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Geometrical objects associated to a substructure

Fatma Özdemir, Mircea Crâşmăreanu

Abstract

Several geometric objects, namely global tensor fields of (1, 1)-type, linear connections and Riemannian

metrics, associated to a given substructure on a splitting of tangent bundle, are studied. From the point of

view of lifting to entire manifold, two types of polynomial substructures are distinguished according to the

vanishing of not of the sum of the coefficients. Conditions of parallelism for the extended structure with

respect to some remarkable linear connections are given in two forms, firstly in a global description and

secondly using the decomposition in distributions. A generalization of both Hermitian and anti-Hermitian

geometry is proposed.

Key Words: Polynomial substructure, Induced polynomial structure, Schouten and Vrănceanu connections,

(anti)Hermitian metric, Shape operator.

1. Introduction

There are plenty of substructures in differential geometry. Usually we are interested in substructures
generated by a given structure, e.g. the fruitful theory of submanifolds. In this paper we adopt a different
point of view. Namely, we start with a fixed substructure, defined as a tensor field of (1, 1)-type on a
given distribution, and search what kind of geometrical objects can be associated in a natural way using
a complementary distribution. Based on the fact that the bundle of tensor fields of (1, 1) provides a very

interesting geometry (cf. [3], [4], [5]), we obtain a lot of geometric notions, namely: global tensor fields of

(1, 1)-type, linear connections, (anti)Hermitian metrics.

The paper is divided into three Sections. Firstly, polynomial structures generated by polynomial sub-
structures are studied. The notion of polynomial structure was introduced by Samuel I. Golberg and Kentaro

Yano in [10] as a generalization of f -structures (i.e. f3 +f = 0) and studied by various authors in [11], [23], [24],

[25], [26] and In our approach, we obtain two types of extensions according to the vanishing or non-vanishing
for the sum of coefficients for the initial polynomial P . In the first case, the extension has the same polynomial,
and in the second situation the polynomial (X − 1) · P .

The second section is devoted to some linear connections related to the given splitting of tangent bundle,
namely Schouten and Vrănceanu. Conditions for the extension of a given substructure to be parallel with respect
to these connections are given.
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Because Riemannian geometry is the most commonly used framework, in the last part we add a Rieman-
nian metric, related with the given substructure in an (anti)Hermitian manner. In this way, a generalization of

(anti)Hermitian geometry and the geometry of metric polynomial structures is obtained. The notion of met-

ric polynomial structures was introduced by Jarolim Bures and Jiri Vanzura in [1] and intensively studied in

[8], [17]-[20]. As main results of this section, conditions for the corresponding conjugate shape operator to be
self-adjoint or skew-adjoint are obtained.

In first and last sections, the well known examples of almost complex and almost product structures
are given in detail. Also, the results of first and last sections are generalizations of characterizations from [21]
where the case of almost complex substructure and Hermitian metric is treated only and the second section
extends the results of [7] where f (2v + 3, ε)-structures are studied only. Moreover, other remarkable structures

as almost tangent, f (2ν + 3) and ϕ (4,±2) are considered.

As frameworks with possible applications for our results the Ehresmann connections, nonlinear connec-
tions and symplectic distributions are pointed out. Ehresmann connections appear in field theories, nonlinear
connections are suited to geometrization of Lagrangian description of analytical mechanics and, as is well-known,
symplectic distribution are natural tools in the dual point of view, namely Hamiltonian approach. Also, all our
formulae are coordinates-free and suitable for any specific structure required by a concrete problem.

2. Extensions of polynomial substructures

Let M be a smooth, finite dimensional manifold and R, S two complementary distributions on M , i.e.
for every x ∈ M the following decomposition holds:

TxM = Rx ⊕ Sx. (2.1)

Let r, s be the corresponding projections, both viewed as (1, 1)-tensor fields; then

{
r2 = r, s2 = s
rs = sr = 0, r + s = 1TM .

(2.2)

Examples 2.1.

1) Ehresmann connections. Let π : E → N be a surjective submersion and V = kerTπ the vertical

subbundle of E . An Ehresmann connection on (E, π, M) is a smooth subbundle H of M = TE , also called

horizontal subbundle ([13, p. 36]), such that: TM = V ⊕ H .

2) Nonlinear connections. For the previous example with E = TN an horizontal subbundle is usually called

nonlinear connection ([15]). The decomposition T (TN) = V ⊕ H is useful for geometrization of Lagrangian

mechanics on TN [14]. An extension of this notion to bundle-type tangent manifolds appears in [2].

3) Symplectic distributions. Recall, after [6, p. 272], that if W is a subspace of a symplectic vector space

(V, σ) , then V = W + W σ , where W σ = {v ∈ V ; σ (v, w) = 0 for every w ∈ W} . Also ([6, p. 273]), the

given subspace W is called symplectic if σ |W×W is nondegenerate and then ([6, p. 274]) W ∩ W σ = {0} .
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In conclusion, given any symplectic distribution R on a symplectic manifold (M, σ) (i.e. Rx is a symplectic

subspace of TxM , for all x ∈ M ), we get another symplectic distribution S = Rσ , complementary to R .

We now return to general framework. Let us consider the following definiton.

Definition 2.1. (i) A tensor field JR of (1, 1)-type on R is called a substructure on M .

(ii) The above JR is called polynomial substructure if there exists a polynomial P such that P (JR) = 0. In
the following, we shall suppose that P is the minimal polynomial with this property.

Let us remark that if JR is a polynomial substructure and h is a nondegenerate tensor field of (1, 1)-type

on R , then the tensor field h ◦ JR ◦ h−1 is also a polynomial substructure of the same type as JR .

(iii) For above JR we define a special extension, denoted E (JR), to be the following tensor field of (1, 1)-type
on M :

E (JR) = s + JR ◦ r. (2.3)

The reason why we are interested in this case is to find out how the concept of extension can play a role in
the following mathematical problem. The fact is that two types of polynomial substructures are distinguished
according to the vanishing or non-vanishing of the sum of coefficients. (For the standard definition of to

extension, see Remark 2.1 and Remark 2.2.)

A natural question appears: Is there a polynomial function E (P ) such that E (P ) (E (JR)) = 0? We

prove that the answer is affirmative; more precisely the explicit form of E (P ) is obtained. Let us point out

that the form of E (JR) depends on the vanishing of the sum of the coefficients of P . In the null case we denote

E (JR) by E0 (P ) and for the nonzero case we denote it by E∗ (P ). Therefore we call E (JR) the polynomial

structure generated by JR and E0 (P ) the null extension of P , and E∗ (P ) the non-null extension of P .

Let us consider the expression of P

P (X) = Xk + a1X
k−1 + . . . + ak−1X + ak, (2.4)

which yields

Jk
R + a1J

k−1
R + . . . + ak−1JR + ak = 0. (2.5)

Let us denote Σ (P ) = 1 + a1 + . . . + ak the sum of coefficients for P . Using the relations (2.3), we have

E (JR)2 = s + J2
R ◦ r, . . . , E (JR)k = s + Jk

R ◦ r, (2.6)

and then
P (E (JR)) = (1 + a1 + . . . + ak) s + P (JR) ◦ r = Σ (P ) s. (2.7)

The last relation implies the following classification:

A. Σ (P ) = 0. Then

E0 (P ) = P. (2.8)

B. Σ (P ) �= 0. We get

E (JR) ◦ P (E (JR)) = Σ (P )E (JR) ◦ s = Σ (P ) s = P (E (JR)) . (2.9)
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In conclusion, by considering

E∗ (P ) (X) = X · P (X) − P (X) = (X − 1)P (X) , (2.10)

there results
E∗ (P ) (E (JR)) = 0 (2.11)

as final answer.

Remark 2.1. We study a special extension of polynomial substructure given in equation (2.3). Instead of this
extension, one could start with the standard definition of extension

JR ◦ r = r ◦ E(JR), (2.12)

and using the fact that
r(JR ◦ r) = JR ◦ r, (2.13)

one could solve E(JR) as

E(JR) = JR ◦ r + σ (2.14)

for some linear transformation σ : S −→ S . However, in general

σ �= s. (2.15)

Since s is a projection, it should restrict to the identity map on S ; however there is no such condition for σ .
Hence, defining another linear transformation JS : S −→ S by

σ = JS ◦ s, (2.16)

it is possible to define the extension
E(JR) = JR ◦ r + JS ◦ s. (2.17)

Note that it is not possible to get rid of JS by redefining s̄ = JS ◦ s for JS may not be either surjective or
injective. However, one could proceed by using the fact that

(E(JR))k = (JR)k ◦ r + (JS)k ◦ s . (2.18)

Then it is obvious that
P (E(JR)) = P (JR) ◦ r + P (JS) ◦ s = P (JS) ◦ s . (2.19)

Following the procedure, we obtain

E(JR) ◦ P (E(JR)) = (JS ◦ s) ◦ (P (JS) ◦ s) = (JS ◦ s) ◦ P (E(JR)) (2.20)

and
(E(JR) − JS ◦ s) ◦ P (E(JR)) = 0, (2.21)

which suggests that each choice of JS defines an extension. In equations (2.3), we choose

JS = IdS (2.22)
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and derive our conditions on sum of the coefficients of the polynomial.

Remark 2.2. One can prefer to deal with a special case by choosing

JS = λIdS , (2.23)

and get, in turn,
P (E(JR)) = P (λ)s. (2.24)

For complex manifolds, one can choose λ to be the root of the polynomial and obtain

P (E(JR)) = 0, (2.25)

which implies that each distinct root of the polynomial defines a different extension of the same polynomial
structure without any condition on the sum of the coefficients in the polynomial.

Examples 2.2.

1) f (2v + 3, ε)-substructures. Let v be a natural number and ε = ±1. JR is an f (2v + 3, ε)-substructure

if ( [7])

J2v+3
R + εJR = 0, (2.26)

which means that
P (X) = X2v+3 + εX , (2.27)

E∗ (P ) (X) = (X − 1)
(
X2v+3 + εX

)
= X2v+4 − X2v+3 + εX2 − εX. (2.28)

Particular case: v = 0, i.e. f (3, ε)-substructures with

P (X) = X3 + εX, E∗ (P ) (X) = X4 − X3 + εX2 − εX. (2.29)

(i) ε = +1. For example, if JR is almost complex substructure, J2
R = −1R , then

P (X) = X2 + 1, E∗ (P ) (X) = (X − 1)
(
X2 + 1

)
= X3 − X2 + X − 1. (2.30)

It is interesting that in this case

E (JR)4 − 1M =
(
E (JR)2 − 1

)(
E (JR)2 + 1

)
= (E (JR) + 1)E∗ (P ) (E (JR)) = 0, (2.31)

which means that E (JR) is an almost electromagnetic structure on M ; cf. [22]. This result was obtained in

[21].

(ii) ε = −1. For example, if JR is an almost product substructure, J2
R = 1R, then we are in the case A and

then
P (X) = E0 (P ) (X) = X2 − 1, (2.32)

which means that E (JR) is also an almost product structure on M .
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2) Almost k -tangent substructures. JR is an almost k -tangent substructure if Jk+1
R = 0 (cf. [16]), which

yields

P (X) = Xk+1 , E∗ (P ) (X) = (X − 1)Xk+1 = Xk+2 − Xk+1. (2.33)

3) ϕ (4,±2)-substructures. JR is an ϕ (4, +2) (respectively ϕ (4,−2)) substructure if ([27],[9])

J4
R + J2

R = 0
(
J4

R − J2
R = 0

)
(2.34)

and then

E∗ (P ) (X) = (X − 1)
(
X4 + X2

)
= X5 − X4 + X3 − X2 ,

E0 (P ) (X) = X4 − X2 ,

respectively.

4) Natural almost product structure associated to the pair (R, S). Let us remark that E (1R) = 1TM

and let us denote T = E (−1R) = s − r . For JR = −1R we have P (X) = X + 1 and thus E∗ (P ) (X) =

(X − 1) (X + 1) = X2 − 1. Therefore T 2 = 1TM which means that T is an almost product structure on M

naturally associated to the pair (R, S). An important remark is that T commutes with the extension E (JR)
for every JR

T ◦ E (JR) = E (JR) ◦ T = s − JR ◦ r. (2.35)

3. Parallelism with respect to Schouten and Vrănceanu connections

In this section we obtain some commutation identities, more precisely conditions equivalent to the
parallelism of the extension of a substructure with respect to Schouten and Vrănceanu connections.

For the rest of this section, let ∇ be a fixed linear connection on M . To the triple (R, S,∇) we associate

two other linear connections ([7], [12]):

(i) the Schouten connection
Sc

∇X Y = r (∇XrY ) + s (∇XsY ) ; (3.1)

(ii) the Vrănceanu connection

V

∇X Y = r (∇rXrY ) + s (∇sXsY ) + r [sX, rY ] + s [rX, sY ] . (3.2)

The following two propositions, generalizations of similar results from [7], show the importance of these

connections from the point of view of splitting (2.1).

Proposition 3.1. The projections r, s are parallel with respect to Schouten and Vrănceanu connection for every
linear connection ∇ on M .

722
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Proof. Let X (M) denote the Lie algebra of vector fields on M . For every X, Y ∈ X (M)

(
Sc

∇X r

)
Y =

Sc

∇X rY − r

(
Sc

∇X Y

)
= r (∇XrY ) − r (∇XrY ) = 0 (3.3)

(
V

∇X r

)
Y =

V

∇X rY − r

(
V

∇X Y

)

= r (∇rXrY ) + r [sX, rY ]− r (∇rXrY ) − r [sX, rY ] = 0. (3.4)

Similar relations hold for s . �

Recall that a distribution D on M is called parallel with respect to the linear connection ∇ if X ∈ X (M)
and Y ∈ D implies ∇XY ∈ D .

Proposition 3.2. The distributions R, S are parallel with respect to Schouten and Vrănceanu connection for
every linear connection ∇ on M .

Proof. Let X ∈ X (M) and Y ∈ R . Since, sY = 0 and rY = Y, we get

Sc

∇X Y = r (∇XY ) ∈ R

V

∇X Y = r (∇rXY ) + r [sX, Y ] ∈ R ,

Similar relations hold for S . �

For the following two characterization we use the relation

(∇XJ)Y = ∇XJY − J (∇XY ) (3.5)

for every tensor field of (1, 1)-type J .

Proposition 3.3. E (JR) is parallel with respect to Schouten connection if and only if ∇ satisfies

r (∇XJR ◦ rY ) = JR ◦ r (∇XrY ) (3.6)

for every X, Y ∈ X (M) . Equivalently, for every X ∈ X (M) and every Y ∈ R

r (∇XJRY ) = JR ◦ r (∇XY ) . (3.7)

Proof. From
Sc

∇X E (JR)Y = r (∇Xr ◦ E (JR)Y ) + s (∇Xs ◦ E (JR)Y )

= r (∇XJR ◦ rY ) + s (∇XsY ) ,

E (JR)
(

Sc

∇X Y

)
= E (JR) ◦ r (∇XrY ) + E (JR) ◦ s (∇XsY )
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= JR ◦ r (∇XrY ) + s (∇XsY )

the conclusion follows. The second part is based on the fact that the equation (3.6) is obviously satisfied for
Y ∈ S . �

Proposition 3.4. E (JR) is parallel with respect to Vrănceanu connection if and only if ∇ satisfies

r (∇rXJR ◦ rY ) + r [sX, JR ◦ rY ] = JR ◦ r (∇rXrY ) + JR ◦ r [sX, rY ] (3.8)

for every X, Y ∈ X (M) . Equivalently, for X ∈ X (M) and Y ∈ R

r (∇rXJRY ) + r [sX, JRY ] = JR ◦ r (∇rXY ) + JR ◦ r [sX, Y ] . (3.9)

Proof. The relations

V

∇X E (JR)Y = r (∇rXrE (JR)Y ) + s (∇sXsE (JR)Y ) + r [sX, rE (JR)Y ]

+s [rX, sE (JR)Y ]

= r (∇rXJR ◦ rY ) + s (∇sXsY ) + r [sX, JR ◦ rY ] + s [rX, sY ]

E (JR)
(

V

∇X Y

)
= E (JR) r (∇rXrY ) + E (JR) s (∇sXsY ) + E (JR) r [sX, rY ]

+E (JR) s [rX, sY ]

= JR ◦ r (∇rXrY ) + s (∇sXsY ) + JR ◦ r [sX, rY ] + s [rX, sY ]

yield the conclusion. �

Let us remark that:
(i) if X ∈ R then (3.8) is exactly (3.6)

(ii) if X ∈ S then (3.9) reads:

r [X, JRY ] = JR ◦ r [X, Y ] . (3.10)

4. (anti)Hermitian metrics with respect to an ε-substructure

Let g be a fixed Riemannian metric on M such that the distributions R, S are g -orthogonal: g (X, Y ) =
0, for every X ∈ R, Y ∈ S . Note that such metrics exist; if h is an arbitrary metric then

g (X, Y ) = h (rX, rY ) + h (sX, sY )

satisfies the above condition.

Definition 4.1. For λ a nonzero real number, the given Riemannian metric is called λ-Hermitian with respect
to JR if

g |R (JRX, JRY ) = λg |R (X, Y ) (4.1)
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for every X, Y ∈ R where g |R is the restriction of g to R . For λ = 1, we call g a Hermitian metric and for
λ = −1 we call g an anti-Hermitian metric w.r.t. JR .

Hence
g (E (JR)X, E (JR)Y ) = g |S (sX, sY ) + λg |R (rX, rY ) (4.2)

and then g is Hermitian w.r.t. E (JR) if and only if g is Hermitian w.r.t. JR . The pair (f, g) with f a

polynomial structure and g a Hermitian metric with respect to f was considered by Bures and Vanzura in [1]

with the name metric polynomial structure. Hence, if g is Hermitian w.r.t. to JR then (E (JR) , g) is a metric
polynomial structure.

In the following we restrict to the case when JR is an ε-substructure, ε �= 0, i.e. J2
R = ε1R . With the

substitution Y → JRY in (4.1) we have

g |R (JRX, εY ) = λg |R (X, JRY ) , (4.3)

which means that the g |R -adjoint of JR is

J∗
R =

λ

ε
JR. (4.4)

In particular, for λ = ε , JR is g |R -self-adjoint and for λ = −ε , JR is skew-adjoint.

For a fixed Z ∈ S , we define the shape operator LZ : R → R, LZ (X) = r (∇XZ), where ∇ is the
Levi-Civita connection of g .

Proposition 4.1. If R is integrable then LZ is self-adjoint.

Proof. Let X, Y ∈ R . From g -orthogonality of R and S there results

X (g (Y, Z)) = 0 = g (∇XY, Z) + g (Y,∇XZ) . (4.5)

Also, because Y ∈ R

g (Y,∇XZ) = g (Y, r (∇XZ)) = g (Y, LZX) . (4.6)

The last two relations yield

g (∇XY, Z) = −g (Y, LZX) (4.7)

and a similar one
g (∇Y X, Z) = −g (X, LZY ) .

By using the fact that the connection ∇ is torsionless and the integrability of R it follows that

g (X, LZY ) − g (Y, LZX) = g (∇XY, Z) − g (∇Y X, Z) = g ([X, Y ] , Z) = 0.

�

In the definition of the shape operator the given substructure does not appear. Let LZ = JR ◦ LZ be

the conjugate shape operator. For the rest of this section we are interested in conditions providing LZ to be
self-adjoint or skew-adjoint.
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Proposition 4.2. If R is integrable then the g |R -adjoint of LZ is

L
∗
Z =

λ

ε
LZ ◦ JR. (4.8)

In consequence, if JR commutes with LZ then LZ is self-adjoint(skew-adjoint) if and only if λ = ε (λ = −ε) .

Proof. For the first part,

L
∗
Z = (JR ◦ LZ)∗ = L∗

Z ◦ J∗
R = LZ ◦

(
λ

ε
JR

)
.

For the second part,

L
∗
Z =

λ

ε
LZ ◦ JR =

λ

ε
JR ◦ LZ =

λ

ε
LZ.

�

Corollary 4.1. Suppose that R is integrable.

(i) If JR is an almost complex substructure(ε = −1) and g is Hermitian w.r.t. JR (λ = 1), then LZ is

self-adjoint(skew-adjoint) if and only if JR anticommutes(commutes) with LZ .

(ii) If JR is an almost complex substructure and g is anti-Hermitian w.r.t. JR (λ = −1), then LZ is self-

adjoint(skew-adjoint) if and only if JR commutes(anticommutes) with LZ .

(iii) If JR is an almost product substructure(ε = 1) and g is Hermitian w.r.t. JR, then LZ is self-adjoint(skew-

adjoint) if and only if JR commutes(anticommutes) with LZ .

(iv) If JR is an almost product substructure and g is anti-Hermitian w.r.t. JR , then LZ is self-adjoint(skew-

adjoint) if and only if JR anticommutes(commutes) with LZ .

A remarkable example is provided by the following definition.

Definition 4.2. The integral submanifolds of R are called totally umbilical if there exists a real number μ

such that
LZ = μ1R (4.9)

for every Z ∈ S . Then

LZ = μJR, (4.10)

which implies this next corollary.

Corollary 4.2. Suppose that R is integrable with totally umbilical integral submanifolds.

(i) If JR is an almost complex substructure and g is Hermitian(anti-Hermitian) w.r.t. JR , then LZ is skew-

adjoint(self-adjoint).

(ii) If JR is an almost product substructure and g is Hermitian(anti-Hermitian) w.r.t. JR , then LZ is self-

adjoint(skew-adjoint).
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Remark 4.1. The cases (i) of Corollary 4.1 and 4.2 with the Hermitian metric g and the skew-adjoint shape

operator LZ appeared in [21].

5. Conclusions

In this paper we study a geometric object which is the global tensor fields of (1, 1)-type associated to a
given special extension of polynomial substructure on a splitting of tangent bundle. Two types of polynomial
substructures are distinguished according to the vanishing of the sum of the coefficients or not. The parallelism
problem and the case of (anti)Hermitian metrics with respect to an ε substructure is investigated by using this
special extension developed in section 2. A generalization of both Hermitian and anti-Hermitian geometry is
also proposed in this work. Starting from a more general extension of polynomial substructure and its relations
with geometric objects will be one of the topics of later studies.
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