Weak-projective dimensions

Mohammad Javad Nikmehr, Zahra Poormahmood and Reza Nikandish

Abstract

In this paper, the notions of weak-projective modules and weak-projective dimension over commutative domain R are given. It is shown that over semisimple rings with weak global dimension 1 , these modules are equivalent to weak-injective modules. The weak-projective dimension measures how far away a domain is from being a Prüfer domain. Several properties of these modules are also presented.

Key Words: Semi-Dedekind domain; Weak-injective modules; Weak- projective dimension, projective modules; Prüfer domain

1. Introduction

In this note, R will denote a commutative domain with identity and $Q(\neq R)$ will denote its field of quotients. The R-module Q / R will be denoted by K. Lee in [5] studied the structure of weak-injective modules. An R-module M is called weak-injective if $E x t_{R}^{1}(N, M)=0$ for all R-modules N of weak dimension ≤ 1. In section 2 , we introduce a class of R-modules under the name of weak-projective R-modules. We show that weak-projective R-modules are identical to projective R-modules if and only if R is semisimple. Recall that R is called Prüfer domain if every finitely generated ideal of R is projective. There are numerous characterizations of Prüfer domains, which can be found in [3]. We show that each weak-projective R-module is $F P$-projective when R is a Noetherian ring. The domain R is called semi-Dedekind if every h-divisible R-module is pure-injective. For more details of these domains, we refer the reader to [4].

In section 3 , we introduce the concept weak-projective dimension $\operatorname{wpd}(M)$ of an R-module M and give some results. We show that this dimension has the properties that we expect of a "dimension" when the domain is semi-Dedekind.

Throughout this paper, M is an R-module. The notation (w. $D(R)$ stands for the (weak) global dimension of R. Also, $p d(M)$ and $i d(M)$ denote the projective and injective dimension of M, respectively. The character module $\operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q} / \mathbb{Z})$ of an R-module M will be denoted by M^{b}.

[^0]
NIKMEHR, POORMAHMOOD, NIKANDISH

2. Weak-projective modules

Recall that an R-module M is called weak-injective if $\operatorname{Ext}_{R}^{1}(N, M)=0$, for all R-modules N of weak dimension ≤ 1.

Definition 2.1 An R-module M is called weak-projective if $E x t_{R}^{1}(M, N)=0$, for every weak-injective R module N.

Evidently, direct products and summands of weak-projective R-modules are again weak-projective. All projective R-modules are trivially weak-projective, but the converse is not true. For example, \mathbb{Q} / \mathbb{Z} as a \mathbb{Z}-module is weak-projective, but is not projective. Over a semisimple ring R, weak-projective R-modules are projective. It is obvious that if R is a semisimple ring with $w \cdot D(R)=1$, then every R-module M is weak-projective if and only if M is weak-injective. Also, if R is semisimple and M is a weak-projective R-module, then $E x t_{R}^{1}(M, R)=0$.

A well-known result states that an R-module F is flat if and only if its character module F^{b} is injective. The following lemma is an analog of this equivalence.

Lemma 2.2 (Lee [5, Lemma 3.1]) An R-module A is torsion-free if and only if A^{b} is weak-injective.
An R-module M is called $F P$-injective if $\operatorname{Ext}_{R}^{1}(N, M)=0$ for all finitely presented R-modules N.
Lemma 2.3 (Lee[5, Lemma 3.2]) For a domain R, the following are equivalent:
(a) R is Prüfer;
(b) Every weak-injective R-module is FP-injective;
(c) Every weak-injective R-module is injective.

We may obtain some elementary results on the notion of the weak-projective modules.
Recall that the R-module M is called $F P$-projective [6] if $E x t_{R}^{1}(M, N)=0$, for every $F P$-injective R-module N.

Lemma 2.4 If R is a Noetherian ring and M a weak-projective R-module, then M is FP-projective.
Proof. Let M be a weak-projective R-module. We must prove that $E x t_{R}^{1}(M, N)=0$, for any $F P$-injective R-module N. Since R is a Noetherian ring, N is an injective R-module, and therefore N is weak-injective.

The converse is an easy application of Lemma 2.3.
Lemma 2.5 Let R be a semi-Dedekind domain and M an R-module. Then the following are equivalent:
(a) M is weak-projective;
(b) $\operatorname{Tor}_{1}^{R}(M, A)=0$, for all torsion-free R-modules A;
(c) $p d(M) \leq 1$.

Proof. $\quad(\mathrm{a}) \Rightarrow(\mathrm{b})$ The isomorphism $E x t_{R}^{1}\left(M, A^{b}\right) \cong \operatorname{Hom}_{\mathbb{Z}}\left(\operatorname{Tor}_{1}^{R}(M, A), \mathbb{Q} / \mathbb{Z}\right)$, together with Lemma 2.2, proves the result.

NIKMEHR, POORMAHMOOD, NIKANDISH

(b) \Rightarrow (a) This follows from [4, Lemma 4.1].
(b) \Leftrightarrow (c) See [4, Lemma 4.9].

It is easy to check that the quotient \mathbb{Z}-module $\mathbb{Z} / 2 \mathbb{Z}$ is weak-projective.
Combining Lemma 2.5, with the simple fact that an R-module D is divisible if and only if D^{b} is torsion-free gives the next corollary.

Corollary 2.6 Let R be a semi-Dedekind domain and M an R-module. Then M is weak-projective if and only if $\operatorname{Tor}_{1}^{R}\left(M, D^{b}\right)=0$, for all divisible R-modules D.

The following fact can be easily verified, so we omit its proof.
Lemma 2.7 If R is a Prüfer domain, then every R-module is weak-projective.
Lemma 2.8 Let $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be an exact sequence such that A and C are weak-projective R modules. Then B is weak-projective.
Proof. Let N be a weak-injective R-module. From the induced exact sequence

$$
E x t_{R}^{1}(C, N) \rightarrow \operatorname{Ext}_{R}^{1}(B, N) \rightarrow E x t_{R}^{1}(A, N)
$$

we have $\operatorname{Ext}_{R}^{1}(B, N)=0$, since $\operatorname{Ext}_{R}^{1}(C, N)=\operatorname{Ext}_{R}^{1}(A, N)=0$.

Corollary 2.9 If every submodule and quotient of an R-module M is weak-projective, then M is weakprojective.

From the previous corollary we have the following example.
Example 2.10 The \mathbb{Z}-module \mathbb{Q} is weak-projective.
Recall that R is called a Matlis domain if the projective dimension of Q (or, equivalently, K) is 1 . The R module C is called Matlis cotorsion if $\operatorname{Ext}_{R}^{1}(Q, C)=0$, and M is called strongly flat if $E x t_{R}^{1}(M, C)=0$ for every Matlis cotorsion R-module C.

The next result gives a relationship between weak-projective R-modules and strongly flat R-modules.
Lemma 2.11 If R is a Matlis domain and M a strongly flat R-module, then M is weak-projective.
Proof. If M is a strongly flat R-module, then $\operatorname{Ext}_{R}^{1}(M, N)=0$, for all Matlis cotorsion R-modules N. It is easy to see that if R is a Matlis domain, then every weak-injective R-module is Matlis cotorsion.

Lemma 2.12 Let R be a semi-Dedekind domain. If M is a projective R-module and N a weak-projective R-module, then $M \otimes_{R} N$ is weak-projective.
Proof. The isomorphism $\operatorname{Tor}_{n}^{R}(M \otimes N, A) \cong M \otimes \operatorname{Tor}_{n}^{R}(N, A)$, together with Lemma 2.5, proves the result.

The converse is true when R is a local semi-Dedekind domain.
In what follows, $\sigma_{M}: M \rightarrow E(M)$ denotes the injective envelope of an R-module M. Recall that an injective envelope $\sigma_{M}: M \rightarrow E(M)$ has the unique mapping property (see [1]) if for any homomorphism $f: M \rightarrow N$ with N injective, there exists a unique homomorphism $g: E(M) \rightarrow N$ such that $g \sigma_{M}=f$.

Corollary 2.13 The following statements are equivalent:
(a) R is a Prüfer domain;
(b) Every R-module is weak-projective;
(c) $\operatorname{Ext}_{R}^{1}(M, N)=0$, for all weak-injective R-modules N;
(d) Every weak-injective R-module has an injective envelope with the unique mapping property.

Proof. It is enough to show that $(\mathrm{d}) \Rightarrow$ (a).
(d) \Rightarrow (a) Let M be any weak-injective R-module. We have the following exact commutative diagram:

Note that $\sigma_{L} \gamma \sigma_{M}=0=0 \sigma_{M}$, so $\sigma_{L} \gamma=0$ by (d). Therefore $L=\operatorname{im}(\gamma) \subseteq \operatorname{ker}\left(\sigma_{L}\right)=0$, and hence M is injective. Thus (a) follows.

We end this section with the following characterizations of weak-projective R-modules.
Let ℓ be a class of R-modules and M an R-module. A homomorphism $\phi \in \operatorname{Hom}_{R}(N, M)$ with $N \in \ell$ is called an ℓ-precover of M if the induced map

$$
\operatorname{Hom}_{R}\left(1_{N^{\prime}}, \phi\right): \operatorname{Hom}_{R}\left(N^{\prime}, N\right) \rightarrow \operatorname{Hom}_{R}\left(N^{\prime}, M\right)
$$

is surjective for all $N^{\prime} \in \ell$. An ℓ-precover $\phi \in \operatorname{Hom}_{R}(N, M)$ is called an ℓ-cover if each $\gamma \in \operatorname{Hom}_{R}(N, N)$ satisfying $\phi=\phi \gamma$ is an automorphism of N. The class ℓ is called a precover(cover) class if every R-module has an ℓ-precover(ℓ-cover).

The ℓ-preenvelope, ℓ-envelope, preenvelope and envelope classes are defined dually (see [9]). In particular, if ℓ is the class of weak-injective R-modules, an ℓ-envelope is called a weak-injective envelope.

Proposition 2.14 If M is an R-module, then the following are equivalent:
(a) M is weak-projective;
(b) M is projective with respect to every exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$, where A is weak-injective;
(c) For every exact sequence $0 \rightarrow K \rightarrow F \rightarrow M \rightarrow 0$, where F is weak-injective, $K \rightarrow F$ is a weak-injective preenvelope of K;
(d) M is cokernel of a weak-injective preenvelope $K \rightarrow F$ with F projective.

NIKMEHR, POORMAHMOOD, NIKANDISH

Proof. (a) \Rightarrow (b) Let $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be an exact sequence, where A is weak-injective. Then $E x t_{R}^{1}(M, A)=0$ by (a). Thus $\operatorname{Hom}_{R}(M, B) \rightarrow \operatorname{Hom}_{R}(M, C) \rightarrow 0$ is exact, and (b) holds.
(b) \Rightarrow (a) For every weak-injective R-module N, there is a short exact sequence $o \rightarrow N \rightarrow E \rightarrow L \rightarrow 0$ with E injective, which induces an exact sequence $\operatorname{Hom}_{R}(M, E) \rightarrow \operatorname{Hom}_{R}(M, L) \rightarrow \operatorname{Ext}_{R}^{1}(M, N) \rightarrow 0$. Since $\operatorname{Hom}_{R}(M, E) \rightarrow \operatorname{Hom}_{R}(M, L) \rightarrow 0$ is exact by (b), we have $E x t_{R}^{1}(M, N)=0$, and (a) follows.
(a) \Rightarrow (c) is easy to verify.
(c) \Rightarrow (d) Let $0 \rightarrow K \rightarrow P \rightarrow M \rightarrow 0$ be an exact sequence with P projective. Note that P is weak-injective by hypothesis, thus $K \rightarrow P$ is a weak-injective preenvelope.
(d) \Rightarrow (a) By (d), there is an exact sequence $\quad 0 \rightarrow K \rightarrow P \rightarrow M \rightarrow 0$, where $K \rightarrow P$ is a weakinjective preenvelope with P projective. It gives rise to the exactness of $\operatorname{Hom}_{R}(P, N) \rightarrow \operatorname{Hom}_{R}(K, N) \rightarrow$ $E x_{R}^{1}(M, N) \rightarrow 0$, for each weak-injective R-module N. Note that $\operatorname{Hom}_{R}(P, N) \rightarrow \operatorname{Hom}_{R}(K, N) \rightarrow 0$ is exact by (d). Hence $E x t_{R}^{1}(M, N)=0$, as desired.

3. The weak-projective dimension over semi-Dedekind domains

We begin this section with the definition of weak-injective dimension.

Definition 3.1 (a) For any R-module M, let weak-injective dimension wid (M) of M, denote the smallest integer $n \geq 0$ such that $\operatorname{Ext}_{R}^{n+1}(N, M)=0$ for every R-module N of weak dimension ≤ 1. (If no such n exists, set $\operatorname{wid}(M)=\infty)$.
(b) $\operatorname{wiD}(R)=\sup \{\operatorname{wid}(M): M$ is an R-module $\}$.

Lemma 3.2 Let R be a semi-Dedekind domain. For an R-module M, the following statements are equivalent: (a) $\operatorname{wid}(M) \leq n$;
(b) $\operatorname{Ext}_{R}^{n+1}(N, M)=0$ for all R-modules N of weak dimension ≤ 1;
(c) If the sequence $0 \rightarrow M \rightarrow E_{0} \rightarrow E_{1} \rightarrow \cdots \rightarrow E_{n} \rightarrow 0$ is exact with $E_{0}, E_{1}, \cdots, E_{n-1}$ weak-injective, then also E_{n} is weak-injective.

Proof. $\quad(\mathrm{a}) \Rightarrow(\mathrm{b})$ Use induction on n. Clear if $\operatorname{wid}(M)=n$. If $\operatorname{wid}(M) \leq n-1$ resolve N by $0 \rightarrow K \rightarrow P \rightarrow N \rightarrow 0$ with K and P flat. K have weak dimension ≤ 1 by [4, Corollary 4.4], and $E x t_{R}^{n+1}(N, M) \cong \operatorname{Ext}_{R}^{n}(K, M)=0$ by induction hypothesis.
(b) $\Leftrightarrow(\mathrm{c})$ follows from the isomorphism $\operatorname{Ext}_{R}^{n+1}(N, M) \cong \operatorname{Ext}_{R}^{1}\left(N, E_{n}\right)$.
(b) \Rightarrow (a) are trivial.

Definition 3.3 For an R-module M, let $w p d(M)$ denotes the smallest integer $n \geq 0$ such that $E x t_{R}^{n+1}(M, N)=$ 0 for every weak-injective R-module N and call $\operatorname{wpd}(M)$ the weak-projective dimension of M. If no such n exists, set $\operatorname{wpd}(M)=\infty$.

NIKMEHR, POORMAHMOOD, NIKANDISH

Put $\operatorname{rwp} D(R)=\sup \{\operatorname{wpd}(M): M$ is a right R-module $\}$ and call $\operatorname{rwp} D(R)$ the right weak-projective dimension of R. Similarly, we have $\operatorname{lwp} D(R)$ (we drop the unneeded letters r and l, because R is commutative).
M is called weak-projective if $\operatorname{wpd}(M)=0$, i.e., $E x t_{R}^{1}(M, N)=0$ for every weak-injective R-module N.

Remark 3.4 For every ring R and every R-module M, the inequalities $w p D(R) \leq D(R)$ and $w p d(M) \leq$ $p d(M)$ are valid. It is easy to see that $w p d(M)=p d(M)$ for any R-module M if and only if every weakprojective R-module is projective.

Proposition 3.5 Let R be a semi-Dedekind domain. For any R-module M and an integer $n \geq 0$, the following are equivalent:
(a) $\operatorname{wpd}(M) \leq n$;
(b) $E x t_{R}^{n+1}(M, N)=0$ for any weak-injective R-module N;
(c) $E x t_{R}^{n+j}(M, N)=0$ for any weak-injective R-module N and $j \geq 1$;
(d) There exists an exact sequence $0 \rightarrow P_{n} \rightarrow P_{n-1} \rightarrow \cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0$, where each P_{i} is weakprojective.

Proof. $\quad(\mathrm{c}) \Rightarrow(\mathrm{a})$ is obvious.
(b) \Rightarrow (c) For any weak-injective R-module N, there is a short exact sequence $0 \rightarrow N \rightarrow E \rightarrow L \rightarrow 0$, where E is injective. Then the sequence $E x t_{R}^{n+1}(M, L) \rightarrow \operatorname{Ext}_{R}^{n+2}(M, N) \rightarrow E x t_{R}^{n+2}(M, E)=0$ is exact. Note that L is weak-injective by Lemma 3.2, so $E x t_{R}^{n+1}(M, L)=0$ by (b). Hence $E x t_{R}^{n+2}(M, N)=0$, and (c) follows by induction.

The proof of $(\mathrm{a}) \Rightarrow(\mathrm{b})$ is similar to that of $(\mathrm{b}) \Rightarrow(\mathrm{c})$.
(a) $\Leftrightarrow(d)$ is straightforward.

Proposition 3.6 For an R-module M, the following are equivalent:
(a) $w p D(R)=0$;
(b) $\operatorname{Tor}_{1}^{R}(M, A)=0$, for all torsion-free R-modules A;
(c) M has weak dimension ≤ 1;
(d) R is Prüfer;
(e) Every R-module is weak-projective.

Proof. (a) $\Rightarrow(\mathrm{b})$ The isomorphism $E x_{R}^{1}\left(M, A^{b}\right) \cong \operatorname{Hom}_{\mathbb{Z}}\left(\operatorname{Tor}_{1}^{R}(M, A), \mathbb{Q} / \mathbb{Z}\right)$, together with Lemma 2.2, proves the result.
(b) \Rightarrow (c) see [5, Corollary 2.4].
(c) \Rightarrow (d) is trivial.
(d) \Rightarrow (e) see Lemma 2.7.
(e) \Rightarrow (a) is trivial.

NIKMEHR, POORMAHMOOD, NIKANDISH

Remark 3.7 (a) By Proposition 3.6, $w p D(R)$ measures how far away a domain R is from being a Prüfer domain.
(b) It is well known that R is semihereditary domain if and only if R is Prüfer domain.

The proof of the next proposition is standard homological algebra.
Proposition 3.8 Let R be a semi-Dedekind domain, $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ an exact sequence of R-modules. If two of $\operatorname{wpd}(A), w p d(B)$, and $w p d(C)$ are finite, so is the third. Moreover,
(a) $\operatorname{wpd}(B) \leq \max \{\operatorname{wpd}(A), \operatorname{wpd}(C)\}$.
(b) $\operatorname{wpd}(A) \leq \max \{\operatorname{wpd}(B), \operatorname{wpd}(C)-1\}$.
(c) $\operatorname{wpd}(C) \leq \max \{\operatorname{wpd}(B), \operatorname{wpd}(A)+1\}$.

Corollary 3.9 Let R be a semi-Dedekind domain.
(a) If $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is an exact sequence of R-modules, where $0<w p d(A)<\infty$ and B is weakprojective, then $\operatorname{wpd}(C)=\operatorname{wpd}(A)+1$.
(b) $\operatorname{wp} D(R)=n$ if and only if $\sup \{w p d(I): I$ is any ideal of $R\}=n-1$ for any integer $n \geq 2$.

Proof. (a) is true by Proposition 3.8.
(b) For an ideal of R, consider the exact sequence $0 \rightarrow I \rightarrow R \rightarrow R / I \rightarrow 0$. Then (b) follows from (a).

Theorem 3.10 Let R be a semi-Dedekind domain. Then The following values are identical:
(a) $w p D(R)$;
(b) $\sup \{w p d(M): M$ is a cyclic R-module $\}$;
(c) $\sup \{w p d(M): M$ is any R-module $\}$;
(d) $\sup \{i d(F): F$ is a weak-injective R-module $\}$.

Proof. $\quad(\mathrm{b}) \leq(\mathrm{a}) \leq(\mathrm{c})$ are obvious.
$(\mathrm{c}) \leq(\mathrm{d})$ We may assume $\sup \{i d(F): \mathrm{F}$ is a weak-injective R-module $\}=m<\infty$. Let M be any R-module and N any weak-injective R-module. Since $i d(N) \leq m$, it follows that $\operatorname{Ext}_{R}^{m+1}(M, N)=0$. Hence $w p d(M) \leq m$.
(d) \leq (b) We may assume $\sup \{\operatorname{wpd}(M): \mathrm{M}$ is a cyclic R-module $\}=n<\infty$. Let N be a weak-injective R-module and I any ideal, then $w p d(R / I) \leq n$. By Proposition $3.5, \operatorname{Ext}_{R}^{n+1}(R / I, N)=0$, and so $i d(N) \leq n$.

Proposition 3.11 Let R be a semi-Dedekind domain. Then the following are equivalent:
(a) $w p D(R) \leq 1$;
(b) Every submodule of a (weak-)projective R-module is weak-projective;
(c) Every ideal of R is weak-projective.

Proof. (a) $\Rightarrow(\mathrm{b})$ Let N be a submodule of a weak-projective R-module M. Then, for any weak-injective R-module L, we get an exact sequence

$$
0=\operatorname{Ext}_{R}^{1}(M, L) \rightarrow \operatorname{Ext}_{R}^{1}(N, L) \rightarrow \operatorname{Ext}_{R}^{2}(M / N, L)
$$

Note that the last term is zero by (a), hence $\operatorname{Ext} t_{R}^{1}(N, L)=0$, and (b) follows.
(b) \Rightarrow (c) is trivial.
$($ c) \Rightarrow (a) Let I be an ideal of R. The exact sequence $0 \rightarrow I \rightarrow R \rightarrow R / I \rightarrow 0$ implies $\operatorname{wpd}(R / I) \leq 1$ by Proposition 3.5. So (a) follows from Theorem 3.10 (b).

It is well known that if M is finitely generated projective R-module, then $\operatorname{Hom}_{R}(M, R)$ is finitely generated projective R-module. Here we have the following corollary.

Corollary 3.12 If R is a semi-Dedekind domain with $\operatorname{wpD}(R) \leq 1$, then the dual module $\operatorname{Hom}_{R}(M, R)$ of any finitely generated R-module M is weak-projective.

In addition, if $w . D(R)=1$, then the following are equivalent:
(a) Every torsion-free R-module is weak-projective;
(b) M^{b} is weak-projective for every injective R-module M;
(c) $N^{b b}$ is weak-projective for every torsion-free R-module N.

Proof. Let M be a finitely generated R-module. Then there exists an exact sequence $P \rightarrow M \rightarrow 0$ with P finitely generated projective. So we have an R-module exact sequence $0 \rightarrow \operatorname{Hom}_{R}(M, R) \rightarrow \operatorname{Hom}_{R}(P, R)$. Note that $\operatorname{Hom}_{R}(P, R)$ is projective, therefore $\operatorname{Hom}_{R}(M, R)$ is weak-projective by Proposition 3.11.

Also, if $w \cdot D(R)=1$, then (a) $\Rightarrow(\mathrm{b}) \Rightarrow(\mathrm{c})$ are clear.
(c) \Rightarrow (a) Let N be any torsion-free R-module. There exists an exact sequence $0 \rightarrow N \rightarrow N^{b b}$. Since $\omega p D(R) \leq 1$ and $N^{b b}$ is weak-projective by (c), we have that N is weak-projective by Proposition 3.11.

A ring R is called semi-Artinian if every nonezero cyclic R-module has a nonezero socle. The following proposition shows that we may compute the weak-projective dimension of semi-Artinian ring using just the weak-projective dimension of simple modules.

Proposition 3.13 If R is a semi-Artinian semi-Dedekind domain, then $w p D(R)=\sup \{w p d(M): M$ is a simple R-module $\}$.
Proof. It suffices to show that $w p D(R) \leq \sup \{w p d(M): M$ is a simple R-module $\}$. We may assume that $\sup \{\operatorname{wpd}(M): M$ is a simple R-module $\}=n<\infty$. Let N be a weak-injective R-module and I a maximal ideal of R. Consider the injective resolution of N

$$
0 \rightarrow N \rightarrow E^{0} \rightarrow E^{1} \rightarrow E^{2} \rightarrow \cdots \rightarrow E^{n-1} \rightarrow E^{n} \rightarrow \cdots
$$

Write $L=\operatorname{coker}\left(E^{n-2} \rightarrow E^{n-1}\right)$. Then $\operatorname{Ext}_{R}^{1}(R / I, L)=\operatorname{Ext} t_{R}^{n+1}(R / I, N)=0$ by Proposition 3.5. Therefore L is injective by [8, Lemma 4], since R is semi-Artinian. So $\operatorname{id}(N) \leq n$, and hence $\operatorname{wpD}(R) \leq n$ by Theorem 3.10 .

Proposition 3.14 Let R be a semi-Dedekind domain. Then $\sup \{p d(M): M$ is a weak-projective R-module $\} \leq$ wiD (R).

NIKMEHR, POORMAHMOOD, NIKANDISH

Proof. Let M be a weak-projective R-module. It is enough to show that $p d(M) \leq w i D(R)$. We may assume that $w i D(R)=n<\infty$. M admits a projective resolution

$$
\cdots \rightarrow P_{n} \rightarrow P_{n-1} \rightarrow \cdots \rightarrow \cdots P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

Let N be any R-module. We have $\operatorname{wid}(N) \leq n$, thus by Lemma 3.2, there is an exact sequence

$$
0 \rightarrow N \rightarrow E^{0} \rightarrow E^{1} \rightarrow \cdots \rightarrow E^{n-1} \rightarrow E^{n} \rightarrow 0
$$

where $E^{0}, E^{1}, \cdots, E^{n}$ are weak-injective. Therefore we form a double complex

Note that all rows are exact except for the bottom row, since M is weak-projective and all E^{i} are weak-injective; also note that all columns are exact except for the left column since all P_{i} are projective.

Using a spectral sequence argument, we know that the two complexes

$$
0 \rightarrow \operatorname{Hom}_{R}\left(P_{0}, N\right) \rightarrow \operatorname{Hom}_{R}\left(P_{1}, N\right) \rightarrow \cdots \rightarrow \operatorname{Hom}_{R}\left(P_{n}, N\right) \rightarrow \cdots
$$

and

$$
0 \rightarrow \operatorname{Hom}_{R}\left(M, E^{0}\right) \rightarrow \operatorname{Hom}_{R}\left(M, E^{1}\right) \rightarrow \cdots \rightarrow \operatorname{Hom}_{R}\left(M, E^{n}\right) \rightarrow 0
$$

have isomorphic homology groups. Thus $\operatorname{Ext}_{R}^{n+j}(M, N)=0$ for all $j \geq 1$. Hence $p d(M) \leq n$.

It is known that $D(R)=\sup \{p d(M): M$ is a weak-projective R-module $\}$ if R is a Prüfer domain, and it is easy to see that $D(R)=w p D(R)$ if R is a semisimple ring. In general, we have

Proposition 3.15 Let R be a semi-Dedekind domain and M be an R-module. Then $D(R) \leq \sup \{p d(M)$: M is a weak-projective R-module $\}+w p D(R)$.
Proof. We may assume without loss of generality that $w p D(R)$ is finite. Let $w p D(R)=m<\infty$ and $\operatorname{Sup}\{p d(M): ~ M$ is a weak-projective R -module $\}=n<\infty$. If M is an R-module, then $w p d(M) \leq m$ by Theorem 3.10. So M admits a weak-projective resolution

$$
0 \rightarrow P_{m} \rightarrow P_{m-1} \rightarrow \cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

where each P_{i} is weak-projective, $i=0,1,2, \cdots, m$. Let $K_{i}=\operatorname{Ker}\left(P_{i} \rightarrow P_{i-1}\right), i=0,1,2, \cdots, m-1$, $P_{-1}=M, K_{m-1}=P_{m}$. Then we have the following short exact sequence

$$
\begin{gathered}
0 \rightarrow P_{m} \rightarrow P_{m-1} \rightarrow K_{m-2} \rightarrow 0, \\
0 \rightarrow K_{m-2} \rightarrow P_{m-2} \rightarrow K_{m-3} \rightarrow 0, \\
\vdots \\
0 \rightarrow K_{0} \rightarrow P_{0} \rightarrow M \rightarrow 0 .
\end{gathered}
$$

It follows that $p d\left(K_{m-2}\right) \leq 1+n, p d\left(K_{m-3}\right) \leq 2+n, \cdots, p d(M) \leq m+n$, and hence $D(R) \leq m+n$. This completes the proof.

Acknowledgement

The authors express their thank to the referee for his careful reading, and for helpful suggestions.

References

[1] Ding, N.: On envelopes with the unique mapping property. Comm. Alg. 24(4), 1459-1470(1996).
[2] Fuchs, L. and Salce, L.: Modules Over Non-Noetherian Domains. Math. Surveys and Monographs. 84. Providence R.I. Amer. Math. Society(2001).
[3] Gilmer, R.: Multiplicative Ideal Theory. Queens Papers Pure Appl. Math. 90. Kingston: Queens University(1972).
[4] Lee, S. B.: h-divisible modules. Comm. Alg. 31, 513-525(2003).
[5] Lee, S. B.: Weak-injective modules. Comm. Alg. 34, 361-370(2006).
[6] Mao, L. and Ding N. Q.: Notes on FP-projective modules and FP-injective modules. Advances in ring theory. 151-166(2005).
[7] Rotman, J. J.: An Introduction to Homological Algebra. New York: Academic Press(1979).
[8] Smith, P. F.: Injective modules and Prime ideals. Comm. Alg. 9, 989-999(1981).
[9] Trlifaj, J.: Covers, Envelopes and Cotorsion Theories. Lecture Notes for the Workshop Homological Methods in Modules Theory. Cortona(2000).

Mohammad Javad NIKMEHR
Received: 27.05.2008
Zahra POORMAHMOOD and Reza NIKANDISH
Department of Mathematics, K. N. Toosi University of Technology,
P. O. Box 16315-1618, Tehran-IRAN
e-mail: nikmehr@kntu.ac.ir,
e-mail: poormahmood@sina.kntu.ac.ir
e-mail: r_nikandish@sina.kntu.ac.ir

[^0]: 2000 AMS Mathematics Subject Classification: 16E10, 18G20.

