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A Beurling-type theorem in Bergman spaces

Ali Abkar

Abstract

It is known that Beurling’s theorem concerning invariant subspaces is not true in the Bergman space

(in contrast to the Hardy space case). However, Aleman, Richter, and Sundberg proved that every cyclic

invariant subspace in the Bergman space Lp
a(�), 0 < p < +∞ , is generated by its extremal function (see [3]).

This implies, in particular, that for every zero-based invariant subspace in the Bergman space the Beurling’s

theorem stands true. Here, we shall supply an alternative proof for this latter statement; our short proof is

more direct and closely related to Hedenmalm’s original approach to the problem.
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1. Introduction

Let D denote the open unit disk in the complex plane. The Bergman space Lp
a(D) is the space of all

holomorphic functions f : D → C for which

‖f‖p
Lp

a(D)
=

∫
D

|f(z)|p dA(z) < +∞,

where dA(z) = π−1dx dy is the normalized area measure. It is well-known that for 1 ≤ p < +∞ , the Bergman

space Lp
a(D) is a Banach space, and for 0 < p < 1, it is a complete metric space.

A closed subspace M ⊂ Lp
a(D) is said to be invariant if zM ⊂ M . A sequence Λ ⊂ D is said to be a

zero sequence if there exists a nonzero function f ∈ Lp
a(D) such that f vanishes precisely on Λ. An invariant

subspace of the form

M = {f ∈ Lp
a(D) : f(z) = 0, z ∈ Λ}

is called a zero-based invariant subspace. For a function f ∈ Lp
a(D), the closure in Lp

a(D) of all polynomial

multiples of f is an invariant subspace which is denoted by [f ] ; this subspace is also known as the invariant

subspace generated by f . An invariant subspace M is said to be cyclic if M = [f ] for some f ∈ Lp
a(D). It

is known that every zero-based invariant subspace is cyclic; this follows from Proposition 5.4 in [3]. For an
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invariant subspace M , we consider the extremal problem

sup
{
Re f(j)(0) : f ∈ M, ‖f‖Lp

a(D) ≤ 1
}

,

where j is the multiplicity of the common zero at the origin of all the functions in M . The solution to this
problem is called the extremal function for M and is denoted by G . This problem was first introduced by
Hedenmalm in [5], [6] for the case p = 2, and subsequently by Peter Duren et al. in [8] and [9] for 0 < p < +∞ .
In the context of the Hardy spaces, Beurling’s theorem says that every invariant subspace other than the trivial
one, {0} , is generated by an inner function (which is an extremal function in that context); in other words, every
invariant subspace of the Hardy space is cyclic. On the other hand, the invariant subspaces of the Bergman

space L2
a(D) need not be singly generated. Nevertheless, for the Bergman space L2

a(D), a Beurling-type theorem
holds true; every invariant subspace M is generated by M � zM ; that is,

M = [M � zM ] = [M ∩ (zM)⊥].

A very technical proof for this result was presented in the fundamental paper [3], and the problem is still open

for the case p 
= 2 (see also [4], page 272). Using this theorem the authors, among other things, deduced that

every zero-based invariant subspace in L2
a(D) is generated by its extremal function; meaning that for zero-

based invariant subspaces Beurling’s theorem is true (in contrast to Beurling-type theorem for general invariant

subspaces). Later on, the current author in [2] supplied an alternative proof for this statement that makes no
appeal to the Beurling-type theorem established by the above-named authors. This work was appreciated by
Peter Duren and Alexander Schuster in page 273 of their recent monograph [4]. In this way the current author
was encouraged to examine the proof already presented for the case p = 2, and realized that the argument can
be modified to incorporate the other values of 0 < p < +∞ . We shall prove that every zero-based invariant
subspace of Lp

a(D) is generated by its extremal function. Our proof uses the density of the polynomials in some

weighted Bergman spaces, a pattern closely related to Hedenmalm’s original approach to the problem (see [5],

[6] and [10]).

2. Beurling’s theorem

Let Δ = 1
4 ( ∂2

∂x2 + ∂2

∂y2 ) stand for the Laplace operator in the complex plane; so that with this notation

we have Δ|f |2 = |f ′|2 and

Δ|f |p =
p2

4
|f |p−2|f ′|2.

Let M be a zero-based invariant subspace in Lp
a(D) and let G be its extremal function. It was shown by

Hedenmalm for p = 2 and by the authors of [8], [9] and [10] for arbitrary values of 0 < p < +∞ that G satisfies
the equation

ΔΦ(z) = |G(z)|p − 1, z ∈ D,

where Φ is a C∞ function in D , it is continuous on D and vanishes on the boundary of the unit disk (in a

weak sense). Moreover, Φ satisfies the inequalities

0 ≤ Φ(z) ≤ 1 − |z|2.
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In an attempt to the study of invariant subspaces of the Bergman spaces, H. Hedenmalm then introduced the
space

Ap =
{

f ∈ Lp
a(D) :

∫
D

Φ(z)Δ|f(z)|p dA(z) < +∞
}

,

for 0 < p < ∞ . For f ∈ Ap He defined

‖f‖p
Ap = ‖f‖p

Lp
a(D)

+
∫

D

Φ(z)Δ|f(z)|p dA(z).

It can be proved that for 1 ≤ p < +∞ , the set Ap is a vector space and has a norm; moreover for 0 < p < 1,
it enjoys the induced metric

d(f, g) = ‖f − g‖p
L

p
a(D)

+
∫

D

Φ(z)Δ|(f − g)(z)|p dA(z).

Let Ap
0 denote the closure of the polynomials in Ap (with respect to the norm or metric defined above). It was

shown in [6] for p = 2 and in [10], Corollary 3, for p 
= 2 that [G] = G · Ap
0 and that

‖Gf‖p
Lp

a(D)
= ‖f‖p

Lp
a(D)

+
∫

D

Φ(z)Δ|f(z)|p dA(z), f ∈ Ap
0.

Moreover, the authors in page 319 of [10] left the following question open: is Ap = Ap
0 ? (see also the conjecture

following the question). It is clear that [G] ⊂ M , and it was already observed that M ⊂ G · Ap (see [6], or

Corollary 4 in [10]). Therefore, if we know that Ap = Ap
0 , it follows that Beurling’s theorem is true for M ,

because
M ⊂ G · Ap = G · Ap

0 = [G].

It is now time to state and prove the main result of this paper.

Theorem 2.1 Let M be a zero-based invariant subspace of Lp
a(D), 0 < p < +∞ . Then M is generated by its

extremal function G , that is M = [G] .

Proof. We have already mentioned that it suffices to show Ap = Ap
0 . Let f ∈ Ap, 0 < r < 1, and consider

the dilated functions fr(z) = f(rz). Since every fr can be approximated uniformly by the polynomials, it is

enough to show that ‖fr − f‖Ap → 0, as r → 1− . To do so, we first note that

‖fr‖p
Ap = ‖fr‖p

L
p
a(D)

+
∫

D

Φ(z)Δ|fr(z)|p dA(z).

But

‖fr‖p
Lp

a(D)
=

∫
D

|fr(z)|pdA(z)

=
∫

rD

|f(z)|p dA(z)
r2

=
1
r2

∫
rD

|f(z)|pdA(z).
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Therefore

lim
r→1−

‖fr‖p
Lp

a(D)
=

∫
D

|f(z)|pdA(z) = ‖f‖p
Lp

a(D)
. (2.1)

We now manage to show that

lim
r→1−

∫
D

Φ(z)Δ|fr(z)|pdA(z) =
∫

D

Φ(z)Δ|f(z)|pdA(z).

Recall that

Δ2Φ(z) = Δ (|G(z)|p − 1)

=
p2

4
|G(z)|p−2|G′(z)|2

≥ 0,

that is, Φ is a superbiharmonic function in the unit disk. Moreover,

0 ≤ Φ(z) ≤ 1 − |z|2 ≤ 2(1 − |z|), z ∈ D.

It is now time to recall the following statement from [2].

PROPOSITION: Let w : D → R be a superbiharmonic function satisfying the condition 0 ≤ w(z) ≤ C(1−|z|).
Then for |z| < r < 1 the function

r �→ rΦ(
z

r
)

is increasing.
PROOF OF PROPOSITION: See Proposition 3.3 in [2].
Note also that

Δ|fr(z)|p = r2Δ|f |p(rz),

so that by a change of variables we obtain, in view of the above proposition and the monotone convergence
theorem, that

lim
r→1−

∫
D

Φ(z)Δ|fr(z)|pdA(z) = lim
r→1−

1
r

∫
|z|<r

rΦ(
z

r
)Δ|f(z)|pdA(z)

=
∫

D

Φ(z)Δ|f(z)|pdA(z).

This together with (2.1) shows that

lim
r→1−

‖fr‖p
Ap = ‖f‖p

Lp
a(D)

+
∫

D

Φ(z)Δ|f(z)|p dA(z)

= ‖f‖p
Ap .
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We now have to resort to the following useful lemma from Real Analysis.
LEMMA: Let μ be a finite positive measure on X , and 0 < p < +∞ . Let fn and f be measurable functions
such that

lim sup
n→∞

∫
X

|fn|pdμ ≤
∫

X

|f |pdμ < +∞,

and fn → f, [μ] a.e. Then fn → f in Lp(X).

PROOF OF LEMMA: See page 66 of [7].

Since fr → f pointwise as r → 1− , it follows from the above Lemma that

‖fr − f‖Ap → 0, r → 1−,

from which the theorem follows. �

Concluding Remark

The stronger result that every cyclic invariant subspace in the Bergman space Lp
a(D) is generated by its

extremal function was proved in [3]. The proof essentially consists of two parts. First, the generator of such
an invariant subspace lies in the space G · Ap ; second, the polynomials are dense in Ap . In the proof of part
one, the authors use a specific technical argument, while for the second part they show that the functions fr

are uniformly norm bounded in the space Ap . Then arguing separately for the Banach space case p ≥ 1, and
the metric space case 0 < p < 1, they use some standard functional analysis to settle the problem. In contrast,
the short proof presented here can be applied to arbitrary values of 0 < p < +∞ . In other words, for cyclic
invariant subspaces our argument simplifies the second part of the proof given by the authors of [3], while for
the zero-based invariant subspaces it is an alternative proof.
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