Combinatorial results for order-preserving and order-decreasing transformations

Gonca Ayık, Hayrullah Ayık and Metin Koç

Abstract

Let O_{n} and \mathcal{C}_{n} be the semigroup of all order-preserving transformations and of all order-preserving and order-decreasing transformations on the finite set $X_{n}=\{1,2, \ldots, n\}$, respectively. Let Fix $(\alpha)=\left\{x \in X_{n}\right.$: $x \alpha=x\}$ for any transformation α. In this paper, for any $Y \subseteq X_{n}$, we find the cardinalities of the sets $O_{n, Y}=\left\{\alpha \in O_{n}: \operatorname{Fix}(\alpha)=Y\right\}$ and $\mathcal{C}_{n, Y}=\left\{\alpha \in \mathcal{C}_{n}: \operatorname{Fix}(\alpha)=Y\right\}$. Moreover, we find the numbers of transformations of O_{n} and \mathcal{C}_{n} with r fixed points.

Key Words: Order-preserving transformations, order-decreasing transformations, nilpotent, Catalan number

1. Introduction

Consider the finite set $X_{n}=\{1,2, \ldots, n\}$ ordered in the standard way. Let T_{n} be the full transformation semigroup on X_{n}. We shall call a transformation $\alpha: X_{n} \rightarrow X_{n}$ order-preserving if $x \leq y$ implies $x \alpha \leq y \alpha$ for all $x, y \in X_{n}$, and decreasing (increasing) if $x \alpha \leq x(x \alpha \geq x)$ for all $x \in X_{n}$. Combinatorial properties of the semigroup O_{n} of order-preserving transformations on X_{n}, and of its subsemigroup C_{n}, which consists of all decreasing and order-preserving transformations have been investigated over the last thirty years. (See, for example $[2,3,4,5,6,7]$.)

For $\alpha \in T_{n}$ we denote $\operatorname{Fix}(\alpha)=\left\{x \in X_{n}: x \alpha=x\right\}$. For $Y \subseteq X_{n}$ we define

$$
O_{n, Y}=\left\{\alpha \in O_{n}: \operatorname{Fix}(\alpha)=Y\right\} \quad \text { and } \quad \mathcal{C}_{n, Y}=\left\{\alpha \in \mathcal{C}_{n}: \operatorname{Fix}(\alpha)=Y\right\} .
$$

We write $O_{n, m}$ instead of $O_{n, Y}$ when $Y=\{m\}$. The nth Catalan number C_{n} is $\frac{1}{n+1}\binom{2 n}{n}$ (see, for example $[3,9]$).

The numbers of transformations of O_{n} and \mathcal{C}_{n} with r fixed points have been computed by Higgins, and Laradji and Umar in [3, 7]. In both [3] and [7], there is no information about the cardinalities of the sets $O_{n, Y}=\left\{\alpha \in O_{n}: \operatorname{Fix}(\alpha)=Y\right\}$ and $\mathcal{C}_{n, Y}=\left\{\alpha \in \mathcal{C}_{n}: \operatorname{Fix}(\alpha)=Y\right\}$ for any non-empty subset Y of X_{n}. The

[^0]
AYIK, AYIK, KOÇ

aim of this paper we compute these cardinalities as follows:

$$
\left|O_{n, Y}\right|=C_{m_{1}-1}\left(\prod_{j=2}^{r} C_{m_{j}-m_{j-1}}\right) C_{n-m_{r}}
$$

for any $Y=\left\{m_{1}, m_{2}, \ldots, m_{r}\right\}$ with $m_{1}<m_{2}<\cdots<m_{r}$, and

$$
\left|\mathcal{C}_{n, Y}\right|=\left(\prod_{j=2}^{r-1} C_{m_{j+1}-m_{j}}\right) C_{n-m_{r}+1}
$$

for any $Y=\left\{1, m_{2}, \ldots, m_{r}\right\}$ with $m_{1}=1<m_{2}<m_{3}<\cdots<m_{r}$. Consequently, we also show that there are $\frac{r}{n}\binom{2 n}{n+r}$ order-preserving transformations in O_{n} with r fixed points as in [3, 7], and that there are $\frac{r}{2 n-r}\binom{2 n-r}{n}$ order-preserving and order-decreasing transformations in \mathcal{C}_{n} with r fixed points, as in [3].

2. Preliminaries

For any $\alpha \in T_{n}$ the equivalence relation \equiv on X_{n}, defined by

$$
x \equiv y \text { if and only if }(\exists r, s \geq 0) x \alpha^{r}=y \alpha^{s},
$$

partitions X_{n} into orbits $\Omega_{1}, \Omega_{2}, \ldots, \Omega_{k}$. The orbits are the connected components of the function graph, and provide valuable information about the structure of the transformation α. Typically, an orbit consists of a cycle with some trees attached. If there are no attached trees, we say that the orbit Ω_{i} is cyclic, if the cycle consists of a single fixed point and $\left|\Omega_{i}\right| \geq 2$ we say that Ω_{i} is acyclic; if Ω_{i} consists of a single fixed point, we say that it is trivial (see [1, 3]). The following proposition was proved by Higgins in [3, Proposition 1.5]:

Proposition 1 Each of the cycles of the components of $\alpha \in O_{n}$ consists of a unique fixed point. Each orbit of $\alpha \in O_{n}$ is convex in the ordered set X_{n}.

Since the orbits of $\alpha \in O_{n}$ are either acyclic or trivial, it follows that $\alpha \in O_{n}$ has a unique orbit if and only if $\alpha \in O_{n, m}$ for some $m \in X_{n}$.

A proof for the following result can be found in [3]:
Lemma $2 \sum_{k=1}^{n} C_{k-1} C_{n-k}=C_{n}$.
Let \mathcal{C}_{n}^{+}be the semigroups of all increasing and order-preserving full transformations on X_{n}. Then it is a well-known fact that \mathcal{C}_{n} and \mathcal{C}_{n}^{+}are "isomorphic". Moreover, $\left|\mathcal{C}_{n}\right|=\left|\mathcal{C}_{n}^{+}\right|=C_{n}$ (see, for example [3, Theorem 3.1]). We denote the set of all nilpotent element of a semigroup S with zero by $N(S)$. The following results were proved in $[6,7]$.

Lemma $3 O_{n, 1}=N\left(\mathcal{C}_{n}\right), O_{n, n}=N\left(\mathcal{C}_{n}^{+}\right)$and $\left|O_{n, 1}\right|=\left|O_{n, n}\right|=C_{n-1}$.

AYIK, AYIK, KOÇ

From [8, Ex 16b, p. 169] since

$$
\begin{gathered}
\sum_{k=0}^{n} \frac{a c(p+q k)}{(a+b k)(c+b n-b k)}\binom{a+b k}{k}\binom{c+b n-b k}{n-k} \\
=\frac{p(a+c)+a q n}{a+c+b n}\binom{a+c+b n}{n},
\end{gathered}
$$

it follows by replacing a, b, c, n, p and q with $2 r, 2,2, n-r-1,1$ and 0 , and with $r, 2,2, n-r-2,1$ and 0 , respectively that

$$
\begin{equation*}
\sum_{k=0}^{n-r-1} \frac{r}{(r+k)(n-r-k)}\binom{2 r+2 k}{k}\binom{2 n-2 r-2 k}{n-r-1-k}=\frac{r+1}{n}\binom{2 n}{n-r-1} \tag{1}
\end{equation*}
$$

and

$$
\begin{gather*}
\sum_{k=0}^{n-r-2} \frac{r}{(r+2 k)(n-r-1-k)}\binom{r+2 k}{k}\binom{2 n-2 r-2-2 k}{n-r-2-k} \\
=\frac{r+2}{2 n-(r+2)}\binom{2 n-(r+2)}{n-(r+2)} . \tag{2}
\end{gather*}
$$

3. Order-preserving with fixed points

Proposition 4 Let $\alpha \in O_{n, m}$. Then we have
(i) if $1 \leq x<m \leq n$ then $x+1 \leq x \alpha$, and
(ii) if $1 \leq m<x \leq n$ then $x \alpha \leq x-1$.

Proof. (i) Let $\alpha \in O_{n, m}$. If $1 \leq x<m \leq n$ then either $x+1 \leq x \alpha$ or $x \alpha \leq x-1$. If $x=1$, then it is clear that $1 \alpha \neq 1$, and so $2 \leq 1 \alpha$. Now suppose that $1<x$, and that $x \alpha \leq x-1$. Since $(x-1) \alpha \leq x \alpha \leq x-1$, it follows that $(x-1) \alpha \leq x-2$. Similarly if we continue, then we have the following sequence

$$
(x-2) \alpha \leq x-3,(x-3) \alpha \leq x-4, \ldots, 2 \alpha \leq 1 .
$$

Thus we have $2 \alpha=1$, and so $1 \alpha=1$ which is a contradiction with $\operatorname{Fix}(\alpha)=\{m\} \neq\{1\}$, and hence $x \alpha \geq x+1$.
(ii) Let $1 \leq m<x \leq n$. If $x=n$, then it is clear that $n \alpha \neq n$, and so $n \alpha \leq n-1$. Now suppose that $x<n$, and that $x \alpha \geq x+1$. Similarly, we have the following sequence

$$
(x+1) \alpha \geq x+2,(x+2) \alpha \geq x+3, \ldots,(n-1) \alpha \geq n .
$$

It follows that $(n-1) \alpha=n$, and so $n \alpha=n$ which is a contradiction with $\operatorname{Fix}(\alpha)=\{m\} \neq\{n\}$, and hence $x \alpha \leq x-1$.

We have the following corollary.
Corollary 5 For $\alpha \in O_{n, m}$ if $m \neq 1$ then $(m-1) \alpha=m$, and if $m \neq n$ then $(m+1) \alpha=m$.

AYIK, AYIK, KOÇ

Now consider the first special case $|Y|=1$:

Lemma 6 For every $m \in X_{n}$,

$$
\left|O_{n, m}\right|=C_{m-1} C_{n-m} .
$$

Proof. For each $\alpha \in O_{n, m}$ we fix

$$
\begin{aligned}
& \alpha_{1}=\left(\begin{array}{ccccc}
1 & \ldots & m-2 & m-1 & m \\
1 \alpha & \ldots & (m-2) \alpha & m & m
\end{array}\right) \text { and } \\
& \alpha_{2}=\left(\begin{array}{llllc}
1 & 2 & 3 & \ldots & n-(m-1) \\
1 & 1 & (m+2) \alpha-(m-1) & \ldots & n \alpha-(m-1)
\end{array}\right) .
\end{aligned}
$$

It follows from Proposition 4 that $\alpha_{1} \in O_{m, m}$ and $\alpha_{2} \in O_{n-m+1,1}$. Next consider the function

$$
f: O_{n, m} \rightarrow O_{m, m} \times O_{n-m+1,1}
$$

which maps each $\alpha \in O_{n, m}$ to the ordered pair (α_{1}, α_{2}). Then it follows from Corollary 5 that f is a bijection. Moreover, it follows from Lemma 3 that

$$
\left|O_{n, m}\right|=\left|O_{m, m}\right| \cdot\left|O_{n-m+1,1}\right|=C_{m-1} C_{n-m},
$$

as required.

Next consider the second special case $|Y|=2$.

Lemma 7 If $Y=\{m, m+r\} \subseteq X_{n}(r \geq 1)$ then $\left|O_{n, Y}\right|=C_{m-1} C_{n-m-r} C_{r}$. In particular, $\left|O_{n,\{1, n\}}\right|=C_{n-1}$. Proof. Let $Y=\{m, m+r\}$, and let $\alpha \in O_{n, Y}$. By Proposition 1 there exists a unique $0 \leq q \leq r-1$ such that

$$
s \alpha \leq m+q \quad \text { and } \quad t \alpha \geq m+q+1
$$

for all $s \leq m+q$, and for all $t \geq m+q+1$. Then we fix

$$
\begin{aligned}
& \alpha_{1}=\left(\begin{array}{cccc}
1 & 2 & \ldots & m+q \\
1 \alpha & 2 \alpha & \ldots & (m+q) \alpha
\end{array}\right) \text { and } \\
& \alpha_{2}=\left(\begin{array}{cccc}
1 & 2 & \ldots & n-m-q \\
(m+q+1) \alpha-m-q & (m+q+2) \alpha-m-q & \ldots & n \alpha-m-q
\end{array}\right)
\end{aligned}
$$

as above. Then it follows from Proposition 4 that $\alpha_{1} \in O_{(m+q), m}$ and $\alpha_{2} \in O_{(n-m-q),(r-q)}$. Next consider the function

$$
f: O_{n, Y} \rightarrow \bigcup_{q=0}^{r-1}\left(O_{(m+q), m} \times O_{(n-m-q),(r-q)}\right)
$$

AYIK, AYIK, KOÇ

which maps each $\alpha \in O_{n, Y}$ to the ordered pair $\left(\alpha_{1}, \alpha_{2}\right)$. Since f is a bijection, it follows from Lemmas 6 and 2 that

$$
\begin{aligned}
\left|O_{n, Y}\right| & =\sum_{q=0}^{r-1}\left|O_{(m+q), m}\right| \cdot\left|O_{(n-m-q),(r-q)}\right| \\
& =\sum_{q=0}^{r-1}\left(C_{m-1} C_{q}\right)\left(C_{r-q-1} C_{n-m-r}\right)=C_{m-1} C_{n-m-r} \sum_{q=0}^{r-1} C_{q} C_{r-q-1} \\
& =C_{m-1} C_{n-m-r} \sum_{q=1}^{r} C_{q-1} C_{r-q}=C_{m-1} C_{n-m-r} C_{r},
\end{aligned}
$$

as required.

Now we have the following theorem.
Theorem 8 Let $Y=\left\{m_{1}, m_{2}, \ldots, m_{r}\right\}$ with $m_{1}<m_{2}<\cdots<m_{r}$ be any subset of X_{n}. Then

$$
\left|O_{n, Y}\right|=\prod_{j=1}^{r+1} C_{k_{j}},
$$

where $k_{1}=m_{1}-1, k_{j}=m_{j}-m_{j-1}(2 \leq j \leq r)$ and $k_{r+1}=n-m_{r}$.
Proof. By Lemmas 6 and 7 we suppose that $r \geq 3$. Let $Y=\left\{m_{1}, m_{2}, \ldots, m_{r}\right\}$ with $m_{1}<m_{2}<\cdots<m_{r}$, and let

$$
k_{1}=m_{1}-1, k_{j}=m_{j}-m_{j-1}(2 \leq j \leq r) \text { and } k_{r+1}=n-m_{r} .
$$

Then, for each $\alpha \in O_{n, Y}$, we fix

$$
\begin{aligned}
& \alpha_{1}=\left(\begin{array}{cccc}
1 & \cdots & k_{1} & k_{1}+1 \\
1 \alpha & \cdots & k_{1} \alpha & k_{1}+1
\end{array}\right), \\
& \alpha_{j}=\left(\begin{array}{ccccc}
1 & 2 & \cdots & k_{j} & k_{j}+1 \\
1 & \left(m_{j-1}+1\right) \alpha-m_{j-1}+1 & \cdots & \left(m_{j}-1\right) \alpha-m_{j-1}+1 & k_{j}+1
\end{array}\right), \\
& \alpha_{r+1}=\left(\begin{array}{cccc}
1 & 2 & \cdots & k_{r+1} \\
1 & \left(m_{r}+1\right) \alpha-m_{r}+1 & \cdots & (n-1) \alpha-m_{r}+1
\end{array} k_{r+1}+1, m_{r}+1\right),
\end{aligned}
$$

where $2 \leq j \leq r$. Then it follows from Proposition 4 that $\alpha_{1} \in O_{k_{1}+1, k_{1}+1}, \alpha_{j} \in O_{k_{j}+1,\left\{1, k_{j}+1\right\}}(2 \leq j \leq r)$ and $\alpha_{r+1} \in O_{k_{r+1}+1,1}$. Next, define the set

$$
\mathcal{O}_{n, Y}^{*}=O_{k_{1}+1, k_{1}+1} \times O_{k_{2}+1,\left\{1, k_{2}+1\right\}} \times \cdots \times O_{k_{r}+1,\left\{1, k_{r}+1\right\}} \times O_{k_{r+1}+1,1} .
$$

as the cartesian product of the $r+1$ sets. Now consider the function $f: \mathcal{O}_{n, Y} \rightarrow \mathcal{O}_{n, Y}^{*}$ which maps $\alpha \in \mathcal{O}_{n, Y}$ to the ordered $(r+1)$-pair $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r+1}\right)$. Since f is a bijection, it follows from Lemmas 3 and 7 that

$$
\begin{aligned}
\left|\mathcal{O}_{n, Y}\right| & =\left|O_{k_{1}+1, k_{1}+1}\right|\left(\prod_{j=2}^{r}\left|O_{k_{j}+1,\left\{1, k_{j}+1\right\}}\right|\right)\left|O_{k_{r+1}+1,1}\right| \\
& =\prod_{j=1}^{r+1} C_{k_{j}},
\end{aligned}
$$

> AYIK, AYIK, KOÇ
as required.

For any $r \in X_{n}$ we define

$$
F(n, r)=\left|\left\{\alpha \in O_{n}:|\operatorname{Fix}(\alpha)|=r\right\}\right|
$$

as the number of order-preserving transformations which have exactly r fixed points. Let $Y=\left\{m_{1}, m_{2}, \ldots, m_{r}\right\}$ with $m_{1}<m_{2}<\cdots<m_{r}$ be any subset of X_{n}. Now take $k_{1}=m_{1}, k_{j}=m_{j}-m_{j-1}(2 \leq j \leq r)$ and $k_{r+1}=n+1-m_{r}$. Then it is clear that $\left(k_{1}, k_{2}, \ldots, k_{r+1}\right)$ is a positive integer solution of the equation

$$
\begin{equation*}
x_{1}+x_{2}+\cdots+x_{r+1}=n+1 . \tag{3}
\end{equation*}
$$

Conversely, every positive integer solution of Equation (3) gives a subset of X_{n} with $r+1$ elements. If we denote the set of all positive integer solutions of Equation (3) by $P_{r+1}(n+1)$, then we have

$$
F(n, r)=\sum_{\left(k_{1}, k_{2}, \ldots, k_{r+1}\right) \in P_{r+1}(n+1)} C_{k_{1}-1} C_{k_{2}} C_{k_{3}} \cdots C_{k_{r}} C_{k_{r+1}-1} .
$$

Moreover, we have the following result.
Theorem $9 \quad F(n, r)=\frac{r}{n}\binom{2 n}{n+r}$.
Proof. For this we use induction on r. If $r=1$ then it follows from Lemmas 6 and 2 that

$$
F(n, 1)=\sum_{m=1}^{n}\left|O_{n, m}\right|=\sum_{m=1}^{n} C_{m-1} C_{n-m}=C_{n} .
$$

Suppose that $\alpha \in O_{n}$ has $r+1$ fixed points, say $m_{1}<\cdots<m_{r}<m_{r+1}$. Then consider the orbit of α which contains m_{r+1}. Since, by Proposition 1, this orbit is convex, there exists a unique $m_{r}<k \leq m_{r+1}$ such that the restricted transformation $\alpha_{\left.\right|_{Y_{k}}}: Y_{k}=\{k, k+1, \ldots, n\} \rightarrow Y_{k}$ of α has unique fixed point, and that the restricted transformation $\alpha_{\left.\right|_{X_{n}-Y_{k}}}$ has r fixed points. Similarly, the transformations $\alpha_{\left.\right|_{Y_{k}}}: Y_{k} \rightarrow Y_{k}$ with a unique fixed point can be put into one-to-one correspondence with $\beta: X_{n-k+1} \rightarrow X_{n-k+1}$ with a unique fixed point. Since the number of such transformations is C_{n-k+1}, and since $k \in\{r+1, \ldots, n\}$, it follows from the inductive hypothesis that

$$
F(n, r+1)=\sum_{k=r+1}^{n} F(k-1, r) C_{n-k+1}=\sum_{k=0}^{n-r-1} F(r+k, r) C_{n-r-k} .
$$

Therefore, it follows from Equation (1) that

$$
\begin{aligned}
F(n, r+1) & =\sum_{k=0}^{n-r-1} \frac{r}{r+k}\binom{2 r+2 k}{2 r+k} \frac{1}{n-r-k}\binom{2 n-2 r-2 k}{n-r-1-k} \\
& =\frac{r+1}{n}\binom{2 n}{n-r-1}=\frac{r+1}{n}\binom{2 n}{n+r+1},
\end{aligned}
$$

as required.

AYIK, AYIK, KOÇ

4. Order-decreasing with fixed points

Finally, we consider the order-decreasing subsemigroup \mathcal{C}_{n} of O_{n}. Recall that $1 \in \operatorname{Fix}(\alpha)$ for all $\alpha \in \mathcal{C}_{n}$. For any $Y=\left\{1, m_{2}, m_{3}, \ldots, m_{r}\right\} \subseteq X_{n}$ we define

$$
\mathcal{C}_{n, Y}=\left\{\alpha \in \mathcal{C}_{n}: \operatorname{Fix}(\alpha)=Y\right\} .
$$

Since $\mathcal{C}_{n,\{1\}}=N\left(\mathcal{C}_{n}\right)$, it follows from Lemma 3 that $\left|\mathcal{C}_{n,\{1\}}\right|=C_{n-1}$. Next we have the following theorem.

Theorem 10 Let $Y=\left\{1, m_{2}, \ldots, m_{r}\right\}$ with $m_{1}=1<m_{2}<\cdots<m_{r}(r \geq 1)$ be a subset of X_{n}. Then

$$
\left|\mathcal{C}_{n, Y}\right|=\prod_{j=1}^{r} C_{k_{j}-1},
$$

where $k_{j}=m_{j+1}-m_{j}(1 \leq j \leq r-1)$ and $k_{r}=n-m_{r}+1$.
Proof. Since $\left|\mathcal{C}_{n,\{1\}}\right|=C_{n-1}$, we suppose that $r \geq 2$. For each $\alpha \in \mathcal{C}_{n, Y}$, we similarly fix

$$
\begin{aligned}
& \alpha_{j}=\left(\begin{array}{cccc}
1 & 2 & \cdots & m_{j+1}-m_{j} \\
1 & \left(m_{j}+1\right) \alpha-m_{j}+1 & \cdots & \left(m_{j+1}-1\right) \alpha-m_{j}+1
\end{array}\right), \\
& \alpha_{r}=\left(\begin{array}{cccc}
1 & 2 & \cdots & n-m_{r}+1 \\
1 & \left(m_{r}+1\right) \alpha-m_{r}+1 & \cdots & n \alpha-m_{r}+1
\end{array}\right)
\end{aligned}
$$

where $1 \leq j \leq r-1)$. Let $k_{j}=m_{j+1}-m_{j}(1 \leq j \leq r-1)$ and $k_{r}=n-m_{r}+1$. Similarly, we have $\alpha_{j} \in N\left(\mathcal{C}_{k_{j}}\right)$ for each $1 \leq j \leq r$. Now consider the function

$$
f: \mathcal{C}_{n, Y} \rightarrow N\left(\mathcal{C}_{k_{1}}\right) \times N\left(\mathcal{C}_{k_{2}}\right) \times \cdots \times N\left(\mathcal{C}_{k_{r}}\right)
$$

which maps $\alpha \in \mathcal{C}_{n, Y}$ to the ordered r-pair $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)$. Since f is a bijection, it follows from Lemma 3 that

$$
\left|\mathcal{C}_{n, Y}\right|=\prod_{j=1}^{r} C_{k_{j}-1},
$$

as required.

For every $r \in X_{n}$ we define

$$
N(n, r)=\left|\left\{\alpha \in \mathcal{C}_{n}:|\operatorname{Fix}(\alpha)|=r\right\}\right|
$$

as the number of order-decreasing and order-preserving transformations which have exactly r fixed points. Let $Y=\left\{1, m_{2}, \ldots, m_{r}\right\}$ with $m_{1}=1<m_{2}<\cdots<m_{r}$ be a subset of X_{n}. Now take $k_{j}=m_{j+1}-m_{j}$ $(1 \leq j \leq r-1)$ and $k_{r}=n-m_{r}+1$. Then it is clear that $\left(k_{1}, k_{2}, \ldots, k_{r}\right)$ is a positive integer solution of the equation

$$
\begin{equation*}
x_{1}+x_{2}+\cdots+x_{r}=n . \tag{4}
\end{equation*}
$$

Conversely, every positive integer solution of Equation (4) gives a subset, which contains 1, of X_{n} with r elements. If we denote the set of all positive integer solutions of Equation (4) by $P_{r}(n)$, then we have

$$
N(n, r)=\sum_{\left(k_{1}, k_{2}, \ldots, k_{r}\right) \in P_{r}(n)} C_{k_{1}-1} C_{k_{2}-1} \cdots C_{k_{r}-1} .
$$

Moreover, we have the the following result.
Theorem $11 N(n, r)=\frac{r}{2 n-r}\binom{2 n-r}{n}$.
Proof. We use induction on r as before. From Lemma 3 the equation holds for $r=1$. Suppose that $\alpha \in \mathcal{C}_{n}$ has $r+1 \geq 2$ fixed points, say $1<m_{2}<\cdots<m_{r}<m_{r+1}$. Then consider the orbit of α which contains m_{r+1}. Since $\alpha \in \mathcal{C}_{n}$, the restricted transformation $\alpha_{\left.\right|_{r_{r+1}}}: Y_{r+1}=$ $\left\{m_{r+1}, m_{r+1}+1, \ldots, n\right\} \rightarrow Y_{r+1}$ of α has unique fixed point (namely m_{r+1}), and that the restricted transformation $\alpha_{X_{n}-Y_{r+1}}$ has r fixed points. Similarly, the transformations $\alpha_{\left.\right|_{Y_{r+1}}}: Y_{r+1} \rightarrow Y_{r+1}$ with a unique fixed point can be put into one-to-one correspondence with $\beta: X_{n-m_{r+1}+1} \rightarrow X_{n-m_{r+1}+1}$ with a unique fixed point. Since the number of such transformations is $C_{n-m_{r+1}}$, and since $m_{r+1} \in\{r+1, \ldots, n\}$, it follows from the inductive hypothesis that

$$
\begin{aligned}
N(n, r+1) & =\sum_{k=r+1}^{n} N(k-1, r) C_{n-k} \\
& =\left(\sum_{k=0}^{n-r-2} N(r+k, r) C_{n-r-1-k}\right)+N(n-1, r) C_{0} .
\end{aligned}
$$

Therefore, it follows from Equation (2) that

$$
\begin{align*}
N(n, r+1)= & \sum_{k=0}^{n-r-2} \frac{r}{r+2 k}\binom{r+2 k}{k} \frac{1}{n-r-1-k}\binom{2 n-2 r-2-2 k}{n-r-2-k} \\
= & \frac{r+2}{2 n-r-2}\binom{2 n-r-2}{n}+\frac{r}{2 n-r-2}\binom{2 n-r-2}{n-1} \\
= & (r+2) \cdot \frac{(2 n-r-3)!}{n!\cdot(n-r-2)!}+r \cdot \frac{(2 n-r-3)!}{(n-1)!\cdot(n-r-1)!} \tag{5}\\
= & \frac{(2 n-r-3)!}{n!\cdot(n-r-1)!} \cdot[(r+2)(n-r-1)+r n] \\
= & \frac{(2 n-r-3)!}{n!\cdot(n-r-1)!} \cdot[(r+1)(2 n-r-2)] \cdot \frac{(2 n-r-1)}{(2 n-r-1)} \\
= & \frac{r+1}{2 n-r-1}\binom{2 n-r-1}{n},
\end{align*}
$$

as required.

AYIK, AYIK, KOÇ

Notice that we also have the recurrence relation

$$
N(n, r+1)=N(n, r)-N(n-1, r-1)
$$

from Equation (5) as in [3, Equation 3.5].

References

[1] Ayık, G., Ayık, H., Howie, J. M. and Ünlü, Y.: The Structure of Elements in Finite Full Transformation Semigroups. Bull. Aust. Math. Soc. 71, 69-74, 2005.
[2] Gomes, G. M. S. and Howie, J. M.: On the ranks of certain semigroups of order-preserving transformations. Semigroup Forum 45, 272-282, 1992.
[3] Higgins ,P. M.: Combinatorial results for semigroups of order-preserving mappings. Math. Proc. Camb. Phil. Soc. 113, 281-296, 1993.
[4] Howie, J. M.: The subsemigroup generated by the idempotents of a full transformation semigroup. J. London Math. Soc. 41, 707-716, 1966.
[5] Howie, J. M.: Products of idempotents in certain semigroups of order-preserving transformations. Proc. Edinburgh Math. Soc. 17, 223-236, 1971.
[6] Laradji, A. and Umar, A.: On certain finite semigroups of order-decreasing transformations I. Semigroup Forum 69, 184-200, 2004.
[7] Laradji, A. and Umar, A.: Combinatorial results for semigroups of order-preserving full transformations. Semigroup Forum 72, 51-62, 2006.
[8] Riordan, J.: Combinatorial Identities. New York, John Wiley and Sons, 1968.
[9] Stanley, R. P.: Enumerative Combinatorics Vol. I. Cambridge University Press, 1997.

Gonca AYIK
Received: 25.10.2010
Department of Mathematics, Çukurova University, 01330, Adana-TURKEY
e-mail: agonca@cu.edu.tr
Hayrullah AYIK
Department of Mathematics, Adıyaman University, Adıyaman-TURKEY
Metin KOÇ
Department of Mathematics, Çukurova University, 01330, Adana-TURKEY

[^0]: 2000 AMS Mathematics Subject Classification: 20M20.

