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Abstract

In this study, a class of strong limit theorems for the relative entropy densities of random sum of

arbitrary information source are discussed by constructing the joint distribution and nonnegative super

martingales. As corollaries, some Shannon-McMillan theorems for arbitrary information source, mth-order

Markov information source and non-memory information source are obtained and some results for the discrete

information source which have been obtained by authors are extended.
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1. Introduction

Suppose {Xn, n ≥ 0} is an arbitrary information source defined on any probability space (Ω,F , P ) taking

values in the alphabet set S = {s1, s2, · · · } . Also let us denote the joint distribution of {Xn, n ≥ 0} as

P (X0 = x0, · · · , Xn = xn) = p(x0, · · · , xn) > 0, xi ∈ S, 0 ≤ i ≤ n. (1)

Denote

fn(ω) = − 1
n + 1

logp(X0, · · · , Xn), (2)

where log is the natural logarithmic, fn(ω) is called the relative entropy density of {Xi, 0 ≤ i ≤ n} .

Denote the conditional probability as follows:

p(Xn = xn|X0 = x0, · · · , Xn−1 = xn−1) = pn(xn|x0, · · · , xn−1). (3)

Then

P (X0, · · · , Xn) = p(X0)
n∏

k=1

pk(Xk|X0, · · · , Xk−1), (4)

fn(ω) = − 1
n + 1

[logp(X0) +
n∑

k=1

log pk(Xk|X0, · · · , Xk−1)]. (5)
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Definition 1 Suppose σn(ω) is an increasing nonnegative stochastic sequence, and σn(ω) ↑ ∞ , we call

f[σn(ω)](ω) = − 1
σn(ω) + 1

[logp(X0) +
[σn(ω)]∑

k=1

log pk(Xk|X0, · · · , Xk−1)] (6)

the generalized relative entropy density of the arbitrary discrete information source {Xi, 0 ≤ i ≤ [σn]} , where

[c] represents the integral part of c . We let σn(ω) = n , the generalized relative entropy density (6) is just the

general relative entropy density (5).

The convergence of fn(ω) to a constant in a sense (L1 convergence, convergence in probability, a.s.

convergence) is called Shannon-McMillan theorem or the entropy theorem or the asymptotic equipartition

property (AEP) in information theory. Shannon [7] first proved the AEP for the convergence in probability

for stationary ergodic information sources with a finite alphabet set. McMillan [6] and Breiman [3] proved the

AEP in L1 and a.s. convergence, respectively, for stationary ergodic information sources. Chung [4] considered
the case of the countable alphabet set. The AEP for general stochastic processes can be found, for example, in
Barron [2] and Algoet and Cover [1]. Liu and Yang [5,8] have proved the AEP for a class of the nonhomogeneous
Markov information source and Markov chains fields on Cayley trees. Many practical information sources,
such as language and the image information, are often mth-order Markov information sources, and always
nonhomogeneous. Hence it is of importance to study the AEP for the mth-order nonhomogeneous Markov
information source in information theory. In this correspondence, we establish several Shannon-McMillan
theorems for the generalized entropy density of the arbitrary information source with the countable and the
finite alphabet sets. As corollaries, Shannon-McMillan theorems for the entropy density of the mth-order
nonhomogeneous Markov information source and the non-memory information source are obtained.

Liu and Yang have studied Shannon-McMillan theorems for the nonhomogeneous Markov chain with a
finite state space in Ref [5]. Analogously, Yang and Ye have given a Shannon-McMillan theorem for the arbitrary

information source with a finite state space in Ref [9]. Moreover, the results of Ref [5] and Ref [9] are on the
general entropy density with the natural sum n . This paper focuses on the generalized Shannon-McMillan
theorems for the arbitrary information source with a countable state space, and the conclusion is about the
generalized entropy density with the random sum σn . Therefore, the results of Liu and Yang(see [5]) and Yang,

Ye(see [9]) are extended.

Definition 2 From now on, we denote

hk(x0, · · · , xk−1) = −
∑

xk∈S
pk(xk|x0, · · · , xk−1) log pk(xk|x0, · · · , xk−1), (7)

Hk(ω) = hk(X0, · · · , Xk−1), k ≥ 1. (8)

Hk(ω) is called the random conditional entropy of Xk relative to X0, · · · , Xk−1 .

We denote Xn
0 = {X0, · · · , Xn} , Xn

m = {Xm, · · · , Xn} . Denote by xn
0 , xn

m the realizations of Xn
0 and

Xn
m , respectively.

2. Main results and the proof

In this section we investigate the asymptotic equipartition property (AEP) of the arbitrary information

source {Xn, n ≥ 0} . Let’s now state the main result of this section.
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Theorem 1 Let {Xn, n ≥ 0} be an arbitrary information source and {σn(ω), n ≥ 0} be a nonnegative

stochastic sequence that increases to infinity as n goes to infinity. Take an α ∈ (0, +∞) , 0 < C ≤ 1 , denote

D = {ω : lim
n

σn(ω) = ∞}, (9)

we assume

Bα = lim sup
n→∞

1
σn

[σn]∑

k=1

E[pk(Xk|Xk−1
0 )−αI{pk(Xk|Xk−1

0 )≤C}|X
k−1
0 ] < ∞. a.s. (10)

Then, the following holds:

lim
n→∞

[f[σn(ω)](ω) − 1
σn(ω)

[σn(ω)]∑

k=1

Hk(ω)] = 0. a.s. ω ∈ D. (11)

where, [c] represents the integral part of c .

Proof. Let λ be an arbitrary constant. Denote

Qk(λ) = E[pk(Xk|Xk−1
0 )−λ|Xk−1

0 = xk−1
0 ] =

∑

xk∈S

pk(xk|xk−1
0 )1−λ, (12)

qk(λ, xk) =
pk(xk|xk−1

0 )1−λ

Qk(λ)
, xk ∈ S. (13)

g(λ, x0, · · · , xn) = p(x0)
n∏

k=1

qk(λ, xk). (14)

It is easy to see that g(λ, x0, · · · , xn), n = 1, 2, · · · are a family of consistent distribution functions defined on
Sn . We set

Tn(λ, ω) =
g(λ, X0, · · · , Xn)
p(X0, · · · , Xn)

. (15)

Then {Tn(λ, ω), n ≥ 1} is a non-negative super-martingale(see[4]). Applying Doob’s Martingale Convergence

Theorem to (15), we have

lim
n→∞

Tn(λ, ω) = T∞(λ, ω) < ∞. (16)

Hence by using (9) and (16), we obtain

lim sup
n→∞

1
σn

logT[σn(ω)](λ, ω) ≤ 0, a.s. ω ∈ D. (17)

Taking into account (4) and (12)–(15), the left side of (17) can be rewritten as

1
σn

log T[σn](λ, ω) =
1
σn

[σn]∑

k=1

[(−λ log pk(Xk|Xk−1
0 )) − log E(pk(Xk|Xk−1

0 )−λ|Xk−1
0 )]. (18)

On the other hand, by the inequality ex − 1 − x ≤ (1/2)x2e|x| , we have

x−λ − 1 + λ log x ≤ (1/2)λ2(log x)2x−|λ|, 0 ≤ x ≤ 1. (19)
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By means of (10), (18), (19) and the inequality logx ≤ x − 1(x ≥ 0), noticing that

max{(logx)2xh, 0 ≤ x ≤ 1, h > 0} =
4e−2

h2
,

in the case of 0 < |λ| < t < α , carrying out the necessary calculations, we can write

lim sup
n→∞

1
σn

[σn]∑

k=1

[(−λ log pk(Xk|Xk−1
0 )) − E(−λ log pk(Xk|Xk−1

0 )|Xk−1
0 )]

≤ lim sup
n→∞

1
σn

[σn]∑

k=1

[logE(pk(Xk|Xk−1
0 )−λ|Xk−1

0 ) − E(−λ log pk(Xk|Xk−1
0 )|Xk−1

0 )]

≤ lim sup
n→∞

1
σn

[σn]∑

k=1

[E(pk(Xk|Xk−1
0 )−λ|Xk−1

0 ) − 1 − E(−λ log pk(Xk|Xk−1
0 )|Xk−1

0 )]

≤ lim sup
n→∞

1
σn

[σn]∑

k=1

E[(1/2)λ2(log(pk(Xk|Xk−1
0 ))2pk(Xk|Xk−1

0 )−|λ||Xk−1
0 ]

= lim sup
n→∞

1
σn(ω)

[σn]∑

k=1

E[
λ2

2
(log(pk(Xk|Xk−1

0 ))2pk(Xk|Xk−1
0 )α−|λ|pk(Xk|Xk−1

0 )−α|Xk−1
0 ]

≤ λ2

2
limsup

n→∞

1
σn

[σn]∑

k=1

E[
4e−2

(α − |λ|)2 ·pk(Xk|Xk−1
0 )−α|Xk−1

0 ]

≤ 2λ2e−2

(α − t)2
lim sup

n→∞

1
σn

[σn]∑

k=1

E[pk(Xk|Xk−1
0 )−α(I{pk(Xk|Xk−1

0 )≤C} + I{pk(Xk|Xk−1
0 )>C})|X

k−1
0 ]

≤ 2λ2e−2

(α − t)2
{lim sup

n→∞

1
σn

[σn]∑

k=1

E[pk(Xk|Xk−1
0 )−αI{pk(Xk|Xk−1

0 )≤C}|X
k−1
0 ] + lim sup

n→∞

1
σn

[σn]∑

k=1

C−α}

≤ 2λ2e−2

(α − t)2
{Bα + C−α} < ∞. a.s. ω ∈ D. (20)

We now consider the case 0 < λ < t < α , dividing both sides of (20) by λ , we have

limsup
n→∞

1
σn

[σn]∑

k=1

[(− log pk(Xk|Xk−1
0 )) − E(− log pk(Xk|Xk−1

0 )|Xk−1
0 )] ≤ 2λe−2

(α − t)2
(Bα + C−α).

a.s. ω ∈ D. (21)

We can take the limit in (21) as λ → 0 and we get

lim sup
n→∞

1
σn

[σn]∑

k=1

[(− logpk(Xk|Xk−1
0 )) − E(− logpk(Xk|Xk−1

0 )|Xk−1
0 )] ≤ 0.

a.s. ω ∈ D. (22)
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In the case of −α < −t < λ < 0, analogously, it follows from (20) that

lim inf
n→∞

1
σn

[σn]∑

k=1

[(− logpk(Xk|Xk−1
0 )) − E(− logpk(Xk|Xk−1

0 )|Xk−1
0 )] ≥ 0.

a.s. ω ∈ D. (23)

Moreover, (22) and (23) imply that

lim
n→∞

1
σn

[σn]∑

k=1

[(− logpk(Xk|Xk−1
0 )) − E(− log pk(Xk|Xk−1

0 )|Xk−1
0 )] = 0. a.s. ω ∈ D. (24)

By the definition of Hk(ω) we can write

Hk(ω) = −
∑

xk∈S

pk(xk|Xk−1
0 ) logpk(xk|Xk−1

0 ) = E(− log pk(Xk|Xk−1
0 )|Xk−1

0 ).

From (6) and (24) we conclude that

lim
n→∞

[f[σn](ω) − 1
σn

[σn]∑

k=1

Hk(ω)]

= lim
n→∞

1
σn

[σn]∑

k=1

[(− log pk(Xk|Xk−1
0 ))−E(− logpk(Xk|Xk−1

0 )|Xk−1
0 )]

− lim
n→∞

1
σn(ω)

logp(X0) = 0. a.s. ω ∈ D. (25)

Consequently, (11) follows from (25). This completes the proof of Theorem 1. �

Remark 1. When C = 1, Bα reduces to

limsup
n→∞

1
σn

[σn]∑

k=1

E[pk(Xk|Xk−1
0 )−α|Xk−1

0 ] < ∞. a.s. (26)

Then (11) also holds.

Remark 2. In Remark 1, (26) means that
[σn(ω)]∑

k=1

E[pk(Xk|Xk−1
0 )−α|Xk−1

0 ] has to be infinite of the same order

of σn(ω) or infinite of the lower order of σn(ω) , otherwise, Theorem 1 can not hold.

Remark 3. When C = 1, replace S = {1, 2, · · ·} with S = {1, 2, · · · , N} , (10) holds naturally. Therefore,

(11) is also valid.

Remark 4. When C = 1, S = {1, 2, · · · , N} , letting σn(ω) = n, n ≥ 0, (11) holds still and D(ω) = Ω.
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Suppose {Xn, n ≥ 0} is an mth-order nonhomogeneous Markov information source, then as n ≥ m ,

P (Xn = xn|X0 = x0, · · · , Xn−1 = xn−1) = P (Xn = xn|Xn−m = xn−m, · · · , Xn−1 = xn−1). (27)

Denote
q(i0, · · · , im−1) = P (X0 = i0, · · · , Xm−1 = im−1), (28)

pn(j|i1, · · · , im) = P (Xn = j|Xn−m = i1, · · · , Xn−1 = im). (29)

We define q(i0, · · · , im−1) as the m dimensional initial distribution, define pn(j|i1, · · · , im), n ≥ m as the
mth-order transition probabilities, and

Pn = (pn(j|i1, · · · , im)) (30)

are called the mth-order transition matrices. In this case,

p(x0, · · · , xn) = q(x0, · · · , xm−1)
n∏

k=m

pk(xk|xk−m, · · · , xk−1), (31)

fn(ω) = − 1
n + 1

[log q(X0, · · · , Xm−1) +
n∑

k=m

log pk(Xk|Xk−m, · · · , Xk−1)]. (32)

Corollary 1 Let {Xn, n ≥ 0} be an mth-order nonhomogeneous Markov information source with the m

dimensional initial distribution (28) and the mth-order transition probabilities (29). Let f[σn(ω)](ω) be defined

as (6), denote

H(pk(Xk−1
k−m, 1), · · · , pk(Xk−1

k−m, N)) = −
∑

xk∈S

pk(xk|Xk−1
k−m) log pk(xk|Xk−1

k−m).

Then

lim
n→∞

[f[σn(ω)](ω) − 1
σn(ω)

[σn(ω)]∑

k=m

H(pk(Xk−1
k−m, 1), · · · , pk(Xk−1

k−m, N))] = 0. a.s. ω ∈ D. (33)

Proof. At this moment, pk(xk|xk−1
0 ) = pk(xk|xk−1

k−m), k ≥ m . (33) follows from (11) accordingly for

Hk(ω) = H(pk(Xk−1
k−m, 1), · · · , pk(Xk−1

k−m, N)). �

Remark 5. Let m = 1, σn(ω) = n, n ≥ 0 in Corollary 1, the corollary is Theorem 2. of Liu and Yang(see[5]).

Corollary 2 Let {Xn, n ≥ 0} be a non-memory information source, f[σn(ω)](ω) be defined as before, denote

H(pk(1), · · · , pk(N)) = −
∑

xk∈S

pk(xk) logpk(xk). (34)

Then

lim
n→∞

[f[σn(ω)](ω) − 1
σn(ω)

[σn(ω)]∑

k=1

H(pk(1), · · · , pk(N))] = 0. a.s. ω ∈ D. (35)

Proof. At this moment, we have pk(Xk|Xk−1
k−m) = pk(Xk), thus, Hk(ω) = H(pk(1), · · · , pk(N)). (35) follows

from (11). �
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3. A weaker Shannon-McMillan Theorem for the arbitrary information source

Taking into account the theoretical and practical importance of Shannon-McMillan Theorems in infor-
mation theory, in this section we will extract a weaker condition and present another kind of proof technique.
For this purpose, we introduce the following theorem.

Theorem 2 Let {Xn, n ≥ 0} be an arbitrary information source taking values in a countable alphabet set

S = {s1, s2, · · · } . Let f[σn(ω)](ω) and Hk(ω) be defined by (6) and (8). Take an α ∈ (0, +∞) , 0 < C < 1 , we

assume that

lim sup
n→∞

1
σn(ω)

[σn(ω)]∑

k=1

E[(pk(Xk|Xk−1
0 ) − 1)2pk(Xk|Xk−1

0 )−αI{pk(Xk |Xk−1
0 )≤C}|X

k−1
0 ] < ∞.

a.s. (36)

Then, (11) holds also.
Proof. Let us denote pk(Xk|Xk−1

0 ) = pk in brief, taking into account (36) and the inequality log(1 + x) ≥

x − x2

2 , (x > −1), from the second inequality of (20) in the proof of Theorem 1 we can conclude that in the

case of 0 < |λ| < α ,

limsup
n→∞

1
σn

[σn]∑

k=1

[(−λ log pk(Xk|Xk−1
0 )) − E(−λ log pk(Xk|Xk−1

0 )|Xk−1
0 )]

≤ limsup
n→∞

1
σn

[σn]∑

k=1

E[(1/2)λ2(log(pk(Xk|Xk−1
0 ))2pk(Xk|Xk−1

0 )−|λ||Xk−1
0 ]

≤ λ2

2
lim sup

n→∞

1
σn

[σn]∑

k=1

E[(log(pk(Xk|Xk−1
0 ))2pk(Xk|Xk−1

0 )−α|Xk−1
0 ]

=
λ2

2
lim sup

n→∞

1
σn

[σn]∑

k=1

E[(logpk)2p−α
k (I{pk(Xk |Xk−1

0 )≤C} + I{pk(Xk|Xk−1
0 )>C})|X

k−1
0 ]

≤ λ2

2
{lim sup

n→∞

1
σn

[σn]∑

k=1

E[(logpk)2p−α
k I{pk(Xk|Xk−1

0 )≤C}|X
k−1
0 ] + limsup

n→∞

1
σn

[σn]∑

k=1

C−α(log C)2}

≤ λ2

2
{lim sup

n→∞

1
σn

[σn]∑

k=1

E[{pk − 1 − (pk − 1)2

2
}2p−α

k I{pk(Xk|Xk−1
0 )≤C}|X

k−1
0 ] + C−α(log C)2}

=
λ2

2
{lim sup

n→∞

1
σn

[σn]∑

k=1

E[{(pk − 1)(
3 − pk

2
)}2p−α

k I{pk(Xk |Xk−1
0 )≤C}|X

k−1
0 ] + C−α(log C)2}

≤ 9λ2

8
{limsup

n→∞

1
σn

[σn]∑

k=1

E[(pk − 1)2p−α
k I{pk(Xk|Xk−1

0 )≤C}|X
k−1
0 ] +

4
9
C−α(log C)2} < ∞.

a.s. ω ∈ D. (37)

Imitating the proof of (21)–(25), we can obtain (11). This completes the proof of Theorem 2. �
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