is truly an invariant of L .

Proposition 7.12 Let L, L′ be two Lie algebras and f : L → L′ be a Lie algebra homomorphism. Then:
(a) For every α ∈ L and a ∈ k, we have

f(Ea(α)) ⊆ Ea(f(α)).

Hence f(M(α)) ⊆ M(f(α)) .
(b) If f is injective, then spec(α) ⊆ spec(f(α)) .
(c) If f is bijective, then spec(α) = spec(f(α)) and furthermore

f(M(α)) = M(f(α)).

(d) If L, L′ are two strongly graded Lie algebras, and f is an isomorphism, then spec(L) = spec(L′) .

Proof. For (a), notice that if x ∈ Ea(α), then [α, x] = ax and hence

f([α, x]) = af(x).

Since f is a Lie algebra homomorphism, we have f([α, x]) = [f(α), f(x)] and so we conclude [f(α), f(x)] =
af(x) and thus f(x) ∈ Ea(f(α)). Also M(α) = ⊕a∈kEa(α) and so

f(M(α)) = ⊕a∈kf(Ea(α)) ⊆ ⊕a∈kEa(f(α)) = M(f(α)).
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This gives us (a).

For (b), notice that if f is injective, and we had nonzero x ∈ Ea(α), then f(x) would be nonzero, and
by (a), it would lie in Ea(f(α)). This proves (b).

For (c), notice that since f is bijective, f−1 exists and is in fact a Lie algebra homomorphism. Thus

from (a) and (b) applied to (f, α) and (f−1 , f(α)) we get

f(M(α)) ⊆ M(f(α)) and f−1(M(f(α))) ⊆ M(f−1(f(α)))

giving us f(M(α)) = M(f(α)). We also get

spec(α) ⊆ spec(f(α)) and spec(f(α)) ⊆ spec(f−1(f(α))),

giving us spec(α) = spec(f(α)).

For (d), note that spec(L) = [[spec(α)]] for some nonzero α ∈ L with M(α) = L . Since f is an
isomorphism, we have f(α) is nonzero with

M(f(α)) = f(M(α)) = f(L) = L
′.

Hence by Proposition 7.10, we have

spec(L′) = [[spec(f(α))]] = [[spec(α)]] = spec(L).

Thus we are done. �

Definition 7.13 Two pseudomonoids G and G′ are isomorphic if there is a bijection f : G → G′ such that
(a) f(0) = 0 and
(b) f(x + y) = f(x) + f(y) for all distinct x, y ∈ G .

It is easy to see that if [[G]] = [[G′]] , then G is isomorphic to G′ .

Example 7.14 The field k is a vector space over its characteristic subfield Q. If dimQ(k) = ∞ then we can
find Q-vector subspaces Vn of k of dimension n for every n ∈ N . Certainly the {Vn}n∈N are a family of
nonisomorphic pseudomonoids which are simple pseudomonoids by Lemma 6.7 as they are abelian groups.

Thus the construction of Example 5.9 gives us a family Witt(A(Vn)) of simple, strongly graded Lie
algebras by Corollary 6.6.

Furthermore since spec(Witt(A(Vn))) = [[Vn]] we see that

{Witt(A(Vn))}n∈N

is an infinite family of nonisomorphic, simple, generalized Witt algebras.

Example 7.15 Let N be the monoid of natural numbers. For every pair of relatively prime integers n, m > 1 ,
we define Mn,m to be the submonoid of N generated by n and m. It is easy to see that Mn,m is never
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simple as a pseudomonoid as one can find nontrivial restrictions of ideal subsets from N . (See Example 6.10.)
Furthermore Mn,m is isomorphic to Mn′,m′ if and only if {n, m} = {n′, m′} .

Thus again using the construction of Example 5.9, we get an infinite family

Witt(A(Mn,m))1<n<m,gcd(n,m)=1

of nonisomorphic, nonsimple, generalized Witt algebras. By Proposition 3.11, all of these Lie algebras are
semisimple and indecomposable and have no abelian Lie subalgebras of dimension greater than one.

In contrast, over an algebraically closed field, the only finite dimensional Lie algebra which is indecom-
posable, semisimple and has no abelian Lie subalgebras of dimension greater than one is sl2 .

Example 7.16

spec(Witt(k[x])) = [[{−1, 0, 1, . . .}]]

and
spec(Witt(k[x, x−1])) = Z

by examples 5.7 and 5.8. These spectra are easily seen not to be isomorphic to those discussed in examples 7.14
and 7.15, and not isomorphic to each other of course.

Thus the following is a list of nonisomorphic generalized Witt algebras: the classical Witt algebra, the
centerless Virasoro algebra, Witt(A(Mm,n)) for relatively prime m, n > 1 and Witt(A(Vn)) for Q-vector
subspaces Vn of k , where dimQ(Vn) = n for all n ∈ N .

Thus, we hope we have conveyed the rich variety of generalized Witt algebras available!

In the final section, we verify the Jacobian conjecture for a class of generalized Witt algebras. That is,
we show that under suitable hypothesis, any nonzero Lie algebra endomorphism of a generalized Witt algebra
is actually an automorphism.

8. The Jacobian conjecture

A polynomial map f : Cn → Cn is a map with the property that each of its components is a complex
polynomial in n-variables. Such a map is called invertible if it is bijective, and if its inverse is a polynomial
map also. It is easily seen that an invertible polynomial map has the property that the determinant of its
Jacobian matrix is a nonzero constant as a function on Cn . (See [2]). The classical Jacobian conjecture is that
the converse is true and remains open for all n ≥ 2.

One can ask the following question about the classical Weyl algebra in n-variables. (Defined similarly
as we did in the beginning of the paper, but using n-variables instead of one.) Is every nonzero algebra
endomorphism of a classical Weyl algebra actually an automorphism? The answer to this question is unknown
for all n ≥ 1. If the statement is true for some n , then it implies the classical Jacobian conjecture in dimension
n . (See [2].)

One can generalize to the following definition.

Definition 8.1 Given a Lie algebra L , one says that the Jacobian conjecture holds for L , if every nonzero Lie
algebra endomorphism is actually an automorphism.
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Certainly the Jacobian conjecture does not hold for all Lie algebras but does hold for finite dimensional,
simple Lie algebras.

We will show, among other things that the Jacobian conjecture holds for the classical Witt algebra which
is the Lie algebra of derivations of the classical Weyl algebra where the corresponding conjecture remains open.

One can see immediately, the spectral theory machinery developed earlier has a lot to say about this.
For example one has:

Corollary 8.2 If Witt(A) is a generalized Lie algebra and f∂ is a nonzero element such that spec(f∂) �= {0} .
Then for every injective Lie algebra endomorphism F of Witt(A) , one has F (f∂) = g∂ with W (g) ≤ 1 .

Proof. This follows immediately from Theorem 5.11 and Proposition 7.12. �

Corollary 8.2 shows that the image of an element under an injective endomorphism, is reasonably
constrained by its spectrum. Of course, Corollary 8.2 is a rough application of these ideas and we will have to
refine them a bit to get our desired result. To this end, we define:

Definition 8.3 A pseudomonoid G ⊆ k is called self-containing if there is nonzero a ∈ k such that aG ⊂ G

and aG �= G .

Notice in this case that aG is a subpseudomonoid of G which is equivalent to G so we could also define
a pseudomonoid to be self-containing if it possesses a proper subpseudomonoid equivalent to itself.

The integers Z = {. . . ,−1, 0, 1, . . .} is an example of a self-containing pseudomonoid since nZ is a proper
subpseudomonoid equivalent to Z for all natural numbers n ≥ 2. The reader can verify that this is in fact a
complete list of all such proper subpseudomonoids.

We next give examples of pseudomonoids which are not self-containing.

Lemma 8.4 Any subfield E of k is not a self-containing pseudomonoid.
{−1, 0, 1, . . .} ⊆ k is not a self-containing psuedomonoid.

Proof. Suppose aE ⊆ E for some nonzero a ∈ k . Since 1 ∈ E , it follows that a ∈ E . Then given x ∈ E ,
xa−1 ∈ E and x = a(xa−1). Thus aE = E . So E is not self-containing.

Give G = {−1, 0, 1, . . .} the weak order inherited by viewing it as the usual subset of the real numbers.
If aG ⊆ G for some nonzero a ∈ k , it again follows as 1 ∈ G , that a ∈ G .

Clearly a �= −1 so a > 0. Then we must have a(−1) = −a ∈ G and hence −a = −1 and a = 1. Thus
aG = G and so G is not a self-containing pseudomonoid either. �

Definition 8.5 Let L be a strongly graded Lie algebra, graded by G . Then we can write L = ⊕g∈GEg as
usual. For nonzero x ∈ L , we let xg be the g -component of x .

We define the support of x as
Supp(x) = {g ∈ G|xg �= 0}.

We also define Supp(0) = ∅ .
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Definition 8.6 A weak order � on a pseudomonoid G is called discrete if for every a, b ∈ G , the order of the
set {g ∈ G|a � g � b} is finite.

A pseudomonoid which possesses a discrete order is called discrete.

Every subpseudomonoid of the integers is discrete by restricting the standard weak order.

We are now ready to prove:

Theorem 8.7 Let L be an infinite dimensional, strongly graded Lie algebra, graded by a pseudomonoid G .
Suppose G possesses a discrete order �.

Write L = ⊕g∈GEg as usual and let {eg}g∈G be a basis of L with the usual properties. Let Θ be the
correspondence map of Proposition 6.5.

Then for every injective Lie algebra endomorphism f of L , we have one of the following two possibilities:
(a)

f(e0) =
1
a
e0

for some nonzero a ∈ k such that aG ⊆ G . In this case f(L) = Θ(aG) . Hence if G is not self-containing,
then f is onto.
(b)

f(e0) =
1
a
e0 + D

for some nonzero a ∈ k such that aG ⊆ G and Supp(D) consists of elements ≺′ 0 . (Here �′ is either equal
to �, or is � reversed.) Furthermore, there is �′ -minimal I ∈ Supp(D) such that I �′ ag for all g ∈ G .

In the situation of (b), if G is not self-containing, then I is actually a minimum element of (G,�′) , and

f(e0) =
1
a
e0 + k′eI .

Furthermore f is onto.

Proof. Let f : L → L be an injective endomorphism of Lie algebras. Then f(L) is an infinite dimensional
Lie subalgebra of L .

Write L = ⊕g∈GEg as in the statement of the theorem and let � be a discrete order on G .

Now
f(L) = f(M(e0)) ⊆ M(f(e0))

and
spec(e0) ⊆ spec(f(e0))

by Proposition 7.12. Thus f(e0) ∈ f(L) is ad -diagonalizable on f(L). (In other words, there is a basis for
f(L) consisting of eigenvectors of ad(f(e0)).)

Using the chosen order on G , we can speak of I = Init(f(e0)) and T = Term(f(e0)) which both lie in
G .

By Corollary 7.9, we conclude that if I �= 0 then every eigenvector x of ad(f(e0)) has Init(x) = I .
Similarly, if T �= 0, then every eigenvector x of ad(f(e0)) has Term(x) = T .
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Let us assume both I and T are nonzero to derive a contradiction. Let S = {g ∈ G|I � g � T} . Since
(G,�) is discrete, S is finite. Since I, T are nonzero, we have seen that every eigenvector of ad(f(e0)) will lie
in Θ(S), and hence f(L) ⊆ Θ(S) which is a contradiction as f(L) is infinite dimensional.

So at least one of I, T is zero. By reordering G if necessary, we can assume T = 0. (Notice, if you
reverse a discrete order by setting x ≺′ y ⇐⇒ y ≺ x , you get a discrete order where T and I interchange.
Also notice that this reordering will not affect the conclusion of the theorem.)

Now if I = 0 also then f(e0) = ke0 for nonzero k ∈ k . Now by Proposition 7.12,

G = spec(e0) ⊆ spec(f(e0)) = spec(ke0) = kG.

Thus 1
k G ⊆ G . Then notice that f(Eb(e0)) ⊆ Eb(ke0) = E b

k
(e0) for all b ∈ G by Proposition 7.12. Since E b

k

is one dimensional, we conclude that f(Eb) = E b
k

for all b ∈ G and hence that

f(L) = f(⊕g∈GEg) = ⊕g∈GE g
k

= Θ(
1
k

G).

So in this case, we get the situation described in (a) of the theorem if we set a = 1
k

.

So we may now assume I �= 0, and hence that I ≺ 0.

Thus f(e0) = ke0 + D where every element of Supp(D) is negative with minimum element I .

Now if x is an eigenvector of ad(f(e0)) corresponding to μ ∈ spec(f(e0)), we may write

x =
n∑

i=1

xgi ,

where g1 ≺ · · · ≺ gn ∈ G and xgi ∈ Egi is nonzero for all 1 ≤ i ≤ n .

Then a simple calculation shows that

[f(e0), x] = kgnxgn + D′,

where Supp(D′) ⊆ {g ∈ G|g ≺ gn} . Since this must equal μx , we conclude that kgn = μ or, in other words,
k Term(x) = μ . Thus we conclude that spec(f(e0)) ⊆ k spec(e0). However, by Proposition 7.12, it follows that

spec(e0) ⊆ spec(f(e0)). Thus G = spec(e0) ⊆ spec(f(e0)) ⊆ k spec(e0). Hence 1
kG ⊆ G in this case also.

Now since I �= 0, every eigenvector x corresponding to μ of f(e0) has Init(x) = I . Thus I = Init(x) �
Term(x) = μ/k and we conclude that I � g

k for all g ∈ G since G ⊆ spec(f(e0)).

Now if G is not self-containing, we must have 1
kG = G and hence I is a mimimum element of G . Since

I ≺ 0, it is the unique such element. Thus since we had f(e0) = ke0 + D where Supp(D) ⊆ {g ∈ G|g ≺ 0} , we
conclude that f(e0) = ke0 + k′eI .

Now kI ∈ G as 1
kG = G . Then by Proposition 7.12, we have 0 �= f(ekI ) ∈ EkI(f(e0)).

By our previous analysis, k Term(f(ekI )) = kI and so Term(f(ekI )) = I . Since I is a minimum of
(G,�), we conclude f(ekI ) is a nonzero multiple of eI . Hence eI ∈ f(L).

Since f(e0) = ke0 +k′eI in f(L), we conclude that f(L) contains e0 . Now by Proposition 6.5, it follows
that f(L) = Θ(S) where S consists of the union of the supports of the elements in f(L).
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However for every g ∈ G , kg ∈ G and Term(f(ekg)) = g by an analysis similar to the one done previously.
Hence S = G and f is onto. Thus we are done.

�

Corollary 8.8 Let L be a strongly graded Lie algebra, graded by a discrete pseudomonoid which is not self-
containing. Then every injective Lie algebra endomorphism of L is an automorphism.

If f is any nonzero Lie algebra endomorphism of the classical Witt algebra, then f is an automorphism,
and furthermore

f(x∂) = (x + b)∂

for some b ∈ k. Thus the Jacobian conjecture holds for the classical Witt algebra.

Proof. The first part follows immediately from Theorem 8.7.

By Example 5.7, the classical Witt algebra is a strongly graded Lie algebra graded by the pseudomonoid
G = {−1, 0, 1, . . .} , which is obviously discrete and is not self-containing by Lemma 8.4. We have already
seen that this Lie algebra is simple, hence any nonzero Lie algebra endomorphism f is injective and hence an
automorphism by Theorem 8.7.

Furthermore, in the strong grading of the classical Witt algebra, we can take x∂ = e0 and xn∂ ∈ En−1

for all n ∈ N .

Notice further that if aG ⊆ G , in fact a = 1 as we saw in the proof of Lemma 8.4. Thus applying
Theorem 8.7 again and noting that we must have I = −1 if we are in situation (b), we conclude furthermore
that

f(x∂) = (x + b)∂

for some b ∈ k . �

Corollary 8.9 If f is a nonzero Lie algebra endomorphism of the centerless Virasoro algebra then f is injective
and

f(x∂) =
1
a
x∂

for some nonzero integer a .

However, the Jacobian conjecture is false for this Lie algebra. Thus there exist injective Lie algebra
endomorphisms of the centerless Virasoro algebra which are not automorphisms.

Proof. By Example 5.8, the centerless Virasoro algebra is strongly graded by the pseudomonoid G = Z =
{. . . ,−1, 0, 1, . . .} , with basis en = xn+1∂ ∈ En for all n ∈ Z . G is obviously discrete.

Let f be a nonzero Lie algebra endomorphism. Since the centerless Virasoro algebra is simple, f is
injective. It is easy to see that aZ ⊆ Z if and only if a is an integer. Also if we use the standard order of Z ,
then there is no I as in situation (b) of Theorem 8.7, and so we immediately conclude from the same theorem
that:

f(x∂) =
1
a
x∂
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for some nonzero integer a and Image(f) = Θ(aZ).

We will now construct such a Lie algebra endomorphism for every nonzero intger a . Thus for a �= ±1,
we obtain injective Lie algebra endomorphisms which are not onto.

Define fa(en) = a−(n+1)ean for all n ∈ Z . Certainly this defines a vector space endomorphism which is
not onto if a �= ±1.

We calculate

[fa(en), fa(em)] = a−(n+m+2)[ean, eam]

= (am− an)a−(n+m+2)ea(n+m)

= (m− n)a−(n+m+1)ea(n+m)

= fa((m − n)en+m)

= fa([en, em]).

Hence f is a homomorphism of Lie algebras and we are done. �

This concludes our initial study of generalized Witt algebras. One sees that for this family of self-
centralizing Lie algebras, spectral analysis provides a powerful tool to answer basic questions locally. (On M(α)
for nonzero α ∈ L .)

We found this extremely useful in the case where L = M(α) for some nonzero α , but it should be possible
to push these results to the more general case by patching together the local spectra to get some sort of global
scheme.
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