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Cyclic codes over Z2 + uZ2 + u2Z2 + . . . + uk−1Z2

Mohammed Al-Ashker, Mohammed Hamoudeh

Abstract

In this paper, we study the structure of cyclic codes of an arbitrary length n over the ring Z2 + uZ2 +

u2Z2 + . . . + uk−1Z2 , where uk = 0. Also we study the rank for these codes, and we find their minimal

spanning sets. This study is a generalization and extension of the work in reference [1].
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1. Introduction

Among the four rings of four elements, the Galois field F4 and more recently the ring of integers modulo
four Z4 are the most used in coding theory. Z4 -codes are renowned for producing good nonlinear codes by
the Gray map, namely Kerdok, preparata or Goethals codes. On the other hand, the ringZ4 admits a linear
Gray map which does not give good binary codes. The structure of cyclic codes over rings of odd length n has
been discussed in Bonnecaze and Udaya [4], Calderbank [5], Dougherty and Shiromoto [8], and van Lint [11].

Calderbank and Sloane [6], and Pless [10] presented a complete structure of cyclic codes over Z4 of odd length.

In [3], Blackford studied cyclic codes of length n = 2k when k is odd. The cyclic codes over Z4 of length a power

of 2 are studied in Abualrub and Oehmke [2]. They showed that the ring Z4[x]/
〈
xn−1

〉
is not a principal ideal

ring and hence ideals may have more than one generator. Let Rk be the ring Z2 + uZ2 + u2Z2 + . . . + uk−1Z2

with uk = 0, where Z2 = {0, 1}.
In [1], Abualrub and Siap studied cyclic codes of an arbitrary length n over Z2 + uZ2 = {0, 1, u, u + 1}

where u2 = 0 and over Z2 + uZ2 + u2Z2 = {0, 1, u, u+ 1, u2, 1 + u2, 1 + u + u2, u + u2} where u3 = 0. In this

paper, we extend these results to more general rings of the form Z2 +uZ2 +u2Z2 + . . .+uk−1Z2 where uk = 0.

We give a unique set of generators for these codes as ideals in the ring Rk,n = Rk[x]/
〈
xn − 1

〉
. For this

purpose, it is useful to obtain the divisors of xn − 1, but this becomes difficult when the characteristic of the
ring is not relatively prime to the length of the code, because then xn − 1 does not factor uniquely over the

ring. For codes over Z2 + uZ2 + u2Z2 = {0, 1, u, u + 1, u2, 1 + u2, 1 + u + u2, u + u2}, with uk = 0, this case
corresponds to the case, when the length is even. Also, we study the rank of these codes and give a minimal
spanning set for them.
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We show that the results of [1] concerning the codes over the rings F2 + uF2 with u2 = 0 and

Z2 + uZ2 + u2Z2 with u3 = 0 are valid for Rk = Z2 + uZ2 + u2Z2 + . . . + uk−1Z2 with uk = 0.

The remains of this paper is organized as follows:

In section 2, we give some basic definitions and results that are used in the sequel of this paper. In section
3, we study cyclic codes of an arbitrary length n over Rk. We find a unique set of generators for these codes.
In section 4, we study the rank and find minimal spanning sets for these codes. In section 5, we include some
examples of cyclic codes over Rk.

2. Preliminaries

Let F n
q denote the vector space of all n-tuples over the finite field Fq . An (n, M) code C over Fq is a

subset of F n
q of size M . If C is a k -dimentional subspace of F n

q , then we will called an [n, k] linear code over

Fq .

A linear code C of length n over Fq is cyclic provided that for each vector c = c0c1 . . . cn−2cn−1 in C ,

the vector cn−1c0 . . . cn−2 obtained from c by the cyclic shift of coordinates i �→ i + 1( mod n), is also in C .

A code of length n over a commutative ring R is a nonempty subset of Rn , and a code is linear over R

if it is an R -submodule of Rn.

A free module C is a module with a basis (a linearly independent spanning set for C ).

A linear code of length n is cyclic if it is invariant under the automorphism σ which is given by
σ(c0, c1, . . . , cn−1) = (cn−1, c0, . . . , cn−2).

Definition 2.1 [7] An ideal I of a ring R is called principal if it is generated by one element. A ring R is

a principal ideal ring if its ideals are principal. R is called a local ring if R has a unique maximal right (left)

ideal. Furthermore, a ring R is called a right (left) chain ring if the set of all right (left) ideals of R is a chain
under set-theoretic inclusion. If R is both a right and a left chain ring, we simply call R a chain ring.

Definition 2.2 The ring Rk = Z2[u]/
〈
uk

〉
= Z2 + uZ2 + u2Z2 + . . . + uk−1Z2 is a commutative chain ring of

2k elements with maximal ideal uRk , where uk = 0. Since u is nilpotent with nilpotent index k , we have

Rk ⊃ uRk ⊃ u2Rk ⊃ . . . ⊃ ukRk = 0.

Moreover Rk/uRk
∼= Z2 is the residue field and |uiRk| = 2|(ui+1Rk)| = 2k−i, i = 0, 1, 2, . . . , k − 1.

Denote R1 = Z2 = {0, 1}, R2 = Z2 + uZ2 , R3 = Z2 + uZ2 + u2Z2, . . .etc.

Definition 2.3 A linear code Ck of length n over the ring Rk = Z2 + uZ2 +u2Z2 + . . .+uk−1Z2 with uk = 0
is defined to be an additive submodule of the Rk -module Rn

k .

Remark 2.1 A cyclic code Ck of length n over Rk can be considered as an ideal in the ring Rk,n =

Rk[x]/
〈
xn − 1

〉
.
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Definition 2.4 [1] Let c = (c0, . . . , cn−1) and u = (u0, . . . , un−1) be any two vectors over a ring. We define
their inner product by

c · u = c0u0 + . . . + cn−1un−1.

If c · u = 0, then c and u are said to be orthogonal. We define the dual of a cyclic code C to be the set

C⊥ = {c ∈ Rk : c · u = 0 for all u ∈ C}.

Definition 2.5 [1] The Hamming weight of a codeword c is defined by

wH(c) = |{i : ci �= 0}|.

The minimum Hamming weight dH(C) of a linear code C is given by

dH(C) = min{wH(c) : c ∈ C and c �= 0}.

Following Abualrub and Siap [1, p.p. 274], the parameters of an R2 -code C with 4k12k2 code words, where k1

refers to the free part and k2 refers to non free part u -multiple generator of C ), and minimum distance d is

denoted by (n, 4k12k2 , d). Such codes are often referred to as codes of type {k1, k2} . Similarly, the parameters

of an R3 -code C with 8k14k22k3 code words, where k1 refers to the free part and k2, k3 refer to non free part

(u and u2 multiple generators of C ), and minimum distance d is denoted by (n, 8k14k22k3 , d). Such codes are

often referred to as codes of type {k1, k2, k3} .

We define the rank of a code C over R2 of type {k1, k2} , denoted by rank(C), by the minimum number

of generators of C , and define the free rank of C , denoted by f-rank(C), by the maximum of the ranks of

R2 -free submodules of C . A code C of type {k1, k2} has a rank (k1 +k2) and a f-rank k1 . We define the rank

of a code C over R3 of type {k1, k2, k3} , denoted by rank(C), by the minimum number of generators of C ,

and define the free rank of C , denoted by f-rank(C), by the maximum of the ranks of R3 -free submodules of

C . A code C of type {k1, k2, k3} has a rank (k1 + k2 + k3) and a f-rank k1 .

Following the same procedure, we can define the ranks and free ranks of a code C over Rk ∀ k ≥ 4.

Notation: We write a for a(x), g for g(x), . . .etc.

Proposition 2.1 [7] Let R be a finite commutative ring, then the following conditions are equivalent: (i) R

is a local ring and the maximal ideal M of R is principal.

(ii) R is a local principal ideal ring.

(iii) R is a chain ring.

3. A generator Construction

The structure of cyclic codes over Ri depends on cyclic codes over Ri−1 for i = 2, 3, . . . , k and the
structure of cyclic codes over R2 depends on cyclic codes over R1 = Z2.

By following results in [1], let C1 be a cyclic code in Rk,n = Rk[x]/
〈
xn − 1

〉
.
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Define ψ1 : Rk → Rk−1 by ψ1(a) = a. ψ1 is a ring homomorphism that can be extended to a

homomorphism φ1 : C1 → Rk−1,n = Rk−1[x]/
〈
xn − 1

〉
defined by

φ1(c0 + c1x + . . . + cn−1x
n−1) = ψ1(c0) + ψ1(c1)x + . . . + ψ1(cn−1)xn−1.

Let J1 = {r(x) : uk−1r(x) ∈ kerφ1}, J1 is an ideal in R1,n = R1[x]/
〈
xn − 1

〉
= Z2[x]/

〈
xn − 1

〉
and

hence a cyclic code in Z2[x]/
〈
xn − 1

〉
. So J1 =

〈
ak−1(x)

〉
and kerφ1 =

〈
uk−1ak−1(x)

〉
with ak−1(x)|(xn − 1)

mod 2.
Let C2 be a cyclic code in Rk−1,n = Rk−1[x]/

〈
xn − 1

〉
.

Define ψ2 : Rk−1 → Rk−2 by ψ2(a) = a. ψ2 is a ring homomorphism that can be extended to a

homomorphism φ2 : C2 → Rk−2[x]/
〈
xn − 1

〉
defined by

φ2(c0 + c1x + . . . + cn−1x
n−1) = ψ2(c0) + ψ2(c1)x + . . . + ψ2(cn−1)xn−1.

Let J2 = {r(x) = uk−2r(x) ∈ kerφ2} is an ideal in R1,n = Z2[x]/
〈
xn − 1

〉
and hence a cyclic code in

Z2[x]/
〈
xn − 1

〉
. So J2 =

〈
ak−2(x)

〉
and hence ker(φ2) =

〈
uk−2ak−2(x)

〉
with ak−2(x)|(xn − 1) mod 2.

Let C3 be a cyclic code in Rk−2,n = Rk−2[x]/
〈
xn − 1

〉
.

Define ψ3 : Rk−2 → Rk−3 by ψ3(a) = a. ψ3 is a ring homomorphism that can be extended to a

homomorphism φ3 : C3 → Rk−3[x]/
〈
xn − 1

〉
. Continue in the same way as above until we define ψk : R2 →

R1 = F2 by ψk(a) = a2. ψk is a ring homomorphism because (a + b)2 = a2 + b2 in R2 and in Z2.

Extend ψk to a homomorphism φk : Ck → Z2[x]/
〈
xn − 1

〉
= R1,n defined by

φk(c0 + c1x + . . . + cn−1x
n−1) = ψk(c0) + ψk(c1)x + . . . + ψk(cn−1)xn−1

= c2
0 + c2

1x + . . . + c2
n−1x

n−1 mod 2,

where Ck be a cyclic code in R2,n = R2[x]
/〈

xn − 1
〉
, where R2 = Z2 + uZ2 with u2 = 0 mod 2.

ker φk =
〈
ua1(x)

〉
with a1(x)

∣∣(xn − 1
)

mod 2.

The image of φk is also an ideal and hence a binary cyclic code generated by g(x) with g(x)
∣∣(xn−1

)
. So

the cyclic code over R2 = Z2 + uZ2 would be in the form:

Ck =
〈
g(x) + up(x), ua1(x)

〉
for some binary polynomial p(x). Note that a1

∣∣(pxn−1
g

)
because

φk

(xn − 1
g

[g + up]
)

= φk

(
up

xn − 1
g

)
= 0

⇒
(
upxn−1

g

)
∈ kerφk =

〈
ua1

〉
. Also ug ∈ kerφk implies a1(x)

∣∣g(x).

Lemma 3.1 [1] If Ck =
〈
g(x) + up(x), ua1(x)

〉
over R2 = Z2 + uZ2 with (u2 = 0 mod 2), and g(x) = a1(x)

with deg g(x) = r, then

Ck =
〈
g(x) + up(x)

〉
and (g + up)

∣∣(xn − 1
)

in R2.
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Now since the image of φk−1 is an ideal in R2,n = R2[x]
/〈

xn − 1
〉

(where R2 = Z2 + uZ2 with

u2 = 0), then Im(φk−1) =
〈
g(x) + up1(x), ua1(x)

〉
with a1(x)

∣∣g(x)|(xn − 1) and a1(x)
∣∣p1(x)

(
xn−1
g(x)

)
. Also,

ker(φk−1) =
〈
u2a2(x)

〉
with a2(x)

∣∣(xn − 1) mod 2. Since u2a1 ∈ ker(φk−1) =
〈
u2a2

〉
, then the cyclic code

Ck−1 over R3 = Z2 + uZ2 + u2Z2 with u3 = 0 is

Ck−1 =
〈
g + up1 + u2p2, ua1 + u2q1, u

2a2

〉
with a2|a1|g|(xn − 1), a1(x)

∣∣p1(x)
(xn − 1

g(x)
)

mod 2, a2|q1

(xn − 1
a1

)
,

a2|p1

(
xn−1

g

)
and a2

∣∣p2

(
xn−1

g

)(
xn−1

a1

)
. We may assume that deg p2 < deg a2, deg q1 < deg a2, deg p1 < deg a1

because if e = (a, b), then e = (a, b + de) for any d .

Lemma 3.2 [1] If Ck−1 =
〈
g + up1 + u2p2, ua1 + u2q1, u

2a2

〉
over R3 = Z2 + uZ2 + u2Z2 with (u3 = 0) , and

a2 = g, then Ck−1 =
〈
g + up1 + u2p2

〉
and

(
g + up1 + u2p2

)∣∣(xn − 1) in R3 .

Lemma 3.3 [1] If n is odd, then Ck−1 =
〈
g, ua1, u

2a2

〉
=

〈
g + ua1 + u2a2

〉
over R3 .

Following the same process we find the cyclic code Ck−2 over R4 = Z2+uZ2+u2Z2+u3Z2 with (u4 = 0).

So, since the image of φk−2 is an ideal in R3,n = R3[x]
/〈

xn−1
〉

(where R3 = Z2+uZ2+u2Z2 with u3 = 0), then

Im(φk−2) =
〈
g(x) + up1(x) + u2p2(x), ua1(x) + u2q1(x), u2a2(x)

〉
with a2|a1|g|(xn − 1), a1(x)

∣∣p1(x)
(

xn−1
g(x)

)
,

a2|q1(x)
(

(xn−1)
a1(x)

)
and a2

∣∣p2(x)
(

xn−1
g(x)

)(
xn−1
a1(x)

)
. Also, ker(φk−2) =

〈
u3a3(x)

〉
with a3(x)

∣∣(xn − 1).

Since u3a2 ∈ ker(φk−2) =
〈
u3a3(x)

〉
, then the cyclic code Ck−2 over R4 = Z2 +uZ2 +u2Z2 +u3Z2 with

(u4 = 0) is Ck−2 =
〈
g + up1 + u2p2 + u3p3, ua1 + u2q1 + u3q2, u

2a2 + u3l1, u
3a3

〉
with

a3

∣∣a2

∣∣a1

∣∣g∣∣(xn − 1) mod 2, a1(x)
∣∣p1(x)

(xn − 1
g(x)

)
,

a2

∣∣q1(x)
((xn − 1)

a1(x)

)
, a2

∣∣p2(x)
(xn − 1

g(x)
)(xn − 1

a1(x)
)
,

a3

∣∣l1(x)
( (xn − 1)

a2(x)

)
, a3

∣∣q2(x)
(xn − 1

q1(x)
)(xn − 1

a1(x)
)

and a3(x)
∣∣p3(x)

(
xn−1
g(x)

)(
xn−1
a2(x)

)(
xn−1
a1(x)

)
. Moreover , deg p3 < dega3, deg q2 < dega3, deg l1 < dega3, deg p2 <

dega2, deg q1 < dega2, deg p1 < dega1.

Lemma 3.4 If Ck−2 =
〈
g+up1+u2p2+u3p3, ua1+u2q1+u3q2, u

2a2+u3l1, u
3a3

〉
over R4 = Z2+uZ2+u2Z2+

u3Z2 with (u4 = 0) , and a3 = g, then Ck−2 =
〈
g + up1 + u2p2 + u3p3

〉
and

(
g + up1 + u2p2 + u3p3

)∣∣(xn − 1)

in R4.

Proof. Since a3 = g, then a1 = a2 = a3 = g. From lemma 3.2 we get that (g + up1 + u2p2)
∣∣(xn − 1) in R3

and Ck−2 =
〈
g + up1 + u2p2 + u3p3, ua1 + u2q1 + u3q2, u

3a3

〉
. Rest of the proof is similar to lemma 3.2. �
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Lemma 3.5 If n is odd, then the cyclic code Ck−2 over R4 can be written as

Ck−2 =
〈
g, ua1, u

2a2, u
3a3

〉
=

〈
g + ua1 + u2a2 + u3a3

〉
.

Proof. Since n is odd, then (xn − 1) factors uniquely into a product of distinct irreducible polynomials. So,

gcd
(
a1,

xn−1
g(x)

)
= gcd

(
a2,

xn−1
a1(x)

)
= gcd

(
a2,

xn−1
g(x)

)
= gcd

(
a3,

xn−1
a2(x)

)
= gcd

(
a3,

xn−1
g(x)

)
= 1.

Since a1

∣∣p1(x)
(

xn−1
g(x)

)
, then a1

∣∣p1. But deg p1 < deg a1. Hence p1 = 0, since a2

∣∣q1(x)
(

xn−1
a1(x)

)
and

a2(x)
∣∣p2(x)

(
xn−1
g(x)

)(
xn−1
a1(x)

)
, then a2

∣∣q1 and a2

∣∣p2 . But deg q1 < deg a2 and deg p2 < deg a2. Hence, p2 = q1 =

0. Similarly, p3 = q2 = l1 = 0. So Ck−2 =
〈
g, ua1, u

2a2, u
3a3

〉
. Let h = g + ua1 + u2a2 + u3a3. Then,

u3h = u3g, xn−1
a2

h = xn−1
a2

u3a3 and u2 xn−1
g h = xn−1

g u3a2 ∈
〈
h
〉
. Since n is odd, we have

(
xn−1

g , g
)

=(
xn−1

a2
, a2

)
= 1. Hence 1 = f1

xn−1
g + f2g for some polynomials f1 and f2 , and 1 = m1

xn−1
a2

+ m2a2 for some

polynomials m1 and m2 .

u3a2 = u3a2f1
xn−1

g
+ u3a2f2g ∈

〈
h
〉
. Also,

u3a3 = u3a3m1
xn − 1

a2
+ u3a3m2a2 ∈

〈
h
〉

and u2a2 = u3m2a
3
2 ∈ Ck−2 and hence g ∈

〈
h
〉
. Similarly, ua1 ∈

〈
h
〉
. Therefore Ck−2 =

〈
g, ua1, u

2a2, u
3a3

〉
=〈

g + ua1 + u2a2 + u3a3

〉
. �

From all the above discussion, we can construct any cyclic code C1 over Rk, k ≥ 4 by using the same
process and induction on k to get the following theorem.

Theorem 3.6 Let C1 be a cyclic code in Rk,n = Rk[x]
/〈

xn − 1
〉
, Rk = Z2 + uZ2 + u2Z2 + . . . + uk−1Z2 with

uk = 0 .
(1) If n is odd, then Rk,n is a principal ideal ring and

C1 =
〈
g, ua1, u

2a2, . . . , u
k−1ak−1

〉
=

〈
g + ua1 + u2a2 + . . . + uk−1ak−1

〉
,

where g(x), a1(x), a2(x), . . . , ak−1(x) are binary polynomials with ak−1(x)
∣∣ak−2(x)

∣∣ . . .
∣∣a2(x)

∣∣a1(x)
∣∣g(x) mod 2.

(2) If n is not odd, then

(a) C1 =
〈
g +up1 +u2p2 + . . .+uk−1pk−1

〉
where g(x), pi(x) are binary polynomials ∀i = 1, 2, . . . , k−1

with g(x)
∣∣(xn − 1) mod 2 , (g + up1 + u2p2 + . . . + uk−1pk−1)

∣∣(xn − 1) in Rk and deg pi < deg pi−1 for all

2 ≤ i ≤ k − 1. OR

(b) C1 =
〈
g+up1+u2p2+. . .+uk−1pk−1, u

k−1ak−1

〉
where ak−1|g|(xn−1) mod 2, (g+up)|(xn−1) in R2 ,

g(x)|p1

(
xn−1
g(x)

)
and ak−1|p1

(
xn−1
g(x)

)
, ak−1|p2

(
xn−1
g(x)

)(
xn−1
g(x)

)
, . . . and ak−1|pk−1

(
xn−1
g(x)

)
. . .

(
xn−1
g(x)

)
(k − 1, times)

and deg pk−1 < deg ak−1. OR

(c) C1 =
〈
g +up1 +u2p2 + . . .+uk−1pk−1, ua1 +u2q1 + . . .+uk−1qk−2, u

2a2 +u3l1 + . . .+uk−1lk−3, . . . ,

uk−2ak−2+uk−1t1, u
k−1ak−1

〉
with ak−1

∣∣ak−2

∣∣ . . . ∣∣a2

∣∣a1

∣∣g|(xn−1) mod 2, ak−2|p1

(
xn−1

g

)
, . . . , ak−1|t1

(
xn−1
ak−2

)
,
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. . . , ak−1|pk−1

(
xn−1

g

)
. . .

(
xn−1
ak−2

)
. Moreover deg pk−1 < deg ak−1, . . . , deg t1 < deg ak−1, . . . and deg p1 <

deg ak−2.

Motivated by the work in [7], [9], the structure of cyclic codes over Rk of odd length n can be given in
another way as follows: Let Rk be a finite chain ring with the maximal ideal < u > and k be the nilpotent
index of u . Assume that n is not divisible by the characteristic of the residue field Z2 , so that xn − 1 has a
unique decomposition as a product of basic irreducible pairwise coprime polynomials in Rk[x] (cf. proposition

2.7 in [7]).

Theorem 3.7 Let C be a cyclic code of length n (n odd) over Rk , which has maximal ideal < u >

and k is the nilpotent index of u . Then there exist polynomials g0, g1, . . . , gk−1 in Rk[x] such that C =〈
g0, ug1, . . . , u

k−1gk−1

〉
and gk−1|gk−2| . . . |g1|g0|(xn − 1).

Theorem 3.8 Let C be a cyclic code of length n (n odd) over Rk , which has maximal ideal < u > and k is

the nilpotent index of u , F = F̂1 +uF̂2 + . . .+uk−1F̂k, where Fi(x) is a factor of xn−1, F̂i(x) = xn−1
Fi(x) . Then

C =
〈
F

〉
.

Corollary 3.9 Rk[x]
/〈

xn − 1
〉
, (n odd) is a principal ideal ring.

4. Ranks and minimal spanning sets for cyclic codes over Rk

Theorem 4.1 [1] Let C be a cyclic code of even length n over R2 = Z2 + uZ2 with u2 = 0 .

(1) If C =
〈
g(x)+up(x)

〉
with deg g(x) = r and

(
g(x)+up(x)

)∣∣(xn −1), then C is a free module with

rank(C) = n − r and basis β =
{
g + up(x), xg(x) + up(x), . . . , xn−r−1(g(x) + up(x))

}
, and |C| = 4n−r.

(2) If C =
〈
g(x) + up(x), ua(x)

〉
with deg g(x) = r, deg a(x) = t, then C has rank(C) = n− t and a

minimal spanning set given by χ =
{
g(x)+up(x), x(g(x)+up(x))+. . .+xn−r−1

(
g(x)+up(x)

)
, ua(x), xua(x), . . . ,

xr−t−1ua(x)
}

.

By following the same process, we find the rank and the minimal spanning set for any cyclic code over
the ring Ri for i = 2, 3, . . . , k. To do this, let us consider the cyclic code Ck−2 of even length n over the ring

R4 = Z2 + uZ2 + u2Z2 + u3Z2 with u4 = 0.

(1) If Ck−2 =
〈
g + up1 + u2p2 + u3p3

〉
as in lemma 3.4., deg g(x) = r , then Ck−2 is a free module with

rank(Ck−2) = n− r and basis β =
{

(g + up1 + u2p2 + u3p3), x(g + up1 + u2p2 + u3p3), . . . , xn−r−1(g + up1 +

u2p2 + u3p3)
}

.

(2) If Ck−2 =
〈
g+up1+u2p2+u3p3, ua1+u2q1+u3q2, u

2a2+u3l1, u
3a3

〉
, where a3

∣∣a2

∣∣a1

∣∣g∣∣(xn−1) mod 2

with deg g(x) = r, deg a1(x) = s, deg a2(x) = t and deg a3(x) = b, then Ck−2 has rank(Ck−2) = n−b and a
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minimal spanning set given by χ =
{(

g +up1 +u2p2 +u3p3), x(g +up1 +u2p2 +u3p3), . . . , xn−r−1(g +up1 +

u2p2+u3p3), (ua1 +u2q1+u3q2), x(ua1 +u2q1 +u3q2), . . . , xr−s−1(ua1 +u2q1+u3q2), (u2a2 +u3l1), x(u2a2 +

u3l1), . . . , xs−t−1(u2a2 + u3l1), (u3a3(x)), x(u3a3(x)), . . . , xt−b−1(u3a3(x))
}
.

(3) If Ck−2 =
〈
g + up1 + u2p2 + u3p3, u

3a3

〉
where deg g(x) = r , deg a3(x) = t , then Ck−2 has

rank(Ck−2) = n − t and a minimal spanning set given by

Γ =
{

(g+up1+u2p2+u3p3), x(g+up1+u2p2+u3p3), . . . , xn−r−1(g+up1+u2p2+u3p3), u3a3, xu3a3, . . . ,

xr−t−1u3a3

}
.

Continue in the same way as above to get the following theorem as is a generalization of the results in
[1] .

Theorem 4.2 Let C1 be a cyclic code of even length n over

Rk = Z2 + uZ2 + u2Z2 + . . . + uk−1Z2 with uk = 0.

The constraints on the generator polynomials as in theorem 3.6.

(1) If C1 =
〈
g +up1 +u2p2 + . . .+uk−1pk−1

〉
, deg g(x) = r, then C1 is a free module with rank(C1) =

n− r and basis β =
{

(g +up1 +u2p2 + . . .+uk−1pk−1), x(g +up1 +u2p2 + . . .+uk−1pk−1), . . . , xn−r−1(g +

up1 + u2p2 + . . . + uk−1pk−1)
}
.

(2) If C1 =
〈
g + up1 + u2p2 + . . . + uk−1pk−1, ua1 + u2q1 + . . . + uk−1qk−2, u

2a2 + u3l1 + . . . +

uk−1lk−3, . . . , u
k−2ak−2+uk−1t1, u

k−1ak−1

〉
with deg g(x) = r1, deg a1(x) = r2, deg a2(x) = r3, . . . , deg ak−1

= rk, then C1 has rank(C1) = n − rk and a minimal spanning set given by χ =
{(

g + up1 + u2p2 + . . . +

uk−1pk−1

)
, x

(
g +up1 +u2p2 + . . .+uk−1pk−1

)
, . . . , xn−r1−1

(
g +up1 +u2p2 + . . .+uk−1pk−1

)
,

(
ua1 +u2q1 +

. . .+ uk−1qk−2

)
, x

(
ua1 +u2q1 + . . .+ uk−1qk−2

)
, . . . , xr1−r2−1

(
ua1 +u2q1 + . . .+ uk−1qk−2

)
, (u2a2 +u3l1 +

. . .+uk−1lk−3), x(u2a2+u3l1+. . .+uk−1lk−3), . . . , xr2−r3−1(u2a2+u3l1+. . .+uk−1lk−3), . . . , uk−1ak−1(x),

xuk−1ak−1(x), . . . , xrk−1−rk−1uk−1ak−1(x)
}

.

(3) If C1 =
〈
g + up1 + u2p2 + . . . + uk−1pk−1, u

k−1ak−1

〉
with deg g(x) = r, deg ak−1 = t then C1 has

rank(C1) = n−t and a minimal spanning set given by Γ =
{
(g+up1+u2p2+. . .+uk−1pk−1), x(g+up1+u2p2+

. . .+ uk−1pk−1), . . . , xn−r−1(g + up1 +u2p2 + . . .+ uk−1pk−1), uk−1ak−1, xuk−1ak−1, . . . , x
r−t−1uk−1ak−1

}
.

Proof. (1) Let C1 be a cyclic code of even length over Rk = Z2 + uZ2 + u2Z2 + . . . + uk−1Z2 with uk = 0.
Suppose

xn − 1 =
(
g + up1 + u2p2 + . . . + uk−1pk−1

)(
h + up1 + u2p2 + . . . + uk−1pk−1

)
overRk.

Let c(x) ∈ C1 =
〈
g(x) + up1(x) + u2p2(x) + . . . + uk−1pk−1(x)

〉
, then c(x) =

(
g(x) + up1(x) + u2p2(x) + . . . +

uk−1pk−1(x)
)
f(x) for some polynomial f(x).
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If deg(f(x) ≤ n − r − 1, then we are done, otherwise by division algorithm there exist two polynomials

q(x), s(x) such that

f(x) =
(

xn − 1
g + up1 + u2p2 + . . . + uk−1pk−1

)
q(x) + s(x)

where s(x) = 0 or deg(s(x)) ≤ n − r − 1.

Now,
(

g(x) + up1(x) + u2p2(x) + . . . + uk−1pk−1(x)
)

f(x)

=
(

g(x) + up1(x) + u2p2(x) + . . . + uk−1pk−1(x)
)(

xn−1
g+up1+u2p2+...+uk−1pk−1

q(x) + s(x)

)

=
(

g(x)+up1(x)+u2p2(x)+ . . .+uk−1pk−1(x)
)

s(x). Since deg(s(x)) ≤ n− r− 1, then β spans C1 . Now we

only need to show that β is linearly independent. Let g(x) = 1 + g1x + . . . + xr , p1(x) = p1,0 + p1,1x + . . . +

p1,lx
l, p2(x) = p2,0 + p2,1x + . . . + p2,bx

b, . . . , pk−1(x) = pk−1,0 + pk−1,1x + . . . + pk−1,dx
d. Suppose

(
g(x) +

up1(x)+u2p2(x)+ . . .+uk−1pk−1(x)
)
c0+x

(
g(x)+up1(x)+u2p2(x)+ . . .+uk−1pk−1(x)

)
c1+ . . .+xn−r−1

(
g(x)+

up1(x) + u2p2(x) + . . . + uk−1pk−1(x)
)
cn−r−1 = 0. Comparing coefficients in the above equation we get that(

1+up1,0 +u2p2,0 + . . .+uk−1pk−1,0

)
c0 = 0 (constant coefficient). Since

(
1+up1,0 +u2p2,0 + . . .+uk−1pk−1,0

)
is a unit, then c0 = 0.

Hence, x
(
g(x)+ up1(x)+ u2p2(x)+ . . .+uk−1pk−1(x)

)
c1 + . . .+ xn−r−1

(
g(x)+ up1(x) +u2p2(x) + . . .+

uk−1pk−1(x)
)
cn−r−1 = 0.

Again, comparing coefficients, we get that
(
1 + up1,0 + u2p2,0 + . . . + uk−1pk−1,0

)
c1 = 0 (coefficient of

x). This implies that c1 = 0. Similarly we get that ci = 0 for all i = 0, 1, . . . , n− r−1. Therefore, β is linearly
independent and hence a basis for C1 .

(2) Suppose C1 =
〈
g + up1 + u2p2 + . . . + uk−1pk−1, ua1 + u2q1 + . . . + uk−1qk−2, u

2a2 + u3l1 + . . . +

uk−1lk−3, . . . , u
k−1ak−1

〉
with deg(g + up1 + . . . + uk−1pk−1) = r1, deg(ua1 + u2q1 + . . . + uk−1qk−2) =

r2, deg(u2a2 + u3l1 + . . . + uk−1lk−3) = r3, . . . , deg(uk−1ak−1) = rk. Since the lowest degree polynomial

in C1 is uk−1ak−1(x), then it’s suffices to show that χ spans γ =
{(

g + up1 + u2p2 + . . . + uk−1pk−1

)
, x

(
g +

up1+u2p2+. . .+uk−1pk−1

)
, . . . , xn−r1−1

(
g+up1+u2p2+. . .+uk−1pk−1

)
,

(
ua1+u2q1+. . .+uk−1qk−2

)
, x

(
ua1+

u2q1 + . . .+ uk−1qk−2

)
, . . . , xr1−r2−1

(
ua1 + u2q1 + . . . + uk−1qk−2

)
, (u2a2 + u3l1 + . . .+ uk−1lk−3), x(u2a2 +

u3l1 + . . . + uk−1lk−3), . . . , xr2−r3−1(u2a2 + u3l1 + . . . + uk−1lk−3), . . . , uk−1ak−1(x), xuk−1ak−1(x), . . . ,

xn−rk−1uk−1ak−1(x)
}

. Similarly, it suffices to show that uk−1xrk−1−rkak−1 ∈ spanγ. uk−1xrk−1−rkak−1(x) =

uk−1
(
g(x) + up1(x) + u2p2(x) + . . . + uk−1pk−1(x)

)
+ uk−1m(x), where uk−1m(x) is a polynomial in C1 of

degree less than rk−1 .

Since any polynomial in C1 must have degree greater or equal to deg(uk−1ak−1(x)) = rk, then rk ≤
deg(m(x)) < rk−1. Hence uk−1m(x) = α0u

k−1ak−1(x)+α1xuk−1ak−1(x)+. . .+αrk−1−rk−1x
rk−1−rk−1uk−1ak−1(x).

Hence, χ is a generating set. By comparing coefficients as in (1) we get that non of elements in χ is a
linear combination of the others. Therefore χ is a minimal generating set.
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(3) This case is a special case of case (2); so the proof is similar to case (2). �

Definition 4.1 [1] Let C =
〈
g + up(x), ua(x)

〉
be a cyclic code of even length n over R2 = Z2 + uZ2. We

define Cu =
{
k(x) : uk(x) ∈ C

}
in R2,n = R2[x]

/〈
xn − 1

〉
.

Remark 4.1 [1] Cu is a cyclic code over Z2 = {0, 1} = R1.

Definition 4.2 [1] Let C =
〈
g + up1 + u2p2, ua1 + u2q1, u

2a2

〉
be a cyclic code of even length over R3 =

Z2 + uZ2 + u2Z2 with (u3 = 0). We define Cu2 =
{
k(x) : u2k(x) ∈ C

}
in R3,n = R3[x]

/〈
xn − 1

〉
.

Remark 4.2 [1] Cu2 is a cyclic code over R1 = {0, 1} = Z2.

By following the same process, we define Cui−1 over the ring Ri for i = 2, 3, . . . , k. So, if i = 4, then

we let C =
〈
g + up1 + u2p2 + u3p3, ua1 + u2q1 + u3q2, u

2a2 + u3l1, u
3a3

〉
be a cyclic code of even length over

R4 = Z2 + uZ2 + u2Z2 + u3Z2 with (u4 = 0) ⇒ Cu3 = {R(x) : u3k(x) ∈ C} is a cyclic code over Z2 .

Hence, we generalize these definitions to more general ring Rk as follows.

Definition 4.3 Let C =
〈
g+up1+ . . .+uk−1pk−1, ua1+u2q1+ . . .+uk−1qk−2, u

2a2+u3l1 + . . .+uk−1lk−3, . . . ,

uk−2uk−2 + uk−1t1, u
k−1ak−1

〉
be a cyclic code of even length n over Rk = Z2 + uZ2 + u2Z2 + . . . + uk−1Z2

with uk = 0 . We define Cuk−1 =
{
k(x) : uk−1k(x) ∈ C

}
in Rk,n .

Remark 4.3 Cuk−1 is a cyclic code over Z2 = {0, 1}.

Proof. Let k(x) ∈ Cuk−1 , we need to show that xk(x) ∈ Cuk−1 . Now, since k(x) ∈ Cuk−1 ⇒ uk−1k(x) ∈
C, but C is cyclic code over Rk ⇒ xuk−1k(x) ∈ C ⇒ xk(x) ∈ Cuk−1 . �

Theorem 4.3 [1] Let C =
〈
g +up1 +u2p2, ua1 +u2q1, u

2a2

〉
. Then Cu2 =

〈
a2(x)

〉
and wH(C) = wH(Cu2).

According to Theorem 4.3, if C =
〈
g + up1 + u2p2 + u3p3, ua1 + u2q1 + u3q2, u

2a2 + u3l1, u
3a3

〉
over

R4 = Z2 + uZ2 + u2Z2 + u3Z2 with (u4 = 0). Then Cu3 =
〈
a3(x)

〉
and wH(C) = wH(Cu3).

Continue in the same way as above we have the following theorem:

Theorem 4.4 If C =
〈
g +up1 + . . .+uk−1pk−1, ua1 +u2q1 + . . .+uk−1qk−2, u

2a2 +u3l1 + . . .+uk−1lk−3, . . . ,

uk−2uk−2 + uk−1t1, u
k−1ak−1

〉
is a cyclic code of even length over Rk = Z2 + uZ2 + u2Z2 + . . . + uk−1Z2 with

uk = 0 . Then Cuk−1 =
〈
ak−1

〉
and wH(C) = wH(Cuk−1) .

Proof. Since uk−1ak−1 ∈ C , then
〈
ak−1(x)

〉
⊆ Cuk−1 . Now given an b(x) ∈ Cuk−1 , then uk−1b(x) ∈ C

and hence there exist polynomials c1(x), c2(x), . . . , ct(x) ∈ Z2[x] such that uk−1b(x) = c1(x)uk−1g(x) +

c2(x)uk−1a1(x) + c3(x)uk−1a2(x) + . . . + ct(x)uk−1ak−1(x). Since ak−1(x)
∣∣ak−2(x)

∣∣ . . .
∣∣a2(x)

∣∣a1(x)
∣∣g(x), we

have uk−1b(x) = uk−1m(x)ak−1(x) for some m(x). So Cuk−1 ⊆
〈
ak−1(x)

〉
and hence Cuk−1 =

〈
ak−1(x)

〉
.
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Further, given a codeword m(x) = m0(x0) + um1(x) + u2m2(x) + . . . + uk−1mk−1(x) ∈ C, where

m0(x), m1(x), m2(x), . . . , mk−1(x) ∈ F2[x], since uk−1m(x) = uk−1m0(x) ∈ C and wH(uk−1m(x)) ≤
wH(m(x)) and uk−1C is a subcode of C with wH(uk−1C) ≤ wH(C) it is sufficient to focus on the sub-

code uk−1C in order to compute the Hamming weight of C . Since uk−1C =
〈
uk−1ak−1(x)

〉
, thus wH(C) =

wH(Cuk−1). �

5. Examples

Example 5.1 Cyclic codes of length 5 over R4 = Z2 + uZ2 + u2Z2 + u3Z2 with u4 = 0. Now, x5 − 1 =

(x+1)(x4 +x3 +x2 +x+1) = g1g2 ⇒The Nonzero cyclic codes of length 5 over R4 with generator polynomials
in Table 1.

Table 1. Cyclic codes of length 5 over R4 = Z2 + uZ2 + u2Z2 + u3Z2.

Non zero generator polynomials

〈
1
〉
,

〈
g1

〉
,

〈
g2

〉〈
u
〉
,

〈
ug1

〉
,

〈
ug2

〉〈
u2

〉
,

〈
u2g1

〉
,

〈
u2g2

〉〈
u3

〉
,

〈
u3g1

〉
,

〈
u3g2

〉〈
g1, u

〉
,

〈
g2, u

〉
,

〈
g1, u

2
〉
,

〈
g2, u

2
〉〈

g1, u
3
〉
,

〈
g2, u

3
〉〈

ug1, u
2
〉
,

〈
ug2, u

2
〉〈

u2g1, u
3
〉
,

〈
u2g2, u

3
〉

Example 5.2 If n = 8 over R3 = Z2 +uZ2 +u2Z2 with u3 = 0. x8−1 = (x−1)8 =
(
g(x)

)8 over Z2 = {0, 1}.
The nonzero free/non free module cyclic codes over R3 given in Table 2, and 3.

Table 2. Non zero Free module cyclic codes of length 8 over R3 = F2 + uF2 + u2F2.

Non zero generator polynomial(s): g=x+1

〈
1
〉
,

〈
g
〉
,

〈
g + u

〉
,

〈
g + u2

〉〈
g + u(c0 + c1x)

〉
,

〈
g + u2(c0 + c1x)

〉〈
g3 + u(c0 + c1x + c2x

2)
〉
,

〈
g3 + u2(c0 + c1x + c2x

2)
〉〈

g4 + u(c0 + c1x + c2x
2 + c3x

3)
〉
,

〈
g4 + u2(c0 + c1x + c2x

2 + c3x
3)

〉〈
g5 + u(x2 + 1)(c0 + c1x + c2x

2)
〉
,

〈
g5 + u2(x2 + 1)(c0 + c1x + c2x

2)
〉〈

g6 + u(x + 1)4(c0 + c1x)
〉
,

〈
g6 + u2(x + 1)4(c0 + c1x)

〉〈
g7 + uc0

〉
,

〈
g7 + u2c0

〉
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Table 3. Non Free module cyclic codes of length 8 over R3 = Z2 + uZ2 + u2Z2

Non zero generator polynomial(s): g=x+1

〈
u
〉
,

〈
u2

〉〈
ugi

〉
, i = 1, . . . , 7,

〈
u2gi

〉
, i = 1, . . . , 7.〈

gi, u
〉
, i = 1, 2, . . . , 7,

〈
gi, u2

〉
, i = 1, . . . , 7.〈

g2 + uc0, ug
〉
,

〈
g2 + u2c0, u

2g
〉〈

g3 + uc0, ug)
〉
,

〈
g3 + u2c0, u

2g)
〉〈

g3 + u(c0 + c1x), ug2
〉
,

〈
g3 + u2(c0 + c1x), u2g2

〉〈
g4 + uc0, ug

〉
,

〈
g4 + u2c0, u

2g
〉〈

g4 + u(c0 + c1x), ug2
〉
,

〈
g4 + u2(c0 + c1x), u2g2

〉〈
g4 + u(c0 + c1x + c2x

2), ug3
〉
,

〈
g4 + u2(c0 + c1x + c2x

2), u2g3
〉〈

g5 + uc0, ug
〉
,

〈
g5 + u2c0, u

2g
〉〈

g5 + u(c0 + c1x), ug2
〉
,

〈
g5 + u2(c0 + c1x), u2g2

〉〈
g5 + u(c0 + c1x + c2x

2), ug3
〉
,

〈
g5 + u2(c0 + c1x + c2x

2), u2g3
〉〈

g5 + u(x + 1)(c0 + c1x + c2x
2), ug4

〉
,

〈
g5 + u2(x + 1)(c0 + c1x + c2x

2), u2g4
〉〈

g6 + uc0, ug
〉
,

〈
g6 + u2c0, u

2g
〉〈

g6 + u(c0 + c1x), ug2
〉
,

〈
g6 + u2(c0 + c1x), u2g2

〉〈
g6 + ug(c0 + c1x), ug3

〉
,

〈
g6 + u2g(c0 + c1x), u2g3

〉〈
g6 + ug2(c0 + c1x), ug4

〉
,

〈
g6 + u2g2(c0 + c1x), u2g4

〉〈
g6 + ug3(c0 + c1x), ug5

〉 〈
g6 + u2g3(c0 + c1x), u2g5

〉〈
g7 + uc0, ug

〉
,

〈
g7 + u2c0, u

2g
〉〈

g7 + ugc0, ug2
〉
,

〈
g7 + u2gc0, u

2g2
〉〈

g7 + ug2c0, ug3
〉
,

〈
g7 + u2g2c0, u

2g3
〉〈

g7 + ug3c0, ug4
〉
,

〈
g7 + u2g3c0, u

2g4
〉〈

g7 + ug4c0, ug5
〉
,

〈
g7 + u2g4c0, u

2g5
〉〈

g7 + ug5c0, ug6
〉
,

〈
g7 + u2g5c0, u

2g6
〉

6. Conclusion

In this paper, we studied cyclic codes of an arbitrary length over the ring Z2 + uZ2 + u2Z2 + . . . +

uk−1Z2, with uk = 0. The rank and minimum spanning of this family of codes are studied as well. Open

problem include the study of cyclic codes of an arbitrary length over Zp + uZp +u2Zp + . . .+ uk−1Zp , where p

is a prime integer, uk = 0, and also the study of dual and self-dual codes and their properties over these rings.

References

[1] Abualrub, T. and Saip, I.: Cyclic codes over the rings Z2 + uZ2 and Z2 + uZ2 + u2Z2 , Designs Codes and

Cryptography. Vol.42, No.3, 273-287(2007).

[2] Abualrub, T. and Oehmke, R.: On the generators of Z4 cyclic codes, IEEE Trans. Inform. Theory. Vol.49, No.9,

2126-2133(2003).

[3] Blackford, T.: Cyclic codes over Z4 of oddly even length, Discrete Applied Mathematics. Vol.128, 27-46(2003).

748



AL-ASHKER, HAMOUDEH

[4] Bonnecaze, A. and Udaya, P.: Cyclic codes and self-dual codes over F2 +uF2 , IEEE Trans. Inform. Theory. Vol.45,

No.4, 1250-1255(1999).

[5] Calderbank, A., Rains, E., Shor, P., Neil, J. and Sloane, N.J.A.: Quantum error corrections via codes over GF(4),

IEEE Transactions on Information Theory. Vol.4, No.4, 1369-1387(1998).

[6] Calderbank, A. and Sloane, N.J.A.: Modular and P-adic cyclic codes, Des. Codes Crypt. Vol.37, No.6, 21-35(1995).

[7] Dinh, H. and Lopez-Permouth, S.: Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory.

Vol.50, No.8, 1728-1744(2004).

[8] Dougherty, ST. and Shiromoto, K.: Maximum distance codes over rings of order 4, IEEE Trans. Inform. Theory.

Vol.47, No.1, 400-404 (2001).

[9] Noton, G. and Salagean, A.: On the structure of linear and cyclic codes over a finite chain ring, Applicable Algebra

Engineering Communication and Computing. Vol.10, No.6, 489-506 (2000).

[10] Pless, V. and Qian, Z.: Cyclic codes and quadratic residue codes over Z4 , IEEE Trans. Inform. Theory. Vol.45,

No.5, 1594-1600 (1996).

[11] Van Lint, J.: Repeated-root cyclic codes, IEEE Trans. Inform. Theory. Vol.37, No.2, 343-345(1977).

Mohammed AL-ASHKER
Department of Mathematics,
Islamic University of Gaza-PALESTINE
e-mail: mashker@iugaza.edu.ps

Mohammed HAMOUDEH
Ministry of education, Gaza-PALESTINE
e-mail: mamh 73@hotmail.com

Received: 04.01.2010

749


