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evolution equations∗
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Abstract

This paper is concerned with the existence of global mild solutions and positive mild solutions to initial

value problem for a class of mixed type semilinear evolution equations with noncompact semigroup in Banach

spaces. The main method is based on a new fixed point theorem with respect to convex-power condensing

operator.
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1. Introduction

In this paper, we are interested in the following initial value problem (IVP) of mixed type semilinear
evolution equation in Banach space E :

⎧⎪⎨⎪⎩
u′(t) + Au(t) = f

(
t, u(t),

∫ t

0

k(t, s)u(s)ds,

∫ a

0

h(t, s)u(s)ds

)
, t ∈ J,

u(0) = x0,

(1.1)

where A : D(A) → E is a dense and closed linear operator, −A is the infinitesimal generator of a C0 -semigroup

T (t)(t ≥ 0) in E , and J = [0, a] , x0 ∈ E . For convenience, we denote

(Ku)(t) =
∫ t

0

k(t, s)u(s)ds, (Su)(t) =
∫ a

0

h(t, s)u(s)ds.

Then IVP (1.1) can be rewritten as

{
u′(t) + Au(t) = f(t, u(t), (Ku)(t), (Su)(t)), t ∈ J,

u(0) = x0.
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This kind of equation (1.1) and other special forms serve as models for various partial differential equations or
partial integro-differential equations arising in heat flow in material with memory, viscoelasticity and reaction
diffusion problems (see [16, 20]). In recent years, the existence, uniqueness and some other properties of

solutions to semilinear evolution equations similar to (1.1) have been extensively studied. We can refer to

[1, 2, 6, 7, 8, 9, 10, 11, 12, 13, 18, 20] and references cited therein.

In particular, we would like to mention the results due to Li [8], Sun and Zhang [18]. First, we point
out that many authors applied the famous Sadovskii’s fixed point theorem to investigate similar problems and
used the following hypothesis with respect to the Kuratowski measure of noncompactness α(·): there exists a

constant L > 0 such that for any bounded and equicontinuous set D ⊂ C(J, E) and t ∈ J ,

α(f(t, D(t))) ≤ Lα(D(t)). (1.2)

What’s more, they required a stronger condition, i.e., the constant L satisfies a strong inequality (see Remark

3.5 below).

In [8], based on the Sadovskii’s fixed point theorem for condensing operator, Li discussed the existence
of mild solutions to the following initial value problem for semilinear evolution equations{

u′(t) + Au(t) = f(t, u(t)), t ≥ 0,
u(0) = x0

(1.3)

in Banach spaces, and required that f satisfies a suitable condition on the measure of noncompactness similar
to (1.2). The author first proved the local existence of mild solutions for IVP (1.3) on interval [t0, t0 + h] ,

t0 ∈ [0, T ), where

h = h(t0, ‖x0‖) = min
{

1,
‖x0‖ + 1

C(t0)
,

1
4M(t0)L(t0) + 1

}
,

M(t0) = sup{‖T (t)‖ : t ∈ [0, t0 + 1]} , C(t0) = sup{‖f(t, x)‖ : ‖x‖ ≤ R(t0), t ∈ [0, t0 + 1]} , R(t0) =

2M(t0)(‖x0‖ + 1) and L(t0) = L(t0 + 1, R(t0)). The constant L(t0) satisfies 4M(t0)L(t0)h < 1, which can

guarantee α(Q(B)) ≤ 4M(t0)L(t0)hα(B) < α(B), herein the operator Q is defined by the formula

(Qu)(t) = T (t − t0)x0 +
∫ t

t0

T (t − s)f(s, u(s))ds, t ∈ I.

However, if we apply the new fixed point theorem obtained in [18] stated below, we can prove the existence of

mild solution to (1.3) on the interval [t0, t0 + h] without requiring the condition 4M(t0)L(t0)h < 1.

Sun and Zhang [18] defined a new kind of operator, i.e., convex-power condensing operator, which is a
generalization of condensing operator. Furthermore, they established a new fixed point theorem for this kind
of operator which generalizes the famous Schauder’s fixed point theorem and Sadovskii’s fixed point theorem.
As an application, they proved the existence theorems of global mild solutions and positive mild solutions to
the following IVP for a class of semilinear evolution equation with noncompact semigroup{

u′(t) + Au(t) = f(t, u(t)), t ∈ J,
u(0) = x0

(1.4)
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in Banach spaces, and also assumed that (1.2) holds.

Clearly, equation (1.1) is more general than the corresponding equations discussed in previous literature,

see [6, 7, 8, 13, 16, 18]. In case that f(s, u(s), (Ku)(s), (Su)(s)) = f(s, u(s)), equation (1.1) reduces to equation

(1.4), which has been considered in [6, 7, 18]. It is natural to ask if we can apply this new fixed point theorem

to more general problem (1.1). Furthermore, we can replace the constant L in (1.2) used in [18] by nonnegative

Lebesgue integrable functions Li ∈ L(J, R+), i = 1, 2, 3 (see Theorem 3.6 in the sequel). Hence, our results

generalize and partially improve the main results in [18].

Recently, Zhang et al. [21] have extended the fixed point theorems of Rothe and Altman types to convex-
power condensing operator and considered the existence of solutions to a first-order differential equation with
integral boundary conditions.

Motivated by the above works, the main aim of this paper is to study the existence of mild solutions and
positive mild solutions to IVP (1.1) by using the fixed point theorem for convex-power condensing operator due

to Sun and Zhang [18].

The rest of this paper is arranged as follows. In Section 2, we will introduce the definition of convex-
power condensing operator and the corresponding fixed point theorem from [18]. In Section 3, we prove existence

theorems of global mild solutions and positive mild solutions to IVP (1.1).

2. Preliminaries

In this section, we introduce some definitions and fixed point theorems.

From now on, without any special statement, we always assume that E is a real Banach space. For any
bounded set D ⊂ E , we denote by α(D) the Kuratowski measure of noncompactness.

Definition 2.1 An operator F : D → E is said to be a condensing operator, if F is continuous, bounded and
for any nonprecompact bounded subset S ⊂ D , α(F (S)) < α(S) .

For the condensing operator, we introduce the following well-known fixed point theorem.

Lemma 2.2 (Sadovskii’s fixed point theorem [17]) Let D ⊂ E be a closed, bounded and convex set. Assume
that F : D → D is a condensing operator. Then F has at least one fixed point in D .

In order to introduce the definition of convex-power operator, we give some notations (see [18]). Let
D ⊂ E be closed and convex, F : D → D , x0 ∈ D . For any subset S ⊂ D , set{

F (1,x0)(S) ≡ F (S),
F (n,x0)(S) = F

(
co

{
F (n−1,x0)(S), x0

})
, n = 2, 3, · · · .

(2.5)

Definition 2.3 ([18]) Let D ⊂ E be closed and convex. An operator F : D → D is said to be a convex-power
condensing operator, if F is continuous, bounded and there exist x0 ∈ D and a positive integer n0 such that
for any bounded nonprecompact subset S ⊂ D ,

α
(
F (n0,x0)(S)

)
< α(S). (2.6)
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Remark 2.4 By Definition 2.3, we can see that if α(F (n0,x0)(S)) = α(S), then S is a precompact set in E .
Obviously, a condensing operator is convex-power condensing. Thus, the convex-power condensing operator is a
generalization of the condensing operator. What’s more, we can see that the convex-power condensing operator
arises naturally from many problems in the sequel.

In [18], Sun and Zhang proved the following fixed point theorem with respect to the convex-power
condensing operator, which is the main tool for the proof of our main results.

Lemma 2.5 ([18]) Let D ⊂ E be closed, bounded and convex, and F : D → D be a convex-power condensing
operator. Then F has at least one fixed point in D .

Lemma 2.6 ([18]) Let D ⊂ E be closed, bounded and convex, and F : D → D be continuous. If there exist
x0 ∈ D , 0 ≤ k < 1 and a positive integer n0 such that for any bounded subset S ⊂ D ,

α
(
F (n0,x0)(S)

)
≤ kα(S). (2.7)

Then F has at least one fixed point in D .

Remark 2.7 Lemma 2.5 shows that the operator F is not required to be condensing and completely continuous,
thus this fixed point theorem is a generalization of the well-known Sadvoskii’s fixed point theorem, since when
n0 = 1, Lemma 2.5 is the latter.

3. Main results

In this section, we shall establish the existence theorems of global mild solutions and positive mild
solutions for IVP (1.1). For convenience, we give some notations.

Let E be a real Banach space, J = [0, a] , u0 ∈ E and C(J, E) be the space of all continuous functions

from J into E with the supremum norm ‖u‖C = sup{‖u(t)‖ : t ∈ J}, u ∈ C(J, E). For B ⊂ C(J, E), set

B(t) = {u(t) : u ∈ B} ,

(KB)(t) = {(Ku)(t) : u ∈ B}, (SB)(t) = {(Su)(t) : u ∈ B}.

Let f : J × E × E × E → E , D0 = {(t, s) ∈ R2 : 0 ≤ s ≤ t ≤ a} , D = {(t, s) ∈ R2 : 0 ≤ s, t ≤ a} ,

k ∈ C(D0, R
+), h ∈ C(D, R+), k0 = max{k(t, s) : (t, s) ∈ D0} , h0 = max{h(t, s) : (t, s) ∈ D} . For R > 0,

denote BR = {x ∈ E : ‖x‖ ≤ R} . Let

MR = sup{‖f(t, u, v, w)‖ : (t, u, v, w) ∈ J × BR × BR × BR}. (3.8)

Lemma 3.1 ([5]) Let B ⊂ C(J, E) be bounded and equicontinuous. Then m(t) = α(B(t)) is continuous on J
and

α

(∫
J

B(s)ds

)
≤

∫
J

α(B(s))ds and α(B) = max
t∈J

α(B(t)).
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Lemma 3.2 ([5]) Let B ⊂ C(J, E) be equicontinuous, u0 ∈ C(J, E) . Then co{B, u0} is equicontinuous in

C(J, E) .

Lemma 3.3 Assume that for all R > 0 , f is bounded and uniformly continuous on J × BR × BR × BR ,
H ⊂ C(J, E) is bounded and equicontinuous, and the C0 -semigroup T (t)(t ≥ 0) generated by −A is an

equicontinuous semigroup. Then for all t, s ∈ J , t ≥ s, {T (t − s)f(s, u(s), (Ku)(s), (Su)(s)) : u ∈ H} is

equicontinuous in C(J, E) .

Proof. Since H ⊂ C(J, E) is bounded, equicontinuous and k , h are uniformly continuous, we have KH , SH

are continuous and bounded in C(J, E). Thus there exists a real number R0 > 0 such that for all s ∈ J and u ∈
H , (s, u(s), (Ku)(s), (Su)(s)) ∈ J×BR0 ×BR0 ×BR0 . By the uniform continuity of f on J×BR0 ×BR0 ×BR0 ,

we know that for any ε > 0, there exists η1 > 0 such that when (si, ui, vi, wi) ∈ J ×BR0 ×BR0 ×BR0 (i = 1, 2),

|s1 − s2| < η1 , ‖u1 − u2‖ < η1 , ‖v1 − v2‖ < η1 , ‖w1 − w2‖ < η1 ,

‖f(s1 , u1, v1, w1) − f(s2 , u2, v2, w2)‖ <
ε

2M
, (3.9)

where M = sup{‖T (t)‖ : t ∈ J} .

By virtue of the fact that T (t) is continuous in the sense of operator norm, there exists η2 such that for

any t, si ∈ J, t ≥ si(i = 1, 2), |s1 − s2| < η2 ,

‖T (t − s1) − T (t − s2)‖ = ‖T (s2 − s1 + s) − T (s)‖ <
ε

2M0
, (3.10)

where M0 = sup{‖f(t, u(t), (Ku)(t), (Su)(t))‖ : t ∈ J, u ∈ H} . Set η = min{η1, η2} . Since H , KH , SH are

equicontinuous, then there exists δ ∈ (0, η), such that when t, si ∈ J, t ≥ si(i = 1, 2), |s1 − s2| < δ , for any

u ∈ H , ‖u(s1) − u(s2)‖ < η , ‖(Ku)(s1) − (Ku)(s2)‖ < η , ‖(Su)(s1) − (Su)(s2)‖ < η .

It follows from (3.9) and (3.10) that

‖T (t − s1)f (s1, u(s1), (Ku)(s1), (Su)(s1)) − T (t − s2)f (s2, u(s2), (Ku)(s2), (Su)(s2))‖

≤ ‖T (t − s1) − T (t − s2)‖ · ‖f (s1, u(s1), (Ku)(s1), (Su)(s1))‖

+ ‖T (t − s2)‖ · ‖f (s1, u(s1), (Ku)(s1), (Su)(s1)) − f (s2, u(s2), (Ku)(s2), (Su)(s2))‖

≤ ε

2M0
M0 +

ε

2M
M = ε.

Hence, {T (t − s)f(s, u(s), (Ku)(s), (Su)(s)) : u ∈ H}(∀t, s ∈ J, t ≥ s) is equicontinuous in C(J, E). Thus we
complete the proof. �

We introduce the definition of mild solutions to IVP (1.1) (see [16]). If u ∈ C(J, E) satisfies the following
integral equation,

u(t) = T (t)x0 +
∫ t

0

T (t − s)f(s, u(s), (Ku)(s), (Su)(s))ds, t ∈ J,

then u is called a mild solution to IVP (1.1) on J .

Now, we state and prove our main results.
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Theorem 3.4 Let E be a real Banach space, and C0 -semigroup T (t)(t ≥ 0) generated by −A be an equicon-
tinuous semigroup. Assume that

(H1) for any R > 0 , f is bounded and uniformly continuous on J × BR × BR × BR , and

lim sup
R→∞

MR

R
<

1
aa0M

, (3.11)

where a0 = max{1, ak0, ah0} , M = sup{‖T (t)‖ : t ∈ J} , MR is defined by (3.8);

(H2) there exist constants Li > 0 (i = 1, 2, 3) such that for any bounded and equicontinuous sets Di ⊂ C(J, E)

(i = 1, 2, 3) and t ∈ J ,

α(f(t, D1(t), D2(t), D3(t))) ≤ L1α(D1(t)) + L2α(D2(t)) + L3α(D3(t)).

Then IVP (1.1) has at least one mild solution in C(J, E) .

Proof. Define the operator Q : C(J, E) → C(J, E) by

(Qu)(t) = T (t)x0 +
∫ t

0

T (t − s)f (s, u(s), (Ku)(s), (Su)(s)) ds, t ∈ J. (3.12)

Then, u ∈ C(J, E) is the mild solution to IVP (1.1) if and only if u = Qu .

Since f is uniformly continuous on J × BR × BR × BR , we can see that Q : C(J, E) → C(J, E) is

continuous and bounded. It follows from (3.11) that there exist 0 < r < 1
aa0M and R0 > 0 such that for any

R ≥ a0R0 , we have MR < rR .

Let R∗ = max{R0, M‖x0‖(1 − aa0rM)−1} , BR∗ = {u ∈ C(J, E) : ‖u‖C ≤ R∗} . For any u ∈ BR∗ , we

have ‖u‖C ≤ R∗ ≤ a0R
∗ , ‖Ku‖C ≤ ak0‖u‖C ≤ ak0R

∗ ≤ a0R
∗ , and ‖Su‖C ≤ ah0‖u‖C ≤ ah0R

∗ ≤ a0R
∗ . So,

by the definition of Q , we have

‖(Qu)(t)‖ ≤ ‖T (t)x0‖ +
∫ t

0

‖T (t − s)‖ · ‖f(s, u(s), (Ku)(s), (Su)(s))‖ds

≤ M‖x0‖ + MaMa0R∗ ≤ M‖x0‖ + Mara0R
∗ ≤ R∗,

which shows that the operator Q : BR∗ → BR∗ is continuous and bounded.

We shall prove Q(BR∗) ⊂ C(J, E) is equicontinuous. For any u ∈ BR∗ , 0 ≤ t1 ≤ t2 ≤ a , we have

‖(Qu)(t2) − (Qu)(t1)‖

≤ ‖T (t2)x0 − T (t1)x0‖ +
∫ t2

t1

‖T (t2 − s)‖ · ‖f(s, u(s), (Ku)(s), (Su)(s))‖ds

+
∫ t1

0

‖T (t2 − s) − T (t1 − s)‖ × ‖f(s, u(s), (Ku)(s), (Su)(s))‖ds

≤ ‖T (t2)x0 − T (t1)x0‖ +
∫ t1

0

‖T (t2 − s) − T (t1 − s)‖ · Ma0R∗ds

+MMa0R∗ |t2 − t1|.
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Since T (t)x0 is continuous on J , then T (t)x0 is uniformly continuous on J . Note that T (t) is continuous
in the sense of operator norm. It follows from the Lebesgue dominated convergence theorem that

∫ t1

0

‖T (t2 − s) − T (t1 − s)‖ · Ma0R∗ds → 0, t2 − t1 → 0.

Thus, Q(BR∗) is equicontinuous.

Let F = coQ(BR∗). Then Q : F → F . By Lemma 3.3, F ⊂ C(J, E) is equicontinuous.

Now, we are in the position to prove that Q : F → F is a convex-power condensing operator. First, it is
easy to see that Q is continuous. Let u0 ∈ F . We shall prove there exists a positive integer n0 such that for
any nonprecompact set B ⊂ F ,

α
(
Q(n0,u0)(B)

)
< α(B).

For any B ⊂ F , by the definition of Q(n,u0)(B) and Lemma 3.2, we get Q(n,u0)(B) ⊂ BR∗ is equicontinuous.
Hence , we know from Lemma 3.1 that

α
(
Q(n,u0)(B)

)
= max

t∈J
α

((
Q(n,u0)(B)

)
(t)

)
, n = 1, 2, · · · . (3.13)

Since B ⊂ F is bounded and equicontinuous, by Lemma 3.1, we get

α(B) = max
t∈J

α(B(t)).

It follows from (H1) and Lemma 3.3 that {T (t − s)f(s, u(s), (Ku)(s), (Su)(s)) : u ∈ B} (∀t, s ∈ J, t ≥ s) is

equicontinuous in C(J, E).

Hence from (H2) and Lemma 3.1, we have

α
((

Q(1,u0) (B)
)

(t)
)

= α ((Q (B)) (t))

= α

(
T (t)x0 +

∫ t

0

T (t − s)f (s, B(s), (KB)(s), (SB)(s)) ds

)

= α

(∫ t

0

T (t − s)f (s, B(s), (KB)(s), (SB)(s)) ds

)

≤
∫ t

0

α(T (t − s)f (s, B(s), (KB)(s), (SB)(s))) ds

≤
∫ t

0

‖T (t − s)‖α (f (s, B(s), (KB)(s), (SB)(s))) ds

≤
∫ t

0

M (L1 + ak0L2 + ah0L3)α(B(s))ds

≤ Mt (L1 + ak0L2 + ah0L3)α(B). (3.14)
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By the equicontinuity of Q(1,u0)(B) = Q(B) and the uniform continuity of f , it follows from Lemma 3.2 and
Lemma 3.3 that for all t , s ∈ J , t ≥ s ,

T (t − s)f
(
s,

(
co

{
Q(1,u0)(B), u0

})
(s),(

Kco
{

Q(1,u0)(B), u0

})
(s),

(
Sco

{
Q(1,u0)(B), u0

})
(s)

)

is equicontinuous.

So, by virtue of (H2), (3.14) and Lemma 3.1, we have

α
((

Q(2,u0)(B)
)

(t)
)

= α

(
T (t)x0 +

∫ t

0

T (t − s)f
(
s,

(
co

{
Q(1,u0)(B), u0

})
(s),

(
Kco

{
Q(1,u0)(B), u0

})
(s),

(
Sco

{
Q(1,u0)(B), u0

})
(s)

)
ds

)
= α

(∫ t

0

T (t − s)f
(
s,

(
co

{
Q(1,u0)(B), u0

})
(s),

(
Kco

{
Q(1,u0)(B), u0

})
(s),

(
Sco

{
Q(1,u0)(B), u0

})
(s)

)
ds

)
≤

∫ t

0

α
(
T (t − s)f

(
s,

(
co

{
Q(1,u0)(B), u0

})
(s),(

Kco
{

Q(1,u0)(B), u0

})
(s),

(
Sco

{
Q(1,u0)(B), u0

})
(s)

))
ds

≤
∫ t

0

‖T (t − s)‖(L1 + ak0L2 + ah0L3)α
((

co
{

Q(1,u0)(B), u0

})
(s)

)
ds

≤
∫ t

0

M(L1 + ak0L2 + ah0L3)α
((

Q(1,u0)(B)
)

(s)
)

ds

≤ M

∫ t

0

(L1 + ak0L2 + ah0L3)2Msα(B)ds

=
M2(L1 + ak0L2 + ah0L3)2t2

2!
α(B). (3.15)

Suppose that

α
(
Q(k,u0)(B)

)
(s) =

Mk(L1 + ak0L2 + ah0L3)ktk

k!
α(B), ∀t ∈ J.
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Then, for any t ∈ J ,

α
((

Q(k+1,u0)(B)
)

(t)
)

= α

(
T (t)x0 +

∫ t

0

T (t − s)f
(
s,

(
co

{
Q(k,u0)(B), u0

})
(s),

(
Kco

{
Q(k,u0)(B), u0

})
(s),

(
Sco

{
Q(k,u0)(B), u0

})
(s)

)
ds

)
= α

(∫ t

0

T (t − s)f
(
s,

(
co

{
Q(k,u0)(B), u0

})
(s),

(
Kco

{
Q(k,u0)(B), u0

})
(s),

(
Sco

{
Q(k,u0)(B), u0

})
(s)

)
ds

)
≤

∫ t

0

α
(
T (t − s)f

(
s,

(
co

{
Q(k,u0)(B), u0

})
(s),(

Kco
{
Q(k,u0)(B), u0

})
(s),

(
Sco

{
Q(k,u0)(B), u0

})
(s)

))
ds

≤
∫ t

0

‖T (t − s)‖ (L1 + ak0L2 + ah0L3)α
((

co
{
Q(k,u0)(B), u0

})
(s)

)
ds

≤
∫ t

0

M(L1 + ak0L2 + ah0L3)α
((

Q(k,u0)(B)
)

(s)
)

ds

≤ M

∫ t

0

(L1 + ak0L2 + ah0L3)k+1Mksk

k!
α(B)ds

=
Mk+1(L1 + ak0L2 + ah0L3)tk+1

(k + 1)!
α(B). (3.16)

Hence, by the method of mathematical induction, for any positive integer n and t ∈ J , we have

α
((

Q(n,u0)(B)
)

(t)
)
≤ Mn(L1 + ak0L2 + ah0L3)nan

n!
α(B). (3.17)

Consequently, by (3.13),

α
(
Q(n,u0)(B)

)
= max

t∈J
α

((
Q(n,u0)(B)

)
(t)

)
≤ Mn(L1 + ak0L2 + ah0L3)nan

n!
α(B).

Since

Mn(L1 + ak0L2 + ah0L3)nan

n!
→ 0 (n → ∞),

there exists a positive integer n0 such that

Mn0(L1 + ak0L2 + ah0L3)n0an0

n0!
< 1.
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So,

α
(
Q(n0,u0)(B)

)
< α(B).

Thus, Q : F → F is a convex-power condensing operator. It follows from Lemma 2.5 that Q has at least one
fixed point u∗ in F , that is to say, u∗ is a mild solution of IVP (1.1) in F ⊂ C(J, E). Hence, the result is
proved. �

Remark 3.5 Noting that many authors applied the famous Sadovskii’s fixed point theorem to investigate the
similar problems and used the same hypothesis (H2), they required the constants satisfy a strong inequality.

For instance, in [14], Liu considered the following IVP of mixed type integro-differential equation,

{
u′ = f(t, u, Ku, Su), t ∈ J = [0, a],
u(t0) = x0,

where K, S are defined as above, and assumed that the condition (H2) holds and L1, L2, L3 satisfy one of the
following conditions:

(a) ah0L3(e2a(L1+ak0L2) − 1) < L1 + ak0L2 ;

(b) a(2L1 + ak0L2 + ah0L3) < 1.

In the present paper, we can see that the condition (a) and (b) are not necessary.

Motivated by [15], we can replace the condition (H2) in Theorem 3.4 by the condition (H3) in the following
theorem.

Theorem 3.6 Let E be a real Banach space, and C0 -semigroup T (t)(t ≥ 0) generated by −A be an equicon-

tinuous semigroup. Assume (H1) holds and

(H3) there exist nonnegative Lebesgue integrable functions Li ∈ L(J, R+) (i = 1, 2, 3) such that for any bounded

and equicontinuous sets Di ⊂ C(J, E) (i = 1, 2, 3) and t ∈ J ,

α(f(t, D1(t), D2(t), D3(t))) ≤ L1(t)α(D1(t)) + L2(t)α(D2(t)) + L3(t)α(D3(t)).

Then the IVP (1.1) has at least one mild solution in C(J, E) .

Proof. The proof is similar to that of Theorem 3.4. So, we only demonstrate the differences in the proof.
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Define operator Q : C(J, E) → C(J, E) as in (3.12). From (H3) and Lemma 3.1, we have

α
((

Q(1,u0)(B)
)

(t)
)

= α((Q(B))(t))

= α

(
T (t)x0 +

∫ t

0

T (t − s)f (s, B(s), (KB)(s), (SB)(s)) ds

)

= α

(∫ t

0

T (t − s)f (s, B(s), (KB)(s), (SB)(s)) ds

)

≤
∫ t

0

α (T (t − s)f (s, B(s), (KB)(s), (SB)(s))) ds

≤
∫ t

0

‖T (t − s)‖α (f(s, B(s), (KB)(s), (SB)(s))) ds

≤
∫ t

0

M(L1(s) + ak0L2(s) + ah0L3(s))α(B(s))ds

≤ M

∫ t

0

(L1(s) + ak0L2(s) + ah0L3(s))α(B)ds =
∫ t

0

L(s)ds · α(B), (3.18)

where L(t) = M(L1(t) + ak0L2(t) + ah0L3(t)).

Due to the fact that there exists a continuous function φ : J → R such that for any ε ∈ (0, 1),

∫ a

0

|L(s) − φ(s)|ds < ε, (3.19)

and taking into account (3.18), (3.19), we have

α
((

Q(1,u0)(B)
)

(t)
)
≤

[∫ t

0

|L(s) − φ(s)|ds +
∫ t

0

|φ(s)|ds

]
α(B) ≤ (ε + λt)α(B),

where λ = max{|φ(t)| : t ∈ J} . Furthermore, we have

α
((

Q(2,u0)(B)
)

(t)
)

= α

(
T (t)x0 +

∫ t

0

T (t − s)f
(
s,

(
co

{
Q(1,u0)(B), u0

})
(s),

(
Kco

{
Q(1,u0)(B), u0

})
(s),

(
Sco

{
Q(1,u0)(B), u0

})
(s)

)
ds

)
(3.20)
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= α

(∫ t

0

T (t − s)f
(
s,

(
co

{
Q(1,u0)(B), u0

})
(s),

(
Kco

{
Q(1,u0)(B), u0

})
(s),

(
Sco

{
Q(1,u0)(B), u0

})
(s)

)
ds

)
≤

∫ t

0

α
(
T (t − s)f

(
s,

(
co

{
Q(1,u0)(B), u0

})
(s),(

Kco
{

Q(1,u0)(B), u0

})
(s),

(
Sco

{
Q(1,u0)(B), u0

})
(s)

))
ds

≤
∫ t

0

M(L1(s) + ak0L2(s) + ah0L3(s))α
((

Q(1,u0)(B)
)

(s)
)

ds

=
∫ t

0

L(s)α
((

Q(1,u0)(B)
)

(s)
)

ds

≤
∫ t

0

[|L(s) − φ(s)| + |φ(s)|]α
((

Q(1,u0)(B)
)

(s)
)

ds

≤
∫ t

0

[|L(s) − φ(s)| + |φ(s)|] (ε + λs) α(B)ds

=
(

ε2 + 2λtε +
λ2t2

2!

)
α(B). (3.21)

Hence, by induction, for any positive integer n and t ∈ J , we have, for all t ∈ J ,

α
((

Q(n,u0)(B)
)

(t)
)
≤

(
εn + C1

n(λt)εn−1 +
C2

n(λt)2εn−2

2!
+ · · ·+ (λt)n

n!

)
α(B).

Applying the method used in [15], we obtain that there exist 0 ≤ k < 1 and a positive integer n0 such that

(2.7) holds. It follows from Lemma 2.6 that Q has at least one fixed point u∗ in F , namely, u∗ is a mild

solution to IVP (1.1) in F ⊂ C(J, E). �

Next, we prove the existence of positive mild solutions to IVP (1.1).

Let E be a real partial order Banach space by a cone P of E , i.e., for any x, y ∈ E, x ≤ y if and only if
y − x ∈ P . For more details of cone theory, we refer the readers to [3, 4, 5].

Let T (t)(t ≥ 0) be a C0 -semigroup on E . If for any x ≥ 0, we have T (t)x ≥ 0, then T (t)(t ≥ 0) is
called a positive C0 -semigroup on E .

Theorem 3.7 Let P be a normal cone of E , and semigroup T (t)(t ≥ 0) generated by −A be an equicontinuous
and positive C0 -semigroup, x0 ≥ θ . Assume that f : J × P × P × P → P satisfies

(H4) for any R > 0 , f is uniformly continuous on J × BP (R) × BP (R) × BP (R) with BP (R) = {u ∈ P :

‖u‖ ≤ R} , and there are nonnegative continuous functions Nj(t)(j = 1, 2) and g(t) : J → P such that

for any t ∈ J , u , v , w ∈ P , f(t, u, v, w) ≤ N1(t)u + N2(t)v + g(t) ;

(H5) there exist constants Li > 0(i = 1, 2, 3) such that for any bounded and equicontinuous sets Di ⊂
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C(J, P )(i = 1, 2, 3) and t ∈ J ,

α(f(t, D1(t), D2(t), D3(t))) ≤ L1α(D1(t)) + L2α(D2(t)) + L3α(D3(t)).

Then IVP (1.1) has at least one positive mild solution in C(J, P ) .

Proof. Define the operator Q as in (3.12) and B̃ by the formula

(B̃u)(t) =
∫ t

0

T (t − s)[N1(s)u(s) + N2(s)(Ku)(s)]ds,

where (Ku)(s) =
∫ s

0
k(s, τ)u(τ )dτ .

Next, we shall prove r(B̃) = 0, where r(·) denotes the spectral radius of bounded linear operator. In

fact, for any t ∈ J , by the definition of B̃ , we have

‖(B̃u)(t)‖ =
∥∥∥∥∫ t

0

T (t − s)
(

N1(s)u(s) + N2(s)
∫ s

0

k(s, τ)u(τ )dτ

)
ds

∥∥∥∥
≤ MN∗(1 + ak0)t‖u‖C = αt‖u‖C,

where N∗ = max{max
s∈J

N1(s), max
s∈J

N2(s)} , M = sup{‖T (t)‖ : t ∈ J} , α = MN∗(1 + ak0). Further,

‖(B̃2u)(t)‖ ≤
∫ t

0

MN∗
[
‖(B̃u)(s)‖ +

∫ s

0

k(s, τ)‖(B̃u)(τ )‖dτ

]
ds

≤
∫ t

0

MN∗
[
αs‖u‖C + k0

∫ s

0

ατ‖u‖Cdτ

]
ds

≤ MN∗α(1 + ak0)
t2

2!
‖u‖C =

α2t2

2!
‖u‖C.

By the method of mathematical induction, for any positive integer n and t ∈ J , we have

‖(B̃nu)(t)‖ ≤ αntn

n!
‖u‖C.

Hence,

‖B̃nu‖C ≤ αnan

n!
‖u‖C.

and thus, ‖B̃n‖ ≤ αnan

n! . Therefore, r(B̃) = lim
n→∞

‖B̃n‖ 1
n = 0.

Let 0 < α < N−1 , where N is the normal constant of P . Hence, there exists an equivalent norm ‖ · ‖∗

in E such that ‖B̃‖∗ ≤ r(B̃)+α = α , where ‖B̃‖∗ denotes the operator norm of B̃ with respect to norm ‖ · ‖∗

(see [19]).

Let M∗ = sup{‖T (t)‖∗ : t ∈ J} , r∗ ≥ NM∗ [‖u0‖∗ + a‖g‖∗C] (1−Nα)−1 , where ‖u‖∗C = maxt∈J ‖u(t)‖∗,
BP (r∗) = {u ∈ C(J, P ) : ‖u‖∗C ≤ r∗}. Then for any u ∈ BP (r∗), by (H4) and the definition of the operator Q ,
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we have (Qu)(t) ≥ 0 and

(Qu)(t) ≤ T (t)x0 +
∫ t

0

T (t − s)[N1(s)u(s) + N2(s)(Ku)(s) + g(s)]ds

≤ T (t)x0 +
∫ t

0

T (t − s)[N1(s)u(s) + N2(s)(Ku)(s)]ds +
∫ a

0

T (t − s)g(s)ds.

Since P is a normal cone, we have

‖(Qu)(t)‖∗ ≤ N

(
‖T (t)x0‖∗ + ‖(B̃u)(t)‖∗ + ‖

∫ t

0

T (t − s)g(s)ds‖∗
)

≤ N

(
M∗‖x0‖∗ + ‖B̃‖∗‖u‖∗C +

∫ a

0

‖T (t − s)‖∗‖g(s)‖∗ds

)
≤ NM∗‖x0‖∗ + Nαr∗ + NaM∗‖g‖∗C ≤ r∗.

Thus, we get Q : BP (r∗) → BP (r∗). Let F̃ = coQ(BP (r∗)). Then F̃ is a bounded convex closed set

in C(J, E) and Q : F̃ → F̃ . Similar to the proof of Theorem 3.4, we can prove that Q is a convex-power
condensing operator. Thus, by Lemma 2.5, we get the conclusion. �

Furthermore, we have the following results, and the proof is similar to these of Theorem 3.6 and Theorem
3.7, so we omit it here.

Theorem 3.8 Let P be a normal cone of E , and semigroup T (t)(t ≥ 0) generated by −A be an equicontinuous

and positive C0 -semigroup, x0 ≥ θ . Assume that (H4) holds and f : J × P × P × P → P satisfies

(H6) there exist nonnegative Lebesgue integral functions Li ∈ L(J, R+)(i = 1, 2, 3) such that for any bounded

and equicontinuous sets Di ⊂ C(J, P )(i = 1, 2, 3) and t ∈ J ,

α(f(t, D1(t), D2(t), D3(t))) ≤ L1(t)α(D1) + L2(t)α(D2) + L3(t)α(D3).

Then IVP (1.1) has at least one mild solution in C(J, P ) .

Remark 3.9 Similarly, we can apply Lemma 2.5 to obtain the existence of solutions to the following IVP for
nonlinear second order mixed type integro-differential equation in Banach space E⎧⎪⎨⎪⎩

u′′ = f

(
t, u,

∫ t

0

k(t, s)u(s)ds,

∫ a

0

h(t, s)u(s)ds

)
, t ∈ J,

u(0) = x0, u
′(0) = x1,

(3.22)

where x0, x1 ∈ E , f , k , h are defined as above. It suffices to note that u is the solution to IVP (3.22) if and

only if u is a fixed point of the operator equation u = Q̃u , where

(Q̃u)(t) = x0 + tx1 +
∫ t

0

(t − s)f
(

s, u(s),
∫ t

0

k(s, τ)u(τ )dτ,

∫ a

0

h(s, τ)u(τ )dτ

)
ds.
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