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Combinatorial results for order-preserving and order-decreasing
transformations
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Abstract

Let On and Cn be the semigroup of all order-preserving transformations and of all order-preserving and

order-decreasing transformations on the finite set Xn = {1, 2, . . . , n} , respectively. Let Fix(α) = {x ∈ Xn :

xα = x} for any transformation α . In this paper, for any Y ⊆ Xn , we find the cardinalities of the sets

On,Y = {α ∈ On : Fix(α) = Y } and Cn,Y = {α ∈ Cn : Fix(α) = Y } . Moreover, we find the numbers of

transformations of On and Cn with r fixed points.
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1. Introduction

Consider the finite set Xn = {1, 2, . . . , n} ordered in the standard way. Let Tn be the full transformation
semigroup on Xn . We shall call a transformation α : Xn → Xn order-preserving if x ≤ y implies xα ≤ yα

for all x, y ∈ Xn , and decreasing (increasing) if xα ≤ x (xα ≥ x) for all x ∈ Xn . Combinatorial properties of
the semigroup On of order-preserving transformations on Xn , and of its subsemigroup Cn , which consists of
all decreasing and order-preserving transformations have been investigated over the last thirty years. (See, for

example [2, 3, 4, 5, 6, 7].)

For α ∈ Tn we denote Fix(α) = {x ∈ Xn : xα = x} . For Y ⊆ Xn we define

On,Y = {α ∈ On : Fix(α) = Y } and Cn,Y = {α ∈ Cn : Fix(α) = Y }.

We write On,m instead of On,Y when Y = {m} . The nth Catalan number Cn is 1
n+1

(
2n
n

)
(see, for

example [3, 9]).

The numbers of transformations of On and Cn with r fixed points have been computed by Higgins,
and Laradji and Umar in [3, 7]. In both [3] and [7], there is no information about the cardinalities of the sets

On,Y = {α ∈ On : Fix(α) = Y } and Cn,Y = {α ∈ Cn : Fix(α) = Y } for any non-empty subset Y of Xn . The
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aim of this paper we compute these cardinalities as follows:

|On,Y | = Cm1−1

( r∏
j=2

Cmj−mj−1

)
Cn−mr

for any Y = {m1, m2, . . . , mr} with m1 < m2 < · · · < mr , and

|Cn,Y | =
( r−1∏

j=2

Cmj+1−mj

)
Cn−mr+1

for any Y = {1, m2, . . . , mr} with m1 = 1 < m2 < m3 < · · · < mr . Consequently, we also show that there

are r
n

(
2n

n + r

)
order-preserving transformations in On with r fixed points as in [3, 7], and that there are

r
2n−r

(
2n − r

n

)
order-preserving and order-decreasing transformations in Cn with r fixed points, as in [3].

2. Preliminaries

For any α ∈ Tn the equivalence relation ≡ on Xn , defined by

x ≡ y if and only if (∃r, s ≥ 0) xαr = yαs ,

partitions Xn into orbits Ω1, Ω2, . . . , Ωk . The orbits are the connected components of the function graph, and
provide valuable information about the structure of the transformation α . Typically, an orbit consists of a cycle
with some trees attached. If there are no attached trees, we say that the orbit Ωi is cyclic, if the cycle consists
of a single fixed point and |Ωi| ≥ 2 we say that Ωi is acyclic; if Ωi consists of a single fixed point, we say that

it is trivial (see [1, 3]). The following proposition was proved by Higgins in [3, Proposition 1.5]:

Proposition 1 Each of the cycles of the components of α ∈ On consists of a unique fixed point. Each orbit of
α ∈ On is convex in the ordered set Xn . �

Since the orbits of α ∈ On are either acyclic or trivial, it follows that α ∈ On has a unique orbit if and
only if α ∈ On,m for some m ∈ Xn .

A proof for the following result can be found in [3]:

Lemma 2
∑n

k=1 Ck−1Cn−k = Cn . �

Let C+
n be the semigroups of all increasing and order-preserving full transformations on Xn . Then it is a

well-known fact that Cn and C+
n are “isomorphic”. Moreover, |Cn| = |C+

n | = Cn (see, for example [3, Theorem

3.1]). We denote the set of all nilpotent element of a semigroup S with zero by N(S). The following results

were proved in [6, 7].

Lemma 3 On,1 = N(Cn) , On,n = N(C+
n ) and |On,1| = |On,n| = Cn−1 . �
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From [8, Ex 16b, p. 169] since

n∑
k=0

ac(p + qk)
(a + bk)(c + bn − bk)

(
a + bk

k

) (
c + bn − bk

n − k

)

=
p(a + c) + aqn

a + c + bn

(
a + c + bn

n

)
,

it follows by replacing a, b, c, n, p and q with 2r, 2, 2, n− r − 1, 1 and 0, and with r, 2, 2, n− r − 2, 1 and 0,
respectively that

n−r−1∑
k=0

r

(r + k)(n − r − k)

(
2r + 2k

k

)(
2n − 2r − 2k
n − r − 1 − k

)
=

r + 1
n

(
2n

n − r − 1

)
(1)

and
n−r−2∑

k=0

r

(r + 2k)(n − r − 1 − k)

(
r + 2k

k

) (
2n − 2r − 2 − 2k

n − r − 2 − k

)

=
r + 2

2n − (r + 2)

(
2n − (r + 2)
n − (r + 2)

)
. (2)

3. Order-preserving with fixed points

Proposition 4 Let α ∈ On,m . Then we have

(i) if 1 ≤ x < m ≤ n then x + 1 ≤ xα , and

(ii) if 1 ≤ m < x ≤ n then xα ≤ x − 1 .

Proof. (i) Let α ∈ On,m . If 1 ≤ x < m ≤ n then either x +1 ≤ xα or xα ≤ x− 1. If x = 1, then it is clear

that 1α 	= 1, and so 2 ≤ 1α . Now suppose that 1 < x , and that xα ≤ x − 1. Since (x − 1)α ≤ xα ≤ x − 1, it

follows that (x − 1)α ≤ x − 2. Similarly if we continue , then we have the following sequence

(x − 2)α ≤ x − 3, (x − 3)α ≤ x − 4, . . . , 2α ≤ 1.

Thus we have 2α = 1, and so 1α = 1 which is a contradiction with Fix(α) = {m} 	= {1} , and hence xα ≥ x+1.

(ii) Let 1 ≤ m < x ≤ n . If x = n , then it is clear that nα 	= n , and so nα ≤ n − 1. Now suppose that
x < n , and that xα ≥ x + 1. Similarly, we have the following sequence

(x + 1)α ≥ x + 2, (x + 2)α ≥ x + 3, . . . , (n − 1)α ≥ n.

It follows that (n − 1)α = n , and so nα = n which is a contradiction with

Fix(α) = {m} 	= {n} , and hence xα ≤ x − 1. �

We have the following corollary.

Corollary 5 For α ∈ On,m if m 	= 1 then (m − 1)α = m, and if m 	= n then (m + 1)α = m. �
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Now consider the first special case |Y | = 1:

Lemma 6 For every m ∈ Xn ,

|On,m| = Cm−1Cn−m.

Proof. For each α ∈ On,m we fix

α1 =
(

1 . . . m − 2 m − 1 m
1α . . . (m − 2)α m m

)
and

α2 =
(

1 2 3 . . . n − (m − 1)
1 1 (m + 2)α − (m − 1) . . . nα − (m − 1)

)
.

It follows from Proposition 4 that α1 ∈ Om,m and α2 ∈ On−m+1,1 . Next consider the function

f : On,m → Om,m × On−m+1,1

which maps each α ∈ On,m to the ordered pair (α1, α2). Then it follows from Corollary 5 that f is a bijection.
Moreover, it follows from Lemma 3 that

|On,m| = |Om,m| · |On−m+1,1| = Cm−1Cn−m,

as required. �

Next consider the second special case |Y | = 2.

Lemma 7 If Y = {m, m+r} ⊆ Xn (r ≥ 1) then |On,Y | = Cm−1Cn−m−rCr . In particular, |On,{1,n}| = Cn−1 .

Proof. Let Y = {m, m + r} , and let α ∈ On,Y . By Proposition 1 there exists a unique 0 ≤ q ≤ r − 1 such

that

sα ≤ m + q and tα ≥ m + q + 1

for all s ≤ m + q , and for all t ≥ m + q + 1. Then we fix

α1 =
(

1 2 . . . m + q
1α 2α . . . (m + q)α

)
and

α2 =
(

1 2 . . . n − m − q
(m + q + 1)α − m − q (m + q + 2)α − m − q . . . nα − m − q

)

as above. Then it follows from Proposition 4 that α1 ∈ O(m+q),m and α2 ∈ O(n−m−q),(r−q) . Next consider the

function

f : On,Y →
r−1⋃
q=0

(O(m+q),m × O(n−m−q),(r−q))
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which maps each α ∈ On,Y to the ordered pair (α1, α2). Since f is a bijection, it follows from Lemmas 6 and

2 that

|On,Y | =
r−1∑
q=0

|O(m+q),m| · |O(n−m−q),(r−q)|

=
r−1∑
q=0

(
Cm−1Cq

)(
Cr−q−1Cn−m−r

)
= Cm−1Cn−m−r

r−1∑
q=0

CqCr−q−1

= Cm−1Cn−m−r

r∑
q=1

Cq−1Cr−q = Cm−1Cn−m−rCr,

as required. �

Now we have the following theorem.

Theorem 8 Let Y = {m1, m2, . . . , mr} with m1 < m2 < · · · < mr be any subset of Xn . Then

|On,Y | =
r+1∏
j=1

Ckj ,

where k1 = m1 − 1 , kj = mj − mj−1 (2 ≤ j ≤ r) and kr+1 = n − mr .

Proof. By Lemmas 6 and 7 we suppose that r ≥ 3. Let Y = {m1, m2, . . . , mr} with m1 < m2 < · · · < mr ,
and let

k1 = m1 − 1, kj = mj − mj−1 (2 ≤ j ≤ r) and kr+1 = n − mr .

Then, for each α ∈ On,Y , we fix

α1 =

�
1 · · · k1 k1 + 1
1α · · · k1α k1 + 1

�
,

αj =

�
1 2 · · · kj kj + 1
1 (mj−1 + 1)α − mj−1 + 1 · · · (mj − 1)α − mj−1 + 1 kj + 1

�
,

αr+1 =

�
1 2 · · · kr+1 kr+1 + 1
1 (mr + 1)α − mr + 1 · · · (n − 1)α − mr + 1 nα − mr + 1

�
,

where 2 ≤ j ≤ r . Then it follows from Proposition 4 that α1 ∈ Ok1+1,k1+1 , αj ∈ Okj+1,{1,kj+1} (2 ≤ j ≤ r)

and αr+1 ∈ Okr+1+1,1 . Next, define the set

O∗
n,Y = Ok1+1,k1+1 × Ok2+1,{1,k2+1} × · · · × Okr+1,{1,kr+1} × Okr+1+1,1.

as the cartesian product of the r + 1 sets. Now consider the function f : On,Y → O∗
n,Y which maps α ∈ On,Y

to the ordered (r + 1)-pair (α1, α2, . . . , αr+1). Since f is a bijection, it follows from Lemmas 3 and 7 that

|On,Y | = |Ok1+1,k1+1|
( r∏

j=2

|Okj+1,{1,kj+1}|
)
|Okr+1+1,1|

=
r+1∏
j=1

Ckj ,

621



AYIK, AYIK, KOÇ

as required. �

For any r ∈ Xn we define
F (n, r) = |{α ∈ On : |Fix(α)| = r}|

as the number of order-preserving transformations which have exactly r fixed points. Let Y = {m1, m2, . . . , mr}
with m1 < m2 < · · · < mr be any subset of Xn . Now take k1 = m1 , kj = mj − mj−1 (2 ≤ j ≤ r) and

kr+1 = n + 1 − mr . Then it is clear that (k1, k2, . . . , kr+1) is a positive integer solution of the equation

x1 + x2 + · · ·+ xr+1 = n + 1. (3)

Conversely, every positive integer solution of Equation (3) gives a subset of Xn with r + 1 elements. If we

denote the set of all positive integer solutions of Equation (3) by Pr+1(n + 1), then we have

F (n, r) =
∑

(k1,k2,...,kr+1)∈Pr+1(n+1)

Ck1−1Ck2Ck3 · · ·CkrCkr+1−1.

Moreover, we have the following result.

Theorem 9 F (n, r) = r
n

(
2n

n + r

)
.

Proof. For this we use induction on r . If r = 1 then it follows from Lemmas 6 and 2 that

F (n, 1) =
n∑

m=1

|On,m| =
n∑

m=1

Cm−1Cn−m = Cn.

Suppose that α ∈ On has r + 1 fixed points, say m1 < · · · < mr < mr+1 . Then consider the orbit of α

which contains mr+1 . Since, by Proposition 1, this orbit is convex, there exists a unique mr < k ≤ mr+1 such

that the restricted transformation α|Yk
: Yk = {k, k + 1, . . . , n} → Yk of α has unique fixed point, and that

the restricted transformation α|Xn−Yk
has r fixed points. Similarly, the transformations α|Yk

: Yk → Yk with a

unique fixed point can be put into one-to-one correspondence with β : Xn−k+1 → Xn−k+1 with a unique fixed

point. Since the number of such transformations is Cn−k+1 , and since k ∈ {r + 1, . . . , n} , it follows from the
inductive hypothesis that

F (n, r + 1) =
n∑

k=r+1

F (k − 1, r)Cn−k+1 =
n−r−1∑

k=0

F (r + k, r)Cn−r−k.

Therefore, it follows from Equation (1) that

F (n, r + 1) =
n−r−1∑

k=0

r

r + k

(
2r + 2k
2r + k

)
1

n − r − k

(
2n − 2r − 2k
n − r − 1 − k

)

=
r + 1

n

(
2n

n − r − 1

)
=

r + 1
n

(
2n

n + r + 1

)
,

as required. �
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4. Order-decreasing with fixed points

Finally, we consider the order-decreasing subsemigroup Cn of On . Recall that
1 ∈ Fix(α) for all α ∈ Cn . For any Y = {1, m2, m3, . . . , mr} ⊆ Xn we define

Cn,Y = {α ∈ Cn : Fix(α) = Y }.

Since Cn,{1} = N(Cn), it follows from Lemma 3 that |Cn,{1}| = Cn−1 . Next we have the following theorem.

Theorem 10 Let Y = {1, m2, . . . , mr} with m1 = 1 < m2 < · · · < mr (r ≥ 1) be a subset of Xn . Then

|Cn,Y | =
r∏

j=1

Ckj−1,

where kj = mj+1 − mj (1 ≤ j ≤ r − 1) and kr = n − mr + 1 .

Proof. Since |Cn,{1}| = Cn−1 , we suppose that r ≥ 2. For each α ∈ Cn,Y , we similarly fix

αj =
(

1 2 · · · mj+1 − mj

1 (mj + 1)α − mj + 1 · · · (mj+1 − 1)α − mj + 1

)
,

αr =
(

1 2 · · · n − mr + 1
1 (mr + 1)α − mr + 1 · · · nα − mr + 1

)

where 1 ≤ j ≤ r − 1). Let kj = mj+1 − mj (1 ≤ j ≤ r − 1) and kr = n − mr + 1. Similarly, we have

αj ∈ N(Ckj) for each 1 ≤ j ≤ r . Now consider the function

f : Cn,Y → N(Ck1) × N(Ck2) × · · · × N(Ckr)

which maps α ∈ Cn,Y to the ordered r -pair (α1, α2, . . . , αr). Since f is a bijection, it follows from Lemma 3

that

|Cn,Y | =
r∏

j=1

Ckj−1,

as required. �

For every r ∈ Xn we define

N(n, r) = |{α ∈ Cn : |Fix(α)| = r}|

as the number of order-decreasing and order-preserving transformations which have exactly r fixed points.
Let Y = {1, m2, . . . , mr} with m1 = 1 < m2 < · · · < mr be a subset of Xn . Now take kj = mj+1 − mj

(1 ≤ j ≤ r − 1) and kr = n − mr + 1. Then it is clear that (k1, k2, . . . , kr) is a positive integer solution of the
equation

x1 + x2 + · · ·+ xr = n. (4)
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Conversely, every positive integer solution of Equation (4) gives a subset, which contains 1, of Xn with r

elements. If we denote the set of all positive integer solutions of Equation (4) by Pr(n), then we have

N(n, r) =
∑

(k1,k2,...,kr)∈Pr(n)

Ck1−1Ck2−1 · · ·Ckr−1.

Moreover, we have the the following result.

Theorem 11 N(n, r) = r
2n−r

(
2n − r

n

)
.

Proof. We use induction on r as before. From Lemma 3 the equation holds for
r = 1. Suppose that α ∈ Cn has r + 1 ≥ 2 fixed points, say 1 < m2 < · · · < mr < mr+1 . Then con-
sider the orbit of α which contains mr+1 . Since α ∈ Cn , the restricted transformation α|Yr+1

: Yr+1 =

{mr+1 , mr+1 + 1, . . . , n} → Yr+1 of α has unique fixed point (namely mr+1 ), and that the restricted transfor-
mation α|Xn−Yr+1

has r fixed points. Similarly, the transformations α|Yr+1
: Yr+1 → Yr+1 with a unique fixed

point can be put into one-to-one correspondence with β : Xn−mr+1+1 → Xn−mr+1+1 with a unique fixed point.

Since the number of such transformations is Cn−mr+1 , and since mr+1 ∈ {r + 1, . . . , n} , it follows from the

inductive hypothesis that

N(n, r + 1) =
n∑

k=r+1

N(k − 1, r)Cn−k

=
( n−r−2∑

k=0

N(r + k, r)Cn−r−1−k

)
+ N(n − 1, r)C0.

Therefore, it follows from Equation (2) that

N(n, r + 1) =
n−r−2∑

k=0

r

r + 2k

(
r + 2k

k

)
1

n − r − 1 − k

(
2n − 2r − 2 − 2k

n − r − 2 − k

)

+N(n − 1, r)

=
r + 2

2n − r − 2

(
2n − r − 2

n

)
+

r

2n− r − 2

(
2n− r − 2

n − 1

)
(5)

= (r + 2) · (2n − r − 3)!
n! · (n − r − 2)!

+ r · (2n − r − 3)!
(n − 1)! · (n − r − 1)!

=
(2n − r − 3)!

n! · (n − r − 1)!
·
[
(r + 2)(n − r − 1) + rn

]

=
(2n − r − 3)!

n! · (n − r − 1)!
·
[
(r + 1)(2n − r − 2)

]
· (2n − r − 1)
(2n − r − 1)

=
r + 1

2n − r − 1

(
2n − r − 1

n

)
,

as required. �
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Notice that we also have the recurrence relation

N(n, r + 1) = N(n, r) − N(n − 1, r − 1)

from Equation (5) as in [3, Equation 3.5].
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