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Approximation by complex potentials generated by the Gamma
function

Sorin G. Gal

Abstract
In this paper we find the exact orders of approximation of analytic functions by the complex versions of
several potentials (including the Flett potential) generated by the Gamma function and by some singular

integrals.
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1. Introduction

In the real case, the approximation properties of the potentials such as those of Riesz, Bessel, generalized
Riesz, generalized Bessel and Flett have been studied by many authors, see e.g. Kurokawa [5], Gadjiev-Aral-
Aliev [3], Uyhan-Gadjiev-Aliev [7], Sezer [6], Aliev-Gadjiev-Aral [1] and their references.
Let us recall that in the real case, the classical Bessel type parabolic potential is defined for any
feLP(R?), 1<p<oo,by
1

Ba(ﬂ@%t)—’faﬂgjlfo[/iif“””leTVV@/ﬂf@fyJTﬁw dr.

1
AT

where o > 0, I'(«x) is the Gamma function and W(y, 1) = e=¥"/(47) is the Gauss-Weierstrass kernel.

It is known that formally we can write

2 a/2
B0 = (1- gzt 5) S

and the following convergence properties hold (see Uyhan-Gadjiev-Aliev [7]):

(i) if f € LP(R?), 1 < p < o0, is continuous at (z,t) € R? then lim,_o+ B(f)(z,t) = f(x,1);

(ii) if f € LP(R?)NCo(R?), where Cy(R?) denotes the space of all continuous functions on R? vanishing
at infinity, then lim,_o+ B(f) = f uniformly on R?;

(iii) if f € LP(R%) N C(R?), where C(R?) denotes the space of all continuous functions on R?, then
lim,_o+ B*(f) = f uniformly on every compact K C R?;
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(iv) in addition, for f in some suitable Lipschitz-type classes, quantitative upper estimates of order O(«)

are obtained.
Also, let us recall that the classical Flett potential is defined for any f € LP(R) by (see Flett [2])

F@) = g T oo Qu(f) @)t

where Q¢(f)(z) =% [7 fﬁff;;) du is the classical Poisson-Cauchy singular integral.
It is known that the following convergence properties hold (see Sezer [6]):
(i) if f € LP(R)NCy(R), then lim,_ o+ F(f) = f uniformly on R;

(ii) for f in some suitable Lipschitz-type classes, quantitative upper estimates of order O(«) are obtained.

Remark. The form of the Flett’s potential suggests to study the approximation properties as a — 0% of new

potentials, as

FS(f)(x) = = ) / e U (f) (@)dt, @ € R, 1)

NG
where Uy(f)(z) can be any from P,(f)(z) = 5 fj;? f(z—u)e™ 1"/t du (the Picard singular integral), R;(f)(z) =
E erOO flz—u)

m J—oo (u2+t2)2

du (a Poisson-Cauchy-type singular integral) and W;(f)(x) = ﬁ fi: flz—u)e ™"/t du (the
Gauss-Weierstrass singular integral).

In this paper, the exact order of approximation by the complex versions of the potentials FF(f)(z) given
by (1) (including the Flett potential) is obtained. The complex versions are obtained from their real versions

by replacing in the formula of any U;(f(x), the translation z —y by the rotation ze~%, where z = re® € C,

that is obtaining the form

RO = iy [ 7 UG 2
where
vne) = Qe =L [ D,
+oo
VD) = PUADE) = 55 [ fe e du,
3 “+oo Zefiu
GG = R =2 [ LR

* 1 oo —iu 7u2/t
DN = Wi (D) = o= / flze)e="/ du,
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2. Main results

Note that in order to exist FF7(f)(z) in (2) for all |z| < R, it is enough to suppose that the function
f(%) is analyticin |z| < R, with R > 1.
For R > 0 let us denote D = {z € C; |z| < R}.

The main result is the following.

Theorem 2.1. Let us suppose that o > 0 and that f : Dr — C, with R > 1, is analytic in Dy, that is
f(z) =3 anz®, for all z € Dp.

(i) For U(f =1 % e ) gy we have that Fg(f)(z) given by (2) is analytic in Dr and we can

oo u2?4t?

write
> 1

Fr(f)(z) = kzzoak . mmzk,z € Dg.

Also, if f is not constant function for ¢ = 0, and not a polynomial of degree < q— 1 for q € N, then for all
1<r<mrm <R, e NU{0}, a€(0,1], we have

IFg (N = f D, ~ a,

where || f|l» = sup{|f(2)|; |z] < r} and the constants in the equivalence depend only on f, q, r and 71.
(ii) For Uy(f)(2) = % fi: f(zem™)e 1/t qu we have that FG(f)(2) given by (2) is analytic in Dp and
we can write
F§(£)(2) = ) arbroz", 2 € D,
k=0

- 1 [o') tafleft
where bk,a = mfo Wdt

Also, if f is not constant function for ¢ = 0, and not a polynomial of degree < q— 1 for q € N, then
forall1<r<ri <R, qe NU{0}, a € (0,1] we have

IFg (D = f D, ~ a,

where the constants in the equivalence depend only on f, q, r and ry.

(iii) For Uy(f =2 erOO {é’gitz)z du we have that Fg(f)(z) given by (2) is analytic in Dg and we

can write

k=0

Also, there exists g € (0,1] (absolute constant) such that if f is not constant function for ¢ = 0, and not a

polynomial of degree < q—1 for ¢ € N, then for all 1 <r <r < R, ¢ e NU{0}, a € (0, ag] we have

IFg (N = f D, ~ a,

where the constants in the equivalence depend only on f, q, r and ry.
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(iv) For Uy(f)(z) = ﬁfi: f(ze*i“)e*“z/lt du we have that FG(f)(z) given by (2) is analytic in Dg
and we can write

o _ = 1
FU(f)(Z) = kZ:O(lk . W . Zk,Z S ]D)R.

Also, if f is not constant function for ¢ = 0, and not a polynomial of degree < q— 1 for q € N, then for all
1<r<ri <R, e NU{0}, o€ (0,1] we have

IFg (N = f D, ~ a,

where the constants in the equivalence depend only on f, q, r and ry.

Proof. (i) By Gal [4], p. 213, Theorem 3.2.5, (i), Us(f)(2) is analytic (as function of z) in Dr and we can

write

U(f)(z) = Zake*ktzk, for all |z| < R and t > 0.
k=0

Since | Y7, are F2F| <3777 Jak||z|F < oo, this implies that for fixed |z| < R, the seriesin ¢, > po j are * 2"

is uniformly convergent on [0, 00), and therefore we immediately can write

o0 1 o B -
Fg(f)(z) = Z (lkzkm / t* e (kJrl)tdt’
k=0 0

I'(a)
"t+1)e -

where by making use of the change of variable (k -+ 1)t = s, we easily get that [~ ¢ le=(*+Diqt =

In other order of ideas, we easily can write

Fg(f)(z) = f(2) = ﬁ ' /OOO e [U(f)(2) - f(2)]dt, 3)

which together with the estimate |U(f)(z) — f(2)| < Cr(f)t in Gal [4], p. 213, Theorem 3.2.5, (iii), implies

« ]‘ > a—1_—t
IF5U)E) = o)) < s / e U () () — £(2)dt
INa+1)

F(CY) = CT(f)aﬂ (4)

< CT(f)ﬁ : /Oootaetdt =C.(f) -

for all |z| < r, where C,(f) > 0 is independent of z (and «) but depends on f and 7.
Now, let ¢ € NU{0} and 1 <r <7y < R. Denoting by v the circle of radius 7 and center 0, since for

any |z| <r and v € v we have |v — z| > r; —r, by using the Cauchy’s formula, for all |z| <r and a > 0 we

get

IEEN9 (2) - 19 ()] =

2 v

JREUCE G

(v—z)att

q 27'(7“1
2 (rq —r)att’

< CTl (f)a !
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which proves the upper estimate

IEGND = f D, < Ca, (6)

with C* depending only on f, ¢,  and ry.
It remains to prove the lower estimate. For this purpose, reasoning exactly as in the proof of Theorem
3.2.5, at pages 218-219 in the book Gal [4], for z = re? and p € NU {0} we get

L7 9@ - (1@ @)emedp

2 J_ .
= agip(q+p)g+p—1)..(p+ 1)rP[l — e~ (@)1,
Multiplying above with ﬁta’le’t and then integrating with respect to t, it follows

Fe i [ e [ @6 - 0@ e reap e ta

1 o0
= agip(@+ ) (g +p—1)e(p+ )P —— / 2 e 1 — e~ (@t gt
() Jo

= agp(q+p)(g+p—1)...(p+ 1)r” [1 - m] ’

because taking into account that by making use of the change of variable (¢ + p + 1)t = s, we easily get that

! /Oo -1 —t —( 1 <
- o=t e (atPt gy — 1 - _— o= 1= (a+p+1)t gy
Tl@) Jo | | T(a) Jo
1
(g+p+1)>

Applying the Fubini’s result to the double integral I and then passing to modulus, we easily obtain

o [% |16 - o <z>]ta1etdt] dso\

- (a

., 1
= lag+pl(g +p)(g+p—1)..(p+ )r” |1 - m] '

Since

L o0 @(z) — @ (N le=tgt — 1@ (5) — [P @,
F(a)/o [f1(2) = [U(N]' (2)]E dt = f*(z) = [Fg (N (=),

the previous equality immediately implies

= [ 06 - Es) ) g
= lagpllg+ )@+ p—1)..(p+ 1)r” [1 B m]
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and

! ] <[F9D — (FS()) D]l

L

First take ¢ = 0. From the previous inequality we immediately obtain
i (1- 55 ) <17 = B
(p+1)

In what follows, denoting V,, = inf,>1 (1 - ﬁ) , we clearly get V, =1 — 2%

Denoting g(x) = 2%, by the mean value theorem, there exists £ € (0,«) C (0, 1] such that
Va = 9(0) — g(a) = —ag'(§) = a-27%In(2) > a2”In(2) > a2 'In(2),

which immediately implies

o "2 o o) <5 - P
that is
00 ) < W FDIE
for all p>1 and a € (0,1].
This implies that if there exists a subsequence (ag)i in (0,1] with limg_,o ar = 0 and such that
limg o0 WEGD=fll- 0, then a, =0 for all p > 1, that is f is constant on D, .

ay

L FG (=1l
[e3

Therefore, if f is not a constant function, then inf,¢ (0,1 > (0, which implies that there exists

a constant C,(f) > 0 such that w > Cr(f), for all a € (0,1], that is
IEG(f) = fllr = Cr(f)a, for all a € (0, 1],
Now, consider ¢ > 1 and denote V, o = infp>o(1

in(2)
T2

fm). Evidently that we have V; o > ianZl(l—W) >

o

Reasoning as in the case of ¢ = 0, we obtain

Fo(H))@ — @y, I In(2
IEE N~ 1 z|aq+p|(q;p) @,

for all p> 0 and « € (0,1].
This implies that if there exists a subsequence (ag)i in (0,1] with limg_,o ar = 0 and such that

ILES (DD =D,

ay

limg o0 =0 then a,4, =0 for all p > 0, that is f is a polynomial of degree < ¢ —1 on D,..

IS (D= f ],

Therefore, because by hypothesis f is not a polynomial of degree < g—1, we obtain inf ¢ (0,1 -

> 0, which implies that there exists a constant Cy4(f) > 0 such that w > Crq(f), for all
a € (0,1], that is
IFG (@ = f Dl > Crg(fa, for all a € (0,1].
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(ii) By Gal [4], p. 206, Theorem 3.2.1, (i), U(f)(2) is analytic (as function of z) in Dr and we can write

Ui(f)(z) = Z #zk, for all |z] < R and ¢ > 0.

k=0

Since | Y5 g 5z 2| < 200t lak|-[2|" < oo, this implies that for fixed |2| < R, the series in ¢, Y27 7%z 2"

is uniformly convergent on [0, 00), and therefore we immediately can write

S 1 oo tafleft
«@ o k
FE(£)(z) =) arz F(0[)/0 Tt
k=0

In other order of ideas, (3) together with the estimate |U;(f)(z) — f(2)| < C(f)t? in Gal [4], p. 207, Theorem
3.2.1, (iv), implies

F3(F)(2) — £(2)] < ﬁ ~ / T e UL () (2) — F(2)\de
<O | e ta= o HEEY = Cupata+ 1) <20 g

for all |z| <r, where C,(f) > 0 is independent of z (and «) but depends on f and 7.
Now, reasoning formally exactly as in the proof at the above point (i), by (5) we get again the upper
estimate in (6).
It remains to prove the lower estimate. For this purpose, starting exactly as in the proof of the above
point (i), we get
o [ 119 - W) e Ped

2 J_,

t2(q +p)?

= 71 e ]- p. T . .o/ . o
agip(q+p)(q+p )o(p+1)r 1+ 62(q +p)?

Multiplying above with ﬁtﬂfle*t an then integrating with respect to ¢, it follows

Fe v [ e [ @6 - 0@ e veap e ta

o) 2 2
1 / ta1€t|: 3 (g+p) 2:| dt
L(a) Jo 1+12(q +p)

Applying the Fubini’s result to the double integral I and then passing to modulus, we easily obtain

=agyp(q+p)g+p—1)...(p+ 1)

1
2

[ e [% |16 - <z>]ta1etdt] dso\

- (a

(¢ +p)* ] dt] .

= lagspl(@ +p)(@+p — 1)ee.(p+ 1)r” [ﬁ /OOO to e [m
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Since
1

- o0 (@ (5) — @ (Lot gt — £ (5) — [FE( )@ (5
F(a)/o (1 (z) = [UNIV (2)]t dt = 9 (z) = [Fg (NI (),

the previous equality immediately implies

1

2

/7; e~ iPY [f(q) (z) — (Fg(f))(q) (z)} dcp‘

(¢ +p)* ] dt]

= lag+pl(g+p)(g+p—1)...(p+ 1)r? [ﬁ /Ooofalelt [m

and

0o 2 2
sasall+ D= 1o 07 [ [Tt | P

<@ = (EE N

First take ¢ = 0. From the previous inequality we immediately obtain

o) 2,2
lay [P (L/O talet[ p ]dt>§|fF§(f)||,,.

I'(a) 14 t2p?
In what follows, denoting V,, = inf e oot et £2° 1 dt), we clearly get
) p>1 | Ty Jo T+i2p2 ) y g

Vo = ! /Oolta*%*1t r dt
“ T T(a) Jo e

Taking into account that 14 ¢2 < 2¢* for all ¢ > 0, we obtain

1 *° _ Na+2) o a+l
. > ta+1 2tdt — —_ . >
Va2 753 /0 ¢ 3 () 4 a2 0%

since the function f(z) = ZtL is strictly positive and continuous in [0,1].

This immediately implies

C ooy < M= FEDI
Y - a )

for all p>1 and a € (0,1].

Now, if would exist a subsequence (o )x in (0, 1] with limg_, o o, = 0 and such that limy_ w =

0, then a, = 0 for all p > 1, that is f would be constant on D,..

L FG (H—=1ll-
(63

Therefore, if f is not a constant function, then inf,¢ (0,1 > (0, which implies that there exists

a constant C,(f) > 0 such that w > Cr(f), for all a € (0,1], that is
IEG(f) = Fll» = Cr(f)a, for all a € (0,1].
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Now, consider ¢ > 1 and denote

1 o0 t2(
VZ],a = 1I1f —_— / taileit g+p .
>0 \I'(a) Jo 1+ t2(q +p)?

Evidently that we have V, o > inf,>1 (ﬁ fooo po—1,—t [litg 2} ) .

Reasoning as in the case of ¢ = 0, we obtain

Fo(A)@ — @y, !
R Y R S
a
for all p> 0 and « € (0,1].
This implies that if there exists a subsequence (ag)i in (0,1] with limg_,o ar = 0 and such that
limg o0 w =0 then agyp, =0 for all p > 0, that is f is a polynomial of degree < g—1 on D,.

Therefore, because by hypothesis f is not a polynomial of degree < g — 1, we obtain

o y1(a) _ ¢(a) o £y1(a)_ £(a)
w > 0, which implies that there exists a constant Cy. ,(f) > 0 such that w >

Cr.q(f), for all a € (0,1], that is

infozE(O,l]

IEGNN@ = F D = Crg(f)a, for all a € (0,1].

(iii) By Gal [4], p. 213, Theorem 3.2.5, (i), U:(f)(2) is analytic (as function of z) in Dp and we can
write

Ui(f)(z) = Zak(l + kt)e "% forall |z| < R and t > 0.
k=0

Since | Y reare (1 + kt)2F| < 23777 |ak| - |2|F < oo, this implies that for fixed |z| < R, the series in ¢,

S o ak(l+ kt)e *2* is uniformly convergent on [0, 00), and therefore we immediately can write

) 1 o)
= A t2 (1 + kt)e~ Bt gy
@ =Yty [ ke

['(a)

where by making use of the change of variable (k+ 1)t = s, we easily get that [ to—le= (bt gy — GERE

and

therefore we immediately obtain
(03 — 1
k=0

In other order of ideas, (3) together with the estimate |U;(f)(z) — f(2)| < C.(f)t? in Gal [4], p. 213-214,
Theorem 3.2.5, (iv), implies the upper estimate in (7).

Now, reasoning exactly as in the proof of the above point (i), by (5)and (7) we again get the upper
estimate in (6).

To prove the lower estimate, we reason exactly as in the proof of (i). We get

1

& [ 96 - e
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= agip(@+p)(g+p = 1)e(p+ 1rP[L = (14 (g + p)t)e TP,
Multiplying above with ﬁtﬂfle*t and then integrating with respect to ¢, it follows

P [ e [ 0@ - e e et

2 J_,

=agyp(q+p)g+p—1)...(p+ )P

ﬁ /OOO to et [1 —(1+(q +p)t)e*<q“’>t} dt.

Applying the Fubini’s result to the double integral I and then passing to modulus, we easily obtain

1
2

[ e e [0 o @t dso\

- (a

= lagipllg+p)(g+p—1)...(p+ 1)r?

1 > a—1_—t —(g+p)t
'[r(a)/o e 1= (L+ (g + p)t)e ”’}dt].
Since
L /Oo[f(q) (z) = [U(N) D ()]t e tdt = f9(2) — [FE()]'D(2)
F(CY) 0 U )

the previous equality immediately implies

1

2

[ e (106 - @m0 )
= lag+plla+p)(g+p—1)...(p+ 1)r?
: [ﬁ /OOO tetet [1 - (1+(q +p)t)e*<q“’>t} dt]

and
lagpl(q+p)(g+p—1)...(p+ 1)rP

1 o0

e [Tt - @ e e ] <159 - Fp)9)
I(a) Jo

First take ¢ = 0. From the previous inequality we immediately obtain

P L Ooafleft o efpt R nle}
ol (g [ e = e an) < Uf = FEO-

In what follows, denoting

— 3 L > a—1_—t _ —pt
Vaér>1f1<r(a)/0 t*te [1— (1 +pt)e P']dt),
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by simple calculation we get

1 o 1 o
W= = et -1+ te tdt=1— — — ——.
Ve F(a)/o e [ ( + )6 ] et 2a+1

But there exists ag € (0, 1], such that if C' is an absolute constant with 0 < C' < In(2) — %, then we have

1 o

1*2—0(*%20@, forallaG[O,ao].

Indeed, denoting g(a) = 1— 55 — 5% — Car, we have g(0) = 0 and ¢'(a) = 27%In(2) — 551 + w -C,

which implies ¢’(0) = In(2) — 3 — C' > 0. Since ¢'(a) obviously is continuous with respect to «, there exists
ag > 0 such that ¢'(a) > 0 for all o € [0, o], that is V,, > Ca, for all « € [0, a].
This immediately implies

¢ oot ) < = FE Dl

o

Y

for all p>1 and a € (0, ag].

Now, if would exist a subsequence (ag)x in (0, ap] with limg_, o ay = 0 and such that limy w =

0, then a, =0 for all p > 1, that is f would be constant on D,.

L FG ()= £l
[e3

Therefore, if f is not a constant function, then inf,c(g,a,) > 0, which implies that there exists

a constant C,(f) > 0 such that w > Cr(f), for all a € (0, ao], that is
IEG () = fllr = Cr(f)e, for all o € (0, avo).

Now, consider ¢ > 1 and denote

Vi = inf (ﬁ /Oootalet [1 —(1+(q +p)t)e<q+”>tD :

p=>0

Evidently that we have V; o > inf,>1 (ﬁ fooo tole=t[1 — (1 + pt)e P! dt) >a-C,for Ce(0,In(2)—1/2)
and a € [0, o).
Reasoning exactly as in the case of ¢ =0 and as in the previous case (ii), we easily obtain that because

by hypothesis f is not a polynomial of degree < g — 1, there exists a constant C, ,(f) > 0 such that
IEG (D = f Dl = Crg(f)a, for all a € (0, ag).

(iv) By Gal [4], p. 223, Theorem 3.2.8, (i), U:(f)(2) is analytic (as function of z) in Dr and we can

write

Ui(f)(2) = Zakeszt/‘lzk, for all |z| < Rand t > 0.
k=0

Since | Y202 are #7142k < 2% lax| - |2F < oo, this implies that for fixed |z| < R, the series in t,

> o ape R4k g uniformly convergent on [0, 00), and therefore we immediately can write
= . > 1,—(1+k2/4)
F7(f)(z) = a2’ —— to e Ut tdt
B =3 o w7 / ,
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where by making use of the change of variable (1 + k?/4)t = s, we easily get that fooo pa—lo— (14K /)t gy

% and therefore we immediately obtain

« _ = ]‘
Fg(f)(2) *EW

In other order of ideas, (3) together with the estimate |Uz(f)(z) — f(2)] < Cr(f)t in Gal [4], p. 224, Theorem
3.2.8, (iv), implies the upper estimate in (4).
Now, reasoning exactly as in the proof of (i), by (5) and (4) we get again the upper estimate in (6).

To prove the lower estimate, again we get

L7 9@ - (1@ @)emedp

2 J_

= agp(q+P)(q +p— 1)ee(p+ 1)rP[1 — e (P74,
Multiplying above with ﬁtﬂfle*t an then integrating with respect to ¢, it follows
e [ s [ 096 - i e s b e ta
F(CY) 0 2T Jp

=agyp(q+p)g+p—1)...(p+ )P

~—1 /OO e let [1 — e*(q“’)zt/ﬂ dt.
L(a) Jo

Applying the Fubini’s result to the double integral I and then passing to modulus, we easily obtain

o [ [ [ 106 - @ et tar] ay

- (a

= lagipl(g+p)(g+p—1)...(p+ 1)r?

1 *° 2
B 1o le=t |1 — e=(atP)"t/4| g4
[rm)/o e |

Since

L [Ty Z) = @ ()t etdt = £ D (2) — [FS(f)]D (=
F@%A [ () = [UNHI7 ()]t dt = f'9(z) = [Fg ()] (2),

the previous equality immediately implies

3 [ (100 - E )] 4

= lagipllg+p)(g+p—1)...(p+ 1)rP

1 *° 2
B o= le=t |1 — g=(atP)"t/4| g4
[rm)/o e |
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and
lagpl(q+p)(g+p—1)...(p+ 1)rP

(L [Tt i etetmy @ _ (Fo( )@
[F(a)/o e [1 e 4]df]§|f EG ) -

First take ¢ = 0. From the previous inequality we immediately obtain

D 1 Ooaf —t —p?t o
oo (s [ e [ e ) <1 - E

In what follows, denoting

_ s 1 % a1 -t __—pt/4
Vaifﬁﬁ(r(a)/o t* e [1 e }dt ,

by simple calculation we get

_ 1 > a—1_—t _—t/4 1 é ¢
Vai_l“(a)/o t* e [1 e }dtfl =) -

Denoting g(z) = (%)x, by the mean value theorem, there exists £ € (0,«) C (0, 1] such that

Vo = 9(0) — g(a) = —ag'(§) = a- (%)6 In (%) = @ " (é)
e (2)u()

1 1 H-f ‘llaf (f)”r
<5>ln<5>rp| P|§ ’
for a11p> 1 and o € (0,1]

Reasoning now exactly as in the proof of the above point (i), we similarly get that if f is not a constant

which immediately implies

function, then there exists a constant C,(f) > 0 such that
VEG(f) = fllr = Cr(f)a, for all « € (0,1].

Now, consider ¢ > 1 and denote

_ 1 > a—1_-—t o 7(q+p)2t/4
V(LQ;I;%(F(Q)/O t* e [1 e ] .

Evidently that we have

1 e 2
> i - a—1_-—t _—pit/4 S .
Voo 2 J0} (F(a)/o et 1 ]dt> za-C,
for all « € [0,1].
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Reasoning in continuation exactly as in the case of ¢ = 0 and as in the previous case (i), we easily obtain

that because by hypothesis f is not a polynomial of degree < g — 1, there exists a constant C. 4(f) > 0 such

that
IFG (@ = f Dl > Crg(fa, for all a € (0,1].
The theorem is proved. O
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