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Covers and envelopes with respect to a semidualizing module

Xiaoguang Yan and Xiaosheng Zhu

Abstract

Let R be a commutative ring and C be a semidualizing R -module. For a given class of R -modules Q ,

we define a class QC by M ∈ QC ⇔ HomR(C, M) ∈ Q . We prove that if Q ⊆ AC(R) is a Kaplansky class

and closed under direct sums, then QC
⊥ is special preenveloping. As corollaries, we can show that Pn

C
⊥ and

Fn
C

⊥ are both special preenveloping. Finally, we show that In
C is covering, In

C
⊥ is enveloping and special

preenveloping provided R is Noetherian.
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1. Introduction

(Pre)covers and (pre)envelopes are important notions in relative homological algebra. For example, let R

be a ring, given a precovering class F , then for any R -module we can construct a HomR(F ,−)-exact complex
· · · −→ F1 −→ F0 −→ M −→ 0 with Fi ∈ F , i = 1, 2, · · · , which we call proper F -resolution of M . Proper
resolutions of a given module is unique up to homotopy, hence, one can define relative derived functors through
these resolutions. Dually, given a preenveloping class, one can define relative derived functors through the “co-
proper” resolutions. So it is useful to show a concrete class is (pre)covering or (pre)enveloping under suitable
conditions.

Recently, the notion of semidualizing modules has caught some authors’ attention. Foxby [11], Vasconcelos

[26] and Golod [13] initiated the study of semidualizing modules under different names, while Holm and

White [18] extended the definition of a semidualizing module to a pair of arbitrary rings. Especially, they

defined the so-called C -projective, C -injective and C -flat modules (see Definition 2.3), to characterize the

Auslander class AC(R) and the Bass class BC(R) (see Definition 2.4), with respect to a semidualizing module

C . The notion of C -projective (C -injective, C -flat) modules is fundamental for the study of relative homological

algebra with respect to semidualizing modules. Holm and White proved in [18, Proposition 5.10] that the
class PC of C -projective modules is precovering, the class FC of C -flat modules is covering and the class IC
of C -injective modules is enveloping. We know that C -projective (C -flat, C -injective) modules is build from

projective (flat, injective) modules and the semidualizing module C . Now for a given class of modules Q , define

a corresponding class QC in some way. (For example, define QC as follows: M ∈ QC ⇔ HomR(C, M) ∈ Q . In
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this case, if Q is the class of projective modules then QC is just the class of C -projective modules.) In general,
the class QC is difficult to handle, while the given class Q may be well-understood. So a natural question is:
can one deduce to the existence of (pre)covers or (pre)envelopes of QC from some properties of Q?

This paper is divided into two sections. In Section 2, we recall some definitions, give some terminology
and notations for the use throughout this work. We prove our main results in Section 3. Our main theorem is
Theorem 3.6.

Theorem Let R be a commutative ring and C be a semidualizing R -module, let Q be a Kaplansky class with
Q ⊆ AC(R) . Consider the class QC defined by M ∈ QC ⇔ HomR(C, M) ∈ Q . If Q is closed under direct

sums, then QC
⊥ is special preenveloping.

Then, as corollaries of the main theorem, we show that Pn
C
⊥ is special preenveloping (see Corollary 3.9

below), Fn
C
⊥ is enveloping and if R is coherent then Fn

C is preenveloping (see Corollary 3.11). At the end of

this paper we show the existence of (pre)envelops and (pre)covers by In
C and In

C
⊥ (see Theorem 3.13).

Throughout this work, R is a commutative ring with identity and all modules are unitary. So when we
say a ring is Noetherian we mean that it is a commutative Noetherian ring. C is always a semidualizing module
for R . A subcategory or a class of modules always means a full subcategory of the category of R -modules,
which is closed under isomorphisms. For unexplained concepts and notations, we refer the reader to [1], [9] and

[23].

2. Preliminaries

In this section, we give some terminology, and recall some definitions and some known results that we need
in the sequel. Among these are semidualizing modules, Auslander class, Bass class, C -projective, C -injective,
C -flat modules with respect to a semidualizing module C and Kaplansky class.

Definition 2.1 [22, 23] For a given R -module M , and a class of R -modules X , an augmented X -resolution

of M is an exact sequence X+ : · · · −→ Xn
∂X

n−−→ Xn−1 −→ · · · ∂X
1−−→ X0

∂X
0−−→ M −→ 0 with Xi ∈ X , for all i .

The truncated complex X : · · · −→ Xn
∂X

n−−→ Xn−1 −→ · · · ∂X
1−−→ X0 −→ 0 is called an X -resolution of M . An

X -resolution of M is said to be proper, if the corresponding augmented resolution X+ is HomR(X ,−)-exact.
The X -projective dimension of M is defined as

X -pdRM = inf{sup{n ≥ 0 | Xn �= 0} | X is an X -resolution of M }.

Dually, we can define Y -coresolution of an R -module N with a given class of R -modules Y and Y -injective

dimension of N , denoted by Y -idRN . We denote an augmented Y -coresolution by +Y and the corresponding

Y -coresolution Y is said to be proper if +Y is HomR(−,Y)-exact.

As usual, for an R -module M , we denote projective, injective and flat dimension of M by pdRM ,
idRM and fdRM , respectively.

The definition of a semidualizing module has already been extended to arbitrary associative rings (see

[18, Definition 2.1]). Note here the ground ring is commutative.
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Definition 2.2 [28, 1.8] An R -module C is semidualizing if it satisfies the following conditions:

(1) C admits a (possibly unbounded) resolution by finitely generated projective modules;

(2) The natural homothety map R → HomR(C, C) is an isomorphism; and

(3) Ext≥1
R (C, C) = 0.

A free R -module of rank one is semidualizing. If R is Cohen-Macaulay and admits dualizing module D ,
then D is semidualizing. More examples of semidualizing modules can be found in [5, 18].

In [18], Holm and White defined C -projective, C -injective and C -flat modules in order to study the

Auslander class AC(R) and the Bass class BC(R) with respect to a semidualizing module C .

Definition 2.3 [18, Definition 5.1] Let C be a semidualizing module for a ring R . An R -module is C -

projective (C -flat) if it is of the form C ⊗R P (C ⊗R F ) for some projective (flat) module P (F ). An R -module

is C -injective if it is of the form HomR(C, E) for some injective module E . We set

In
C = the category of modules with IC-injective dimension less than or equal to n.

Pn
C = the category of modules with PC-projective dimension less than or equal to n.

Fn
C = the category of modules with FC-projective dimension less than or equal to n.

Note that by Definition 2.1 we say that a module M has PC -projective dimension less than or equal to n if
and only if there exists an exact sequence 0 −→ Pn −→ · · · −→ P0 −→ M −→ 0 with each Pi C -projective. Similarly,
a module N has IC -injective dimension less than or equal to n if and only if there exists an exact sequence of
the form 0 −→ N −→ E0 −→ · · · −→ E−n −→ 0 with each Ei IC -injective. Moreover, we set:

In = the category of modules with injective dimension less than or equal to n.

Pn = the category of modules with projective dimension less than or equal to n.

Fn = the category of modules with flat dimension less than or equal to n.

Over a noetherian ring, Avramov and Foxby [3, 11] and Enochs, Jenda and Xu [10] connected the study

of (semi)dualizing modules to associated Auslander class AC(R) and Bass class BC(R) for (semi)dualizing
modules, which are subcategories of the category of R -modules.

Definition 2.4 [28, 1.14] The Auslander class of R with respect to C , denoted AC(R), consists of modules
M satisfying:

(a1) TorR
≥1(C, M) = 0;

(a2) Ext≥1
R (C, C ⊗R M) = 0; and

(a3) the canonical map μM : M → HomR(C, C ⊗R M) is an isomorphism.

The Bass class of R with respect to C , denoted BC(R), consists of modules N satisfying:

(b1) Ext≥1
R (C, N) = 0;

(b2) TorR≥1(C, HomR(C, N) = 0); and

(b3) the canonical map νN : C ⊗R HomR(C, N) → N is an isomorphism.
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Remark 2.5 Let C be a semidualizing R -module. If two of the three modules in a short exact sequence
are in AC(R)(BC (R)), so is the third (see [18, Corollary 6.3.]). The category AC(R) contains modules of

finite flat dimension and modules of finite IC -injective dimension, and the category BC(R) contains modules

of finite injective dimension and modules of finite FC -projective, hence finite PC -projective dimension (see [18,

Corollaries 6.1 and 6.2]).

Next lemma is used frequently, and it goes back to [25 Theorem 2.8].

Lemma 2.6 Let C be a semidualizing module, then for a given R -module M:

1. M ∈ BC(R) if and only if HomR(C, M) ∈ AC(R) ;

2. M ∈ AC(R) if and only if C ⊗R M ∈ BC(R) . �

We conclude this section by recalling the definition of Kaplansky class.

Definition 2.7 [8, Definition 2.1] Let F be a class of modules. Then F is said to be a Kaplansky class if
there exists a cardinal number ℵ such that for any M ∈ F and any x ∈ M , there exists a submodule F of M

such that x ∈ F, F ∈ F , M/F ∈ F and |F | ≤ ℵ , where |F | denotes the cardinality of F .

3. Main results

We give our main results in this section. First we show the existence of special preenvelops relative to a
Kaplansky class. Recall that Enochs and L ópez-Ramos proved that if F is a Kaplansky class which is closed

under extensions and direct limits, then F⊥ is enveloping [8, Theorem 2.8]. Replacing the condition “closed
under extensions and direct limits” by “closed under direct sums” we get the following proposition, and the
proof is inspired by that of [1, Proposition 2.6]. For the completeness, we give the proof.

Proposition 3.1 If Q is a Kaplansky class which is closed under direct sums, then Q⊥ is special preenveloping.

Proof. Since Q is a Kaplansky class, there exists a cardinal number ℵ such that each L ∈ Q can be written
as a direct union of a continuous chain of submodules {Lα, α < λ} for some ordinal number λ such that

L0 ∈ Q, |L0| ≤ ℵ, Lα+1/Lα ∈ Q and |Lα+1/Lα| ≤ ℵ when α + 1 < λ . Let S be the representative set of

modules L in Q with |L| ≤ ℵ . Then by [6, Theorem 1.2], it is not difficult to see that for an R -module M ,

M ∈ Q⊥ ⇔ Ext1R(L, M) = 0 for all L ∈ S ⇔ Ext1R(B, M) = 0, where B =
⊕

L∈S L .

Now we only need to employ the method developed in [1, Theorem 2.6].

Take an exact sequence 0 −→ K −→ P −→ B −→ 0 with P projective. For a given R -module M ,

consider the pushout of the map ϕ : K(Hom(K,M)) → M defined by ϕ({xf}) = Σf(x) and the inclusion map

K(Hom(K,M)) → P (Hom(K,M)) :
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Thus ι is the inclusion and M1/M ∼= B(Hom(K,M)) ∈ Q , since Q is closed under direct sums. Moreover,

for any morphism f : K → M there is a morphism f
′
: P → M1 such that the following diagram is commutative:

Continuing this process, for any ordinal number λ we can construct a continuous chain of modules {Mα, α < λ}
such that M0 = M, Mα+1/Mα ∈ Q for all α + 1 < λ and for any K → Mα there exists a P → Mα+1 with the
commutative diagram:

By [1, Proposition 2.1 and Corollary 2.2], for the given module M , we get an exact sequence 0 −→ M −→
T −→ L −→ 0 with T =

⋃
α<λ Mα ∈ Q⊥ for some ordinal number λ and L = T/M =

⋃
α<λ Mα/M =

⋃
α<λ Lα .

Note that {Lα, α < λ} is a continuous chain of submodules of L such that L0 = 0, Lα+1/Lα
∼= Mα+1/Mα ∈

Q, α + 1 < λ . Thus {Lα, α < λ} is a ⊥(Q⊥)-filtration of L (see [12, Definition 3.1.1]), since Q ⊆ ⊥(Q⊥).

Therefore, L ∈ ⊥(Q⊥) by Eklof Lemma (see [12, Lemma 3.1.2]). So by definition, 0 −→ M −→ T is a special

Q⊥ -preenvelope of M . �

Corollary 3.2 If Q is a Kaplansky class which is closed under direct sums, then (⊥(Q⊥),Q⊥) is a complete
cotorsion theory.

Proof. It is trivial that the pair is a cotorsion theory. From Proposition 3.1, we know that this cotorsion
theory has enough injectives, so by [9, Proposition 7.1.7] it is complete. �

Example 3.3 From [8, Proposition 2.10] we know that the class of Gorenstein flat modules GF is a Kaplansky

class. Since GF closed under direct sums, we can say that every module admits a special GF⊥ -preenvelope,

and (⊥(GF⊥), GF⊥) is a complete cotorsion theory.

We know that an R -module M is C -projective, that is, M = C ⊗R P for some projective module P , if
and only if HomR(C, M) is projective. Following this manner, we give the following definition.

Definition 3.4 For a given class Q ⊆ AC(R), we define a class QC as follows: M ∈ QC ⇔ HomR(C, M) ∈ Q .

By definition and Lemma 2.6, it is easy to see that QC ⊆ BC(R), for any module N, N ∈ Q ⇔ C ⊗R N ∈ QC ,

and every element in QC has the form C ⊗R N with N ∈ Q . Note that if we take Q to be Pn(Fn), then by

[25, Theorem 2.11(c)] QC is just Pn
C (Fn

C ).

In order to prove our main theorem, we need the following lemma.
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Lemma 3.5 Let Q and QC be as in Definition 3.4 , then Q is closed under extensions (direct limits, direct

summands, direct products) if and only if QC is closed under extensions (direct limits, direct summands, direct

products).

Proof. We only give the proof for “extensions,” and for the proof of “direct limits” and “direct products”
one only need to note that C is finitely presented.

First, suppose that Q is closed under extensions. Any exact sequence 0 −→ M
′ −→ M −→ M

′′ −→ 0 with

M
′
, M

′′ ∈ QC is HomR(C,−)-exact, since M
′ ∈ QC ⊆ BC(R). Thus, applying the functor HomR(C,−) to the

exact sequence, we get another exact sequence 0 −→ HomR(C, M
′
) −→ HomR(C, M) −→ HomR(C, M

′′
) −→ 0 with

HomR(C, M
′
), HomR(C, M

′′
) ∈ Q . So HomR(C, M) ∈ Q , then by definition M ∈ QC .

Conversely, suppose that QC is closed under extensions. Any exact sequence 0 −→ N
′ −→ N −→ N

′′ −→ 0

with N
′
, N

′′ ∈ Q is C ⊗R −-exact, since N
′′ ∈ Q ⊆ AC(R). Thus, applying the functor C ⊗R − to the exact

sequence, we get another exact sequence 0 −→ C⊗R N
′ −→ C⊗R N −→ C⊗R N

′′ −→ 0 with C⊗R N
′
, C⊗R N

′′ ∈ QC ,
so C ⊗R N ∈ QC . Therefore N ∈ Q . �

Now we are in position to give our main theorem:

Theorem 3.6 Let Q be a Kaplansky class with Q ⊆ AC(R) . If Q is closed under direct sums (hence Q⊥ is

special preenveloping by Proposition 3.1), then QC
⊥ is special preenveloping. �

We see that if we could prove that QC is a Kaplansky class, then by Proposition 3.1 and Lemma 3.5,

Q⊥
C is special preenveloping. But, in general, we do not know whether QC is a Kaplansky class. (we give

an affirmative answer for a special case, see Proposition 3.10). But note that, in Proposition 3.1, the crucial

step to show the existence of special Q⊥ -preenvelops is to understand that each M ∈ Q can be written
as a direct union of a continuous chain of submodules {Mα, α < λ} for some ordinal number λ such that

M0 ∈ Q, |M | ≤ ℵ, Mα+1/Mα ∈ Q and |Mα+1/Mα| ≤ ℵ for a fixed cardinal number ℵ . In fact, for any class

T which has the above property, we can prove, as in Proposition 3.1, that T ⊥ is special preenveloping. So, in
order to prove the theorem we only need to prove the following lemma.

Lemma 3.7 Let QC be the class in Theorem 3.6 , then there exists a cardinal number ℵ̄ such that each N ∈ QC

can be written as a direct union of a continuous chain of submodules {Nα, α < λ} for some ordinal number λ

such that N0 ∈ QC, |N0| ≤ ℵ̄, Nα+1/Nα ∈ QC and |Nα+1/Nα| ≤ ℵ̄ for all α + 1 < λ.

Proof. Let ℵ be a cardinal number which implements the Kaplansky property for Q . Set ℵ̄ = |R| · ℵ0 · ℵ .

For each M ∈ QC , HomR(C, M) ∈ Q by definition. Then HomR(C, M) =
⋃

α<λ Mα for some ordinal number

λ such that M0 ∈ Q, |M | ≤ ℵ, Mα+1/Mα ∈ Q and |Mα+1/Mα| ≤ ℵ for α + 1 < λ . The first isomorphism of

the following sequence is from the fact that M ∈ QC ⊆ BC(R):

M ∼= C ⊗R HomR(C, M) ∼= C ⊗R

⋃

α<λ

Mα
∼= C ⊗R lim−→Mα

∼= lim−→C ⊗R Mα.

We now show that {Nα = C ⊗R Mα, α < λ} is the desired continuous chain. For each α < λ we know

that Mα+1/Mα ∈ Q ⊆ AC(R). Thus applying the functor C ⊗R − to the exact sequence 0 −→ Mα −→ Mα+1 −→
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Mα+1/Mα −→ 0 leaves us an exact sequence 0 −→ C ⊗R Mα −→ C⊗R Mα+1 −→ C ⊗R (Mα+1/Mα) −→ 0. This exact

sequence shows that {C ⊗R Mα, α < λ} is indeed a continuous chain and that C ⊗R Mα+1/C ⊗R Mα
∼=

C ⊗R (Mα+1/Mα) ∈ QC . Finally, it is not difficult to see that C ⊗R M0 ∈ QC, | C ⊗R M0| ≤ ℵ̄ and

| C ⊗R Mα+1/C ⊗R Mα| = | C ⊗R (Mα+1/Mα) | ≤ ℵ̄ . �

“Proof of Theorem 3.6”: By Lemma 3.7 we can prove the theorem as we did for Proposition 3.1. Note
that QC is closed under direct sums by Lemma 3.5. �

Remark 3.8 Our first application of Theorem 3.6 goes to AC(R), the Auslander class of R with respect to

C . By [7, Proposition 3.10], we know that over a Noetherian ring AC(R) is a Kaplansky class which is also

closed under direct sums, thus AC(R)⊥ is special preenveloping by Theorem 3.6 (This also can be obtained by

[7, Theorem 3.11] and Wakamatsu’s lemma). In particular, when C is a dualizing module over a Noetherian and

local Cohen-Macaulay ring R , then AC(R) is just GP<∞ , the class of modules with finite Gorenstein projective

dimension (see [10, Corollary 2.4]). Therefore, in this case, we can say that GP<∞
⊥ is special preenveloping.

Now we take Q to be Pn , then QC is Pn
C by [25, Theorem 2.11(c)], and we get the following corollary.

Corollary 3.9 Pn
C
⊥ is a special preenveloping class.

Proof. Pn is closed under direct sums and from [1, Proposition 4.1] we know that Pn is a Kaplansky class.

Thus Pn
C
⊥ is special preenveloping by Theorem 3.6. �

When Q is a special kind of Kaplansky class, we can show that QC is also a Kaplansky class.

Proposition 3.10 If Q ⊆ AC(R) is closed under pure submodules and pure quotients (in this case Q is a

Kaplansky class by [16, Proposition 3.2]), then QC is a Kaplansky class.

Proof. Suppose that M ∈ QC , then M = C ⊗R N for some N ∈ Q . Choose an element x ∈ M , assume

that x = Σk
i=1ci ⊗ ni with ci ∈ C and ni ∈ N , i = 1, 2, · · · , k . Let N

′
be the submodule of N gener-

ated by n1, · · · , nk . Then by [20, Lemma 2.7], we get a pure submodule N̄ of N which contains N
′

and

| N̄ | ≤ sup {ℵ0, |N
′|, |R|} . Note that N

′
is finitely generated, so |N ′| ≤ ℵ0 · |R| . Set ℵ′

= ℵ0 · |R| , then

| N̄ | ≤ ℵ′
. Since N̄ is pure in N , both N̄ and N/N̄ are in Q . Therefore, C⊗R N̄ ∈ QC . Furthermore, the exact

sequence 0 −→ C ⊗R N̄ −→ C ⊗R N −→ C ⊗R

(
N/N̄

)
−→ 0 implies that C ⊗R N̄ is a submodule of M(= C ⊗R N)

which contains x and M/C ⊗R N̄ ∼= C ⊗R N/C ⊗R N̄ ∼= C ⊗R

(
N/N̄

)
∈ QC . Finally, | C ⊗R N̄ | ≤ ℵ0 · ℵ0 · ℵ

′
= ℵ̄

which is independent of the choice of C ⊗R N̄ . So there is a cardinal ℵ̄ such that for each module M ∈ QC

and an element x ∈ M , we have a submodule M
′
(= C ⊗R N̄) ⊆ M such that |M ′ | ≤ ℵ̄ and M

′
, M/M

′ ∈ QC .
Thus QC is a Kaplansky class. �

Recall that Fn denotes the class of modules M with fdRM ≤ n and Fn
C denotes the class of modules

N with FC -pdRM ≤ n . As an application of the Proposition 3.10 we have the following result.

Corollary 3.11 Fn
C
⊥ is enveloping. Moreover, if the ring R is coherent, then Fn

C is preenveloping.
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Proof. Note that if we take Q to be Fn , then QC is just Fn
C . Since Fn is the class which is closed under

extensions, direct limits, pure submodules and pure quotients, then Fn
C is a Kaplansky class which is closed

under extensions and direct limits by Lemma 3.5 and Proposition 3.10. Thus Fn
C
⊥ is enveloping by [8, Theorem

2.8].

If R is coherent, then Fn is closed under direct products. So Fn
C is closed under direct products by

Lemma 3.5, thus Fn
C is preenveloping by [8, Theorem 2.5]. �

Remark 3.12 In fact, we know that M ∈ Fn
C ⇔ FC -pdRM ≤ n ⇔ fdRHomR(C, M) ≤ n ⇔ idR(HomZ(HomR

(C, M), Q/Z)) ≤ n ⇔ idR(C ⊗R HomZ(M, Q/Z)) ≤ n ⇔ IC -idRHomZ(M, Q/Z) ≤ n ⇔ HomZ(M, Q/Z) ∈ In
C .

Therefore, (Fn
C , In

C ) is a duality pair (see [17, 2.1]) and Fn
C is closed under pure submodules and pure quotients

by [17, Theorem 3.1]. Furthermore, we say that (Fn
C , In

C ) is a coproduct closed duality pair, since Fn
C is closed

under direct sums. Thus Fn
C is a covering class by [17, Theorem 3.1(b)].

Similarly, for a given class T ⊆ BC(R) we can define a class TC as follows: M ∈ TC ⇔ C ⊗R M ∈ T .

Then we can prove that if T is a Kaplansky class which is closed under direct sums, then both T ⊥ and TC⊥

are special preenveloping. For example, we can take T to be BC(R), the Bass class of R with respect to
C , where C is a semidualizing module over a Noetherian ring, and to be GI<∞ , the class of modules with
finite Gorenstein injective dimension over a Noetherian local Cohen-Macaulay ring. In particular, if we take
T to be In , then by [25, Theorem 2.11(b)] TC is In

C . Then we can show that every module admits a special

In
C
⊥ -preenvelope. In fact, we claim that the existence of (pre)envelops ((pre)covers) by In

C
⊥ (In

C ) is immediate

consequence of existing literature.

Theorem 3.13 Let R be a noetherian ring, C be a semidualizing R -module. Then In
C is covering, In

C
⊥ is

enveloping and special preenveloping.

Proof. By [25, Theorem 2.11(b)], we have that M ∈ In
C ⇔ C ⊗R M ∈ In . From this equivalence and the

fact that In is closed under pure submodules and pure quotients, it is easy to show that In
C is closed under

pure submodules and pure quotients. Since In
C is closed under direct sums, therefore In

C is covering by [16,

Theorem 2.5]. Moreover, In
C is a Kaplansky class by [16, Proposition 3.2], and In

C is closed under direct limits

and extensions, thus In
C
⊥ is enveloping by [8, Theorem 2.8]. Finally, the special In

C
⊥ -preenveloping of every

module is from Wakamatsu’s Lemma. �
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