Top generalized local cohomology modules

Amir Mafi

Abstract

Let (R, \mathfrak{m}) be a commutative Noetherian local ring and M, N two non-zero finitely generated R modules with $\operatorname{pd}(M)=n<\infty$ and $\operatorname{dim}(N)=d$. In this paper, we show that if the top generalized local cohomology module $H_{\mathfrak{n}}^{n+d}(M, N) \neq 0$, then the following statements are equivalent:

(i) $\operatorname{Ann}\left(0:_{H_{\mathfrak{m}}^{d}(N)} \mathfrak{p}\right)=\mathfrak{p}$ for all $\mathfrak{p} \in \operatorname{Var}\left(\operatorname{Ann}\left(H_{\mathfrak{m}}^{d}(N)\right)\right)$;
(ii) $\operatorname{Ann}\left(0:_{H_{\mathfrak{m}}^{n+d}(M, N)} \mathfrak{p}\right)=\mathfrak{p}$ for all $\mathfrak{p} \in \operatorname{Var}\left(\operatorname{Ann}\left(H_{\mathfrak{n}}^{n+d}(M, N)\right)\right)$.

Key Words: Artinian module, Generalized local cohomology.

1. Introduction

Throughout this paper, we assume that (R, \mathfrak{m}) is a commutative Noetherian local ring and M, N two non-zero finitely generated R-modules with $\operatorname{pd}(M)=n<\infty$ and $\operatorname{dim}(N)=d$. For each $i \geq 0$, the generalized local cohomology module

$$
H_{\mathfrak{m}}^{i}(M, N)=\underset{n}{\lim } \operatorname{Ext}_{R}^{i}\left(M / \mathfrak{m}^{n} M, N\right),
$$

was introduced by Herzog [8] and studied further by Suzuki [16]. With $M=R$, one clearly obtains the ordinary local cohomology module which was introduced by Grothendieck; see for example [4]. There are several well known properties concerning the generalized local cohomology modules. It is well known that $H_{\mathfrak{m}}^{n+d}(M, N)$ is Artinian and $H_{\mathfrak{m}}^{i}(M, N)=0$ for all $i>n+d$; see for example [12] and [14].

An elementary property of finitely generated modules is that $\operatorname{Ann}(N / \mathfrak{p} N)=\mathfrak{p}$ for all $\mathfrak{p} \in \operatorname{Var}(\operatorname{Ann}(N))$. For any Artinian R-module A, the dual property is as follows:

$$
\begin{equation*}
\operatorname{Ann}\left(0:_{A} \mathfrak{p}\right)=\mathfrak{p} \text { for all } \mathfrak{p} \in \operatorname{Var}(\operatorname{Ann}(A)) \tag{*}
\end{equation*}
$$

If R is complete with respect to \mathfrak{m}-adic topology, it follows by Matlis duality that the property (*) is satisfied for all Artinian R-modules. However, there are Artinian modules which do not satisfy this property. For example, let R be the Noetherian local domain of dimension 2 constructed by Ferrand and Raynaud [7]

2000 AMS Mathematics Subject Classification: 13D45,13E10.
This research was in part supported by a grant from IPM (No. 89130058), Iran.
such that its \mathfrak{m}-adic completion \hat{R} has an associated prime \hat{q} of dimension 1. Then the Artinian R-module $A=H_{\mathfrak{m}}^{1}(R)$ does not satisfy the property $(*)$; cf. Cuong and Nhan [6]. However, it seems to us that the property $(*)$ is an important property of Artinian modules. For example, the property $(*)$ is closely related to some questions on dimension for Artinian modules. In [6], it shown that $\mathrm{N}-\operatorname{dim}(A)=\operatorname{dim}(R / \operatorname{Ann}(A))$ provided A satisfies the property $(*)$, where $\mathrm{N}-\operatorname{dim}(A)$ is the Noetherian dimension of A defined by Roberts [15] (see also [9]). Note that this equality does not hold in general. Concretely, with the Artinian R-module $A=H_{\mathfrak{m}}^{1}(R)$ as above, $\mathrm{N}-\operatorname{dim}(A)=1<2=\operatorname{dim}(R / \operatorname{Ann}(A))$ although the top local cohomology module $H_{\mathrm{m}}^{2}(R)$ satisfies the property $(*)$. Notice that the property $(*)$ has been studied by many authors (see, for example, $[5,2,3]$).

The purpose of this paper is to prove the following theorem.
Theorem 1.1 Let the generalized local cohomology module $H_{\mathfrak{m}}^{n+d}(M, N) \neq 0$. Then the following statements are equivalent:
(i) $\operatorname{Ann}\left(0:_{H_{\mathfrak{m}}^{d}(N)} \mathfrak{p}\right)=\mathfrak{p}$ for all $\mathfrak{p} \in \operatorname{Var}\left(\operatorname{Ann}\left(H_{\mathfrak{m}}^{d}(N)\right)\right)$;
(ii) $\operatorname{Ann}\left(0:_{H_{\mathfrak{m}}^{n+d}(M, N)} \mathfrak{p}\right)=\mathfrak{p}$ for all $\mathfrak{p} \in \operatorname{Var}\left(\operatorname{Ann}\left(H_{\mathfrak{m}}^{n+d}(M, N)\right)\right)$.

2. The results

Following Macdonald [10], every Artinian module A has a minimal secondary representation $A=$ $A_{1}+\ldots+A_{n}$, where A_{i} is \mathfrak{p}_{i}-secondary. The set $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\}$ is independent of the choice of the minimal secondary representation of A. This set is called the set of attached prime ideals of A, and denoted by $\operatorname{Att}(A)$. The cohomological dimension of M and N with respect to \mathfrak{m} is defined as

$$
\operatorname{cd}(\mathfrak{m}, M, N)=\sup \left\{i: H_{\mathfrak{m}}^{i}(M, N) \neq 0\right\}
$$

The following theorem extends [11, Theorem 2.2].
Theorem 2.1 Let the generalized local cohomology module $H_{\mathfrak{m}}^{n+d}(M, N) \neq 0$. Then $\operatorname{Att}\left(H_{\mathfrak{m}}^{n+d}(M, N)\right)=\{\mathfrak{p} \in$ $\operatorname{Ass}(N): \operatorname{dim} R / \mathfrak{p}=d\}$. In particular, $\operatorname{Att}\left(H_{\mathfrak{m}}^{n+d}(M, N)\right)=\operatorname{Att}\left(H_{\mathfrak{m}}^{d}(N)\right)$.
Proof. We use induction on d. If $d=0$, the module N has finite length and so is annihilated by some power of \mathfrak{m}. Hence, by [13, Lemma 3.2], $H_{\mathfrak{m}}^{n}(M, N) \cong \operatorname{Ext}_{R}^{n}(M, N)$ and so

$$
\operatorname{Att}\left(H_{\mathfrak{m}}^{n}(M, N)\right)=\{\mathfrak{m}\}=\operatorname{Ass}(N)=\{\mathfrak{p} \in \operatorname{Ass}(N): \operatorname{dim} R / \mathfrak{p}=0\}
$$

The result has been proved in this case. Suppose, inductively, that $d \geq 1$ and that the result has been proved for non-zero, finitely generated R-modules of dimension $d-1$. Let L be a largest submodule of N with $\operatorname{dim}(L)<d$. (Note that, for two submodules N_{1} and N_{2} of N, and for any positive integer t, if $\operatorname{dim}\left(N_{1}\right) \leq t$ and $\operatorname{dim}\left(N_{2}\right) \leq t$, then $\operatorname{dim}\left(N_{1}+N_{2}\right) \leq t$ and so L is well defined.) Thus by the exact sequence $0 \longrightarrow L \longrightarrow N \longrightarrow$ $N / L \longrightarrow 0$ we have $\operatorname{dim}(N)=\operatorname{dim}(N / L)$. It is easy to prove that N / L has no non-zero submodule K with $\operatorname{dim}(K)<d$ and so $\operatorname{Ass}(N / L) \subseteq\{\mathfrak{p} \in \operatorname{Supp}(N / L): \operatorname{dim} R / \mathfrak{p}=d\}$. In addition, $\min (\operatorname{Supp}(N / L)) \subseteq \operatorname{Ass}(N / L)$ and $\min (\operatorname{Supp}(N)) \subseteq \operatorname{Ass}(N)$. Therefore $\operatorname{Ass}(N / L)=\{\mathfrak{p} \in \operatorname{Supp}(N / L): \operatorname{dim} R / \mathfrak{p}=d\} \subseteq\{\mathfrak{p} \in \operatorname{Ass}(N):$
$\operatorname{dim} R / \mathfrak{p}=d\}$. If $\mathfrak{p} \in \operatorname{Ass}(N)$ and $\operatorname{dim} R / \mathfrak{p}=d$, then $\mathfrak{p} \notin \operatorname{Supp}(L)$, otherwise $\operatorname{dim} R / \mathfrak{p} \leq \operatorname{dim} L<d$. Thus $\mathfrak{p} \in \operatorname{Supp}(N / L)$ and so $\{\mathfrak{p} \in \operatorname{Supp}(N / L): \operatorname{dim} R / \mathfrak{p}=d\}=\{\mathfrak{p} \in \operatorname{Ass}(N): \operatorname{dim} R / \mathfrak{p}=d\}$. From the exact sequence

$$
H_{\mathfrak{m}}^{n+d}(M, L) \longrightarrow H_{\mathfrak{m}}^{n+d}(M, N) \longrightarrow H_{\mathfrak{m}}^{n+d}(M, N / L) \longrightarrow H_{\mathfrak{m}}^{n+d+1}(M, L)
$$

we have $H_{\mathfrak{m}}^{n+d}(M, N) \cong H_{\mathfrak{m}}^{n+d}(M, N / L)$. Hence by this assumption our aim is to show that $\operatorname{Att}\left(H_{\mathfrak{m}}^{n+d}(M, N)\right)=$ Ass (N). Since $d \geq 1$, from the exact sequence

$$
0 \longrightarrow \Gamma_{\mathfrak{m}}(N) \longrightarrow N \longrightarrow N / \Gamma_{\mathfrak{m}}(N) \longrightarrow 0
$$

and [13, Lemma 3.2], we get that $H_{\mathfrak{m}}^{n+d}(M, N) \cong H_{\mathfrak{m}}^{n+d}\left(M, N / \Gamma_{\mathfrak{m}}(N)\right)$. Therefore we can assume that N is \mathfrak{m}-torsion free, and so $\operatorname{depth}(N) \geq 1$ by [4, Lemma 2.1.1]. Thus, for each $x \in \mathfrak{m}$ which is a non-zero divisor on N, we have $\operatorname{cd}(\mathfrak{m}, M, N / x N) \leq n+d-1$, so that $H_{\mathfrak{m}}^{n+d}(M, N / x N)=0$, and the exact sequence

$$
0 \longrightarrow N \xrightarrow{x} N \longrightarrow N / x N \longrightarrow 0
$$

yields that $H_{\mathfrak{m}}^{n+d}(M, N)=x H_{\mathfrak{m}}^{n+d}(M, N)$. It therefore follows form [4, Proposition 7.2.11] that $\cup_{q \in \operatorname{Att}\left(H_{\mathfrak{m}}^{n+d}(M, N)\right)} \mathfrak{q} \subseteq \cup_{\mathfrak{p} \in \operatorname{Ass}(N)} \mathfrak{p}$. Let $\mathfrak{q} \in \operatorname{Att}\left(H_{\mathfrak{m}}^{n+d}(M, N)\right)$; it follows the above inclusion relation that $\mathfrak{q} \subseteq \mathfrak{p}$ for some $\mathfrak{p} \in \operatorname{Ass}(N)$. Since $H_{\mathfrak{m}}^{n+d}(-,-)$ is an R-linear functor, it follows that $\operatorname{Ann}(N) \subseteq \operatorname{Ann}\left(H_{\mathfrak{m}}^{n+d}(M, N)\right) \subseteq$ $\mathfrak{q} \subseteq \mathfrak{p}$. As $d=\operatorname{dim} R / \operatorname{Ann}(N)=\operatorname{dim} R / \mathfrak{p}$, it follows that $\mathfrak{q}=\mathfrak{p}$. Therefore $\operatorname{Att}\left(H_{\mathfrak{m}}^{n+d}(M, N)\right) \subseteq \operatorname{Ass}(N)$. To establish the reverse inclusion, let $\mathfrak{p} \in \operatorname{Ass}(N)$, so that $\operatorname{cd}(\mathfrak{m}, M, R / \mathfrak{p})=n+d$. By the theory of primary decomposition, there exists a \mathfrak{p}-primary submodule T of N; thus N / T is a non-zero finitely generated R module with $\operatorname{Ass}(N / T)=\{\mathfrak{p}\}$. By [1, Theorem B], we get that $n+d=\operatorname{cd}(\mathfrak{m}, M, R / \mathfrak{p}) \leq \operatorname{cd}(\mathfrak{m}, M, N / T) \leq$ $\operatorname{cd}(\mathfrak{m}, M, N)=n+d$ and so $H_{\mathfrak{m}}^{n+d}(M, N / T) \neq 0$. Therefore $\emptyset \neq \operatorname{Att}\left(H_{\mathfrak{m}}^{n+d}(M, N / T)\right) \subseteq \operatorname{Ass}(N / T)=\{\mathfrak{p}\}$ and hence $\operatorname{Att}\left(H_{\mathfrak{m}}^{n+d}(M, N / T)\right)=\{\mathfrak{p}\}$. The exact sequence

$$
0 \longrightarrow T \longrightarrow N \longrightarrow N / T \longrightarrow 0
$$

induces an epimorphism $H_{\mathfrak{m}}^{n+d}(M, N) \longrightarrow H_{\mathfrak{m}}^{n+d}(M, N / T) \longrightarrow 0$. Hence $\{\mathfrak{p}\} \subseteq \operatorname{Att}\left(H_{\mathfrak{m}}^{n+d}(M, N)\right)$ and so $\operatorname{Ass}(N) \subseteq \operatorname{Att}\left(H_{\mathfrak{m}}^{n+d}(M, N)\right)$. This complete the proof that $\operatorname{Att}\left(H_{\mathfrak{m}}^{n+d}(M, N)\right)=\operatorname{Ass}(N)$.

The following consequence immediately follows by Theorem 2.1 and [4, Proposition 7.2.11].
Corollary 2.2 Let the situations be as in Theorem 2.1. Then
$\operatorname{Var}\left(\operatorname{Ann}\left(H_{\mathfrak{m}}^{d}(N)\right)\right)=\operatorname{Var}\left(\operatorname{Ann}\left(H_{\mathfrak{m}}^{n+d}(M, N)\right)\right)$.
Following [5], let $U_{N}(0)$ be the largest submodule of N of dimension less than d. Note that if $0=$ $\cap_{\mathfrak{p} \in \operatorname{Ass}(N)} N(\mathfrak{p})$ is a reduced primary decomposition of the zero submodule of N, then $U_{N}(0)=\cap_{\operatorname{dim} R / \mathfrak{p}=d} N(\mathfrak{p})$. Therefore we have Ass $N / U_{N}(0)=\{\mathfrak{p} \in \operatorname{Ass}(N): \operatorname{dim} R / \mathfrak{p}=d\}$. Hence $\operatorname{Supp} N / U_{N}(0)=\cup_{\mathfrak{p} \in \operatorname{Ass}(N), \operatorname{dim} R / \mathfrak{p}=d}$ $\operatorname{Var}(\mathfrak{p})$. The set $\operatorname{Supp} N / U_{N}(0)$ is called the unmixed support of N and denoted by $\operatorname{Usupp}(N)$.

Corollary 2.3 Let the situations be as in Theorem 2.1. Then
$\operatorname{Usupp}(N)=\operatorname{Var}\left(\operatorname{Ann}\left(H_{\mathfrak{m}}^{n+d}(M, N)\right)\right)$.

MAFI

Proof. By [10] the set of all minimal prime ideals containing $\operatorname{Ann}\left(H_{\mathfrak{m}}^{n+d}(M, N)\right)$ and the set of all minimal elements of $\operatorname{Att}\left(H_{\mathfrak{m}}^{n+d}(M, N)\right)$ are the same. Therefore $\operatorname{Var}\left(\operatorname{Ann}\left(H_{\mathfrak{m}}^{n+d}(M, N)\right)=\cup_{\mathfrak{p} \in \operatorname{Ass}(N), \operatorname{dim} R / \mathfrak{p}=d} \operatorname{Var}(\mathfrak{p})=\right.$ $\operatorname{Usupp}(N)$.

Theorem 2.4 Let the situations be as in Theorem 2.1. Then the following statements are equivalent:
(i) $\operatorname{Usupp}(N)$ is catenary;
(ii) $H_{\mathfrak{m}}^{d}(N)$ satisfies the property (*);
(iii) $H_{\mathfrak{m}}^{n+d}(M, N)$ satisfies the property (*).

Proof. By Corollaries 2.2, 2.3, we have $\operatorname{Var}\left(\operatorname{Ann}\left(H_{\mathfrak{m}}^{d}(N)\right)=\operatorname{Var}\left(\operatorname{Ann}\left(H_{\mathfrak{m}}^{n+d}(M, N)\right)=\operatorname{Usupp}(N)\right.\right.$ and $\operatorname{Var}\left(\operatorname{Ann}_{\hat{R}}\left(H_{\mathfrak{m}}^{d}(N)\right)=\operatorname{Var}\left(\operatorname{Ann}_{\hat{R}}\left(H_{\mathfrak{m}}^{n+d}(M, N)\right)=\operatorname{Usupp}_{\hat{R}}(\hat{N})\right.\right.$. Hence the equivalence follows by [5, Proposition 2.2 and Theorem 3.4].

Acknowledgement

The author is extremely grateful to the referee for useful suggestions and comments which helped improve the presentation of the paper.

References

[1] Amjadi, J. and Naghipour, R.: Cohomological dimension of generalized local cohomology modules, Algebra Colloq., 15, 303-308, (2008).
[2] An, T.N. and Nhan, L.T.: On the unmixedness and the universal catenaricity of local rings and local cohomology modules, J. Algebra, 321, 303-311,(2009).
[3] An, T.N. and Nhan, L.T.: On the catenaricity of Noetherian local rings and quasi unmixed Artinian modules, Comm. Algebra (to appear).
[4] Brodmann, M.P. and Sharp, R.Y.: Local cohomology-An algebraic introduction with geometric applications, (Cambr. Uni. Press, 1998.)
[5] Cuong, N.T., Dung, N.T. and Nhan, L.T.: Top local cohomology and the catenaricity of the unmixed support of a finitely generated module, Comm. Algebra, 351691-1701, (2007).
[6] Cuong, N.T. and Nhan, L.T.: On the Noetherian dimension of Artinian modules, Vietnam J. Math., 30, 121-130, (2002).
[7] Ferrand, D. and Raynaud, M.: Fibres formelles d'un anneau local Noetherian, Ann. Sci. E'cole Norm. Sup., 3, 295-311,(1970).
[8] Herzog, J.: Komplexe, auflösungen und dualitat in der localen algebra, Habilitationss chrift, Universität Regensburg, (1970).
[9] Kirby, D.: Dimension and length for Artinian modules, Quart. J. Math. (Oxford)(2) 41, 419-429, (1990).
[10] Macdonald, I.G.: Secondary representation of modules over a commutative ring, Sympos. Math., 11, 23-43, (1973).
[11] Macdonald, I.G. and Sharp, R.Y.: An elementary proof of the non-vanishing of certain local cohomology modules, Quart. J. Math (Oxford), 23, 197-204,(1972).
[12] Mafi, A.: On the associated primes of generalized local cohomology modules, Comm. Algebra, 34, 2489-2494, (2006).
[13] Mafi, A.: A generalization of the finiteness problem in local cohomology modules, Proc. Indian Acad. Sci. (Math. Sci.), 119, 159-164, (2009).
[14] Mafi, A.: Co-Cohen-Macaulay modules and generalized local cohomology, Algebra Colloquium (to appear).
[15] Roberts, R.N.: Krull dimension for Artinian modules over quasi local commutative rings, Quart. J. Math (Oxford), 26, 269-273, (1975).
[16] Suzuki, N.: On the generalized local cohomology and its duality, J. Math. Kyoto University, 18, 71-85, (1978).

Amir MAFI

Received: 05.02.2010
School of Mathematics, Institute for Research in Fundamental Science (IPM), P. O. Box 19395-5746, Tehran-IRAN
e-mail: a_mafi@ipm.ir

