

Turk J Math 35 (2011), 627 – 636. © TÜBİTAK doi:10.3906/mat-0805-34

Weak-projective dimensions

Mohammad Javad Nikmehr, Zahra Poormahmood and Reza Nikandish

Abstract

In this paper, the notions of weak-projective modules and weak-projective dimension over commutative domain R are given. It is shown that over semisimple rings with weak global dimension 1, these modules are equivalent to weak-injective modules. The weak-projective dimension measures how far away a domain is from being a Prüfer domain. Several properties of these modules are also presented.

Key Words: Semi-Dedekind domain; Weak-injective modules; Weak- projective dimension, projective modules; Prüfer domain

1. Introduction

In this note, R will denote a commutative domain with identity and $Q \ (\neq R)$ will denote its field of quotients. The R-module Q/R will be denoted by K. Lee in [5] studied the structure of weak-injective modules. An R-module M is called *weak-injective* if $Ext_R^1(N, M) = 0$ for all R-modules N of weak dimension ≤ 1 . In section 2, we introduce a class of R-modules under the name of weak-projective R-modules. We show that weak-projective R-modules are identical to projective R-modules if and only if R is semisimple. Recall that R is called *Prüfer domain* if every finitely generated ideal of R is projective. There are numerous characterizations of Prüfer domains, which can be found in [3]. We show that each weak-projective R-module is FP-projective when R is a Noetherian ring. The domain R is called *semi-Dedekind* if every h-divisible R-module is pure-injective. For more details of these domains, we refer the reader to [4].

In section 3, we introduce the concept weak-projective dimension wpd(M) of an *R*-module *M* and give some results. We show that this dimension has the properties that we expect of a "dimension" when the domain is semi-Dedekind.

Throughout this paper, M is an R-module. The notation (w.)D(R) stands for the (weak) global dimension of R. Also, pd(M) and id(M) denote the projective and injective dimension of M, respectively. The character module $Hom_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$ of an R-module M will be denoted by M^b .

²⁰⁰⁰ AMS Mathematics Subject Classification: 16E10, 18G20.

NIKMEHR, POORMAHMOOD, NIKANDISH

2. Weak-projective modules

Recall that an *R*-module *M* is called *weak-injective* if $Ext_R^1(N, M) = 0$, for all *R*-modules *N* of weak dimension ≤ 1 .

Definition 2.1 An *R*-module *M* is called weak-projective if $Ext_R^1(M, N) = 0$, for every weak-injective *R*-module *N*.

Evidently, direct products and summands of weak-projective R-modules are again weak-projective. All projective R-modules are trivially weak-projective, but the converse is not true. For example, \mathbb{Q}/\mathbb{Z} as a \mathbb{Z} -module is weak-projective, but is not projective. Over a semisimple ring R, weak-projective R-modules are projective. It is obvious that if R is a semisimple ring with w.D(R) = 1, then every R-module M is weak-projective if and only if M is weak-injective. Also, if R is semisimple and M is a weak-projective R-module, then $Ext^1_R(M, R) = 0$.

A well-known result states that an R-module F is flat if and only if its character module F^b is injective. The following lemma is an analog of this equivalence.

Lemma 2.2 (Lee [5, Lemma 3.1]) An R-module A is torsion-free if and only if A^b is weak-injective.

An *R*-module *M* is called FP-injective if $Ext_R^1(N, M) = 0$ for all finitely presented *R*-modules *N*.

Lemma 2.3 (Lee[5, Lemma 3.2]) For a domain R, the following are equivalent:

- (a) R is Prüfer;
- (b) Every weak-injective R-module is FP-injective;
- (c) Every weak-injective R-module is injective.

We may obtain some elementary results on the notion of the weak-projective modules.

Recall that the *R*-module *M* is called *FP*-projective [6] if $Ext^{1}_{R}(M, N) = 0$, for every *FP*-injective *R*-module *N*.

Lemma 2.4 If R is a Noetherian ring and M a weak-projective R-module, then M is FP-projective.

Proof. Let M be a weak-projective R-module. We must prove that $Ext_R^1(M, N) = 0$, for any FP-injective R-module N. Since R is a Noetherian ring, N is an injective R-module, and therefore N is weak-injective. \Box

The converse is an easy application of Lemma 2.3.

Lemma 2.5 Let R be a semi-Dedekind domain and M an R-module. Then the following are equivalent: (a) M is weak-projective;

(b) $Tor_1^R(M, A) = 0$, for all torsion-free *R*-modules *A*; (c) $pd(M) \le 1$.

Proof. (a) \Rightarrow (b) The isomorphism $Ext_R^1(M, A^b) \cong Hom_{\mathbb{Z}}(Tor_1^R(M, A), \mathbb{Q}/\mathbb{Z})$, together with Lemma 2.2, proves the result.

(b) \Rightarrow (a) This follows from [4, Lemma 4.1].

(b) \Leftrightarrow (c) See [4, Lemma 4.9].

It is easy to check that the quotient \mathbb{Z} -module $\mathbb{Z}/2\mathbb{Z}$ is weak-projective.

Combining Lemma 2.5, with the simple fact that an R-module D is divisible if and only if D^b is torsion-free gives the next corollary.

Corollary 2.6 Let R be a semi-Dedekind domain and M an R-module. Then M is weak-projective if and only if $Tor_1^R(M, D^b) = 0$, for all divisible R-modules D.

The following fact can be easily verified, so we omit its proof.

Lemma 2.7 If R is a Prüfer domain, then every R-module is weak-projective.

Lemma 2.8 Let $0 \to A \to B \to C \to 0$ be an exact sequence such that A and C are weak-projective R-modules. Then B is weak-projective.

Proof. Let N be a weak-injective R-module. From the induced exact sequence

$$Ext^1_R(C, N) \to Ext^1_R(B, N) \to Ext^1_R(A, N),$$

we have $Ext^1_R(B, N) = 0$, since $Ext^1_R(C, N) = Ext^1_R(A, N) = 0$.

Corollary 2.9 If every submodule and quotient of an R-module M is weak-projective, then M is weak-projective.

From the previous corollary we have the following example.

Example 2.10 The \mathbb{Z} -module \mathbb{Q} is weak-projective.

Recall that R is called a *Matlis domain* if the projective dimension of Q (or, equivalently, K) is 1. The Rmodule C is called *Matlis cotorsion* if $Ext_R^1(Q,C) = 0$, and M is called *strongly flat* if $Ext_R^1(M,C) = 0$ for every Matlis cotorsion R-module C.

The next result gives a relationship between weak-projective *R*-modules and strongly flat *R*-modules.

Lemma 2.11 If R is a Matlis domain and M a strongly flat R-module, then M is weak-projective.

Proof. If M is a strongly flat R-module, then $Ext_R^1(M, N) = 0$, for all Matlis cotorsion R-modules N. It is easy to see that if R is a Matlis domain, then every weak-injective R-module is Matlis cotorsion. \Box

Lemma 2.12 Let R be a semi-Dedekind domain. If M is a projective R-module and N a weak-projective R-module, then $M \otimes_R N$ is weak-projective.

Proof. The isomorphism $Tor_n^R(M \otimes N, A) \cong M \otimes Tor_n^R(N, A)$, together with Lemma 2.5, proves the result. \Box

The converse is true when R is a local semi-Dedekind domain.

In what follows, $\sigma_M : M \to E(M)$ denotes the injective envelope of an *R*-module *M*. Recall that an injective envelope $\sigma_M : M \to E(M)$ has the unique mapping property (see [1]) if for any homomorphism $f: M \to N$ with *N* injective, there exists a unique homomorphism $g: E(M) \to N$ such that $g\sigma_M = f$.

Corollary 2.13 The following statements are equivalent:

- (a) R is a Prüfer domain;
- (b) Every R-module is weak-projective;
- (c) $Ext^{1}_{R}(M, N) = 0$, for all weak-injective R-modules N;
- (d) Every weak-injective R-module has an injective envelope with the unique mapping property.

Proof. It is enough to show that $(d) \Rightarrow (a)$.

(d) \Rightarrow (a) Let M be any weak-injective R-module. We have the following exact commutative diagram:

$$0 \longrightarrow M \xrightarrow{\sigma_M} E(M) \xrightarrow{\gamma} L \longrightarrow 0$$
$$\downarrow^0 \qquad \qquad \downarrow^{\sigma_L \gamma} \qquad \qquad \downarrow^{\sigma_L}$$
$$E(L) \cong E(L) \cong E(L).$$

Note that $\sigma_L \gamma \sigma_M = 0 = 0 \sigma_M$, so $\sigma_L \gamma = 0$ by (d). Therefore $L = im(\gamma) \subseteq \ker(\sigma_L) = 0$, and hence M is injective. Thus (a) follows.

We end this section with the following characterizations of weak-projective R-modules.

Let ℓ be a class of R-modules and M an R-module. A homomorphism $\phi \in Hom_R(N, M)$ with $N \in \ell$ is called an ℓ -precover of M if the induced map

$$Hom_R(1_{N'}, \phi) : Hom_R(N', N) \to Hom_R(N', M)$$

is surjective for all $N' \in \ell$. An ℓ -precover $\phi \in Hom_R(N, M)$ is called an ℓ -cover if each $\gamma \in Hom_R(N, N)$ satisfying $\phi = \phi \gamma$ is an automorphism of N. The class ℓ is called a precover(cover) class if every R-module has an ℓ -precover(ℓ -cover).

The ℓ -preenvelope, ℓ -envelope, preenvelope and envelope classes are defined dually (see [9]). In particular, if ℓ is the class of weak-injective *R*-modules, an ℓ -envelope is called a *weak-injective envelope*.

Proposition 2.14 If M is an R-module, then the following are equivalent:

- (a) M is weak-projective;
- (b) M is projective with respect to every exact sequence $0 \to A \to B \to C \to 0$, where A is weak-injective;
- (c) For every exact sequence $0 \to K \to F \to M \to 0$, where F is weak-injective, $K \to F$ is a weak-injective preenvelope of K;

(d) M is cohernel of a weak-injective preenvelope $K \to F$ with F projective.

Proof. (a) \Rightarrow (b) Let $0 \to A \to B \to C \to 0$ be an exact sequence, where A is weak-injective. Then $Ext_R^1(M, A) = 0$ by (a). Thus $Hom_R(M, B) \to Hom_R(M, C) \to 0$ is exact, and (b) holds.

(b) \Rightarrow (a) For every weak-injective *R*-module *N*, there is a short exact sequence $o \to N \to E \to L \to 0$ with *E* injective, which induces an exact sequence $Hom_R(M, E) \to Hom_R(M, L) \to Ext^1_R(M, N) \to 0$. Since $Hom_R(M, E) \to Hom_R(M, L) \to 0$ is exact by (b), we have $Ext^1_R(M, N) = 0$, and (a) follows.

(a) \Rightarrow (c) is easy to verify.

(c) \Rightarrow (d) Let $0 \rightarrow K \rightarrow P \rightarrow M \rightarrow 0$ be an exact sequence with P projective. Note that P is weak-injective by hypothesis, thus $K \rightarrow P$ is a weak-injective preenvelope.

(d) \Rightarrow (a) By (d), there is an exact sequence $0 \to K \to P \to M \to 0$, where $K \to P$ is a weak-injective preenvelope with P projective. It gives rise to the exactness of $Hom_R(P,N) \to Hom_R(K,N) \to Ex_R^1(M,N) \to 0$, for each weak-injective R-module N. Note that $Hom_R(P,N) \to Hom_R(K,N) \to 0$ is exact by (d). Hence $Ext_R^1(M,N) = 0$, as desired. \Box

3. The weak-projective dimension over semi-Dedekind domains

We begin this section with the definition of weak-injective dimension.

Definition 3.1 (a) For any *R*-module *M*, let weak-injective dimension wid(M) of *M*, denote the smallest integer $n \ge 0$ such that $Ext_R^{n+1}(N, M) = 0$ for every *R*-module *N* of weak dimension ≤ 1 . (If no such n exists, set $wid(M) = \infty$).

(b) $wiD(R) = sup\{wid(M): M \text{ is an } R \text{-module}\}.$

Lemma 3.2 Let R be a semi-Dedekind domain. For an R-module M, the following statements are equivalent: (a) $wid(M) \le n$;

(b) $Ext_{R}^{n+1}(N, M) = 0$ for all *R*-modules *N* of weak dimension ≤ 1 ;

(c) If the sequence $0 \to M \to E_0 \to E_1 \to \cdots \to E_n \to 0$ is exact with $E_0, E_1, \cdots, E_{n-1}$ weak-injective, then also E_n is weak-injective.

Proof. (a) \Rightarrow (b) Use induction on n. Clear if wid(M) = n. If $wid(M) \leq n-1$ resolve N by $0 \rightarrow K \rightarrow P \rightarrow N \rightarrow 0$ with K and P flat. K have weak dimension ≤ 1 by [4, Corollary 4.4], and $Ext_R^{n+1}(N,M) \cong Ext_R^n(K,M) = 0$ by induction hypothesis.

(b) \Leftrightarrow (c) follows from the isomorphism $Ext_R^{n+1}(N, M) \cong Ext_R^1(N, E_n)$.

(b) \Rightarrow (a) are trivial.

Definition 3.3 For an *R*-module *M*, let wpd(M) denotes the smallest integer $n \ge 0$ such that $Ext_R^{n+1}(M, N) = 0$ for every weak-injective *R*-module *N* and call wpd(M) the weak-projective dimension of *M*. If no such *n* exists, set $wpd(M) = \infty$.

Put $rwpD(R) = sup\{wpd(M) : M \text{ is a right } R \text{-module}\}$ and call rwpD(R) the right weak-projective dimension of R. Similarly, we have lwpD(R) (we drop the unneeded letters r and l, because R is commutative).

M is called weak-projective if wpd(M) = 0, i.e., $Ext^1_R(M, N) = 0$ for every weak-injective R-module N.

Remark 3.4 For every ring R and every R-module M, the inequalities $wpD(R) \leq D(R)$ and $wpd(M) \leq pd(M)$ are valid. It is easy to see that wpd(M) = pd(M) for any R-module M if and only if every weak-projective R-module is projective.

Proposition 3.5 Let R be a semi-Dedekind domain. For any R-module M and an integer $n \ge 0$, the following are equivalent:

(a) $wpd(M) \le n$;

(b) $Ext_{R}^{n+1}(M, N) = 0$ for any weak-injective R-module N;

(c) $Ext_{R}^{n+j}(M,N) = 0$ for any weak-injective R-module N and $j \ge 1$;

(d) There exists an exact sequence $0 \to P_n \to P_{n-1} \to \cdots \to P_1 \to P_0 \to M \to 0$, where each P_i is weak-projective.

Proof. (c) \Rightarrow (a) is obvious.

(b) \Rightarrow (c) For any weak-injective *R*-module *N*, there is a short exact sequence $0 \to N \to E \to L \to 0$, where E is injective. Then the sequence $Ext_R^{n+1}(M,L) \to Ext_R^{n+2}(M,N) \to Ext_R^{n+2}(M,E) = 0$ is exact. Note that *L* is weak-injective by Lemma 3.2, so $Ext_R^{n+1}(M,L) = 0$ by (b). Hence $Ext_R^{n+2}(M,N) = 0$, and (c) follows by induction.

The proof of (a) \Rightarrow (b) is similar to that of (b) \Rightarrow (c). (a) \Leftrightarrow (d) is straightforward.

_	-	-	

Proposition 3.6 For an R-module M, the following are equivalent:

(a) wpD(R) = 0;

- (b) $Tor_1^R(M, A) = 0$, for all torsion-free R-modules A;
- (c) M has weak dimension ≤ 1 ;
- (d) R is Prüfer;
- (e) Every R-module is weak-projective.

Proof. (a) \Rightarrow (b) The isomorphism $Ex_R^1(M, A^b) \cong Hom_{\mathbb{Z}}(Tor_1^R(M, A), \mathbb{Q}/\mathbb{Z})$, together with Lemma 2.2, proves the result.

- (b) \Rightarrow (c) see [5, Corollary 2.4].
- (c) \Rightarrow (d) is trivial.
- (d) \Rightarrow (e) see Lemma 2.7.
- (e) \Rightarrow (a) is trivial.

Remark 3.7 (a) By Proposition 3.6, wpD(R) measures how far away a domain R is from being a Prüfer domain.

(b) It is well known that R is semihereditary domain if and only if R is Prüfer domain.

The proof of the next proposition is standard homological algebra.

Proposition 3.8 Let R be a semi-Dedekind domain, $0 \to A \to B \to C \to 0$ an exact sequence of R-modules. If two of wpd(A), wpd(B), and wpd(C) are finite, so is the third. Moreover,

(a) $wpd(B) \le max\{wpd(A), wpd(C)\}$.

(b) $wpd(A) \le max\{wpd(B), wpd(C) - 1\}.$

(c) $wpd(C) \le max\{wpd(B), wpd(A) + 1\}$.

Corollary 3.9 Let R be a semi-Dedekind domain.

(a) If $0 \to A \to B \to C \to 0$ is an exact sequence of R-modules, where $0 < wpd(A) < \infty$ and B is weak-projective, then wpd(C) = wpd(A) + 1.

(b) wpD(R) = n if and only if $sup\{wpd(I): I \text{ is any ideal of } R\} = n-1$ for any integer $n \ge 2$.

Proof. (a) is true by Proposition 3.8.

(b) For an ideal of R, consider the exact sequence $0 \to I \to R \to R/I \to 0$. Then (b) follows from (a). \Box

Theorem 3.10 Let R be a semi-Dedekind domain. Then The following values are identical:

(a) wpD(R);

(b) $sup\{wpd(M): M \text{ is a cyclic } R\text{-module}\};$

(c) $sup\{wpd(M): M \text{ is any } R\text{-}module\};$

(d) $sup\{id(F): F \text{ is a weak-injective } R \text{-module}\}.$

Proof. (b) \leq (a) \leq (c) are obvious.

(c) \leq (d) We may assume sup $\{id(F): F \text{ is a weak-injective } R \text{-module}\} = m < \infty$. Let M be any R-module and N any weak-injective R-module. Since $id(N) \leq m$, it follows that $Ext_R^{m+1}(M, N) = 0$. Hence $wpd(M) \leq m$.

(d) \leq (b) We may assume $\sup \{wpd(M): M \text{ is a cyclic } R \text{-module}\} = n < \infty$. Let N be a weak-injective R-module and I any ideal, then $wpd(R/I) \leq n$. By Proposition 3.5, $Ext_R^{n+1}(R/I, N) = 0$, and so $id(N) \leq n$.

Proposition 3.11 Let R be a semi-Dedekind domain. Then the following are equivalent:

(a) $wpD(R) \leq 1$;

(b) Every submodule of a (weak-)projective R-module is weak-projective;

(c) Every ideal of R is weak-projective.

Proof. (a) \Rightarrow (b) Let N be a submodule of a weak-projective R-module M. Then, for any weak-injective R-module L, we get an exact sequence

$$0 = Ext^{1}_{R}(M, L) \to Ext^{1}_{R}(N, L) \to Ext^{2}_{R}(M/N, L).$$

NIKMEHR, POORMAHMOOD, NIKANDISH

Note that the last term is zero by (a), hence $Ext_R^1(N, L) = 0$, and (b) follows. (b) \Rightarrow (c) is trivial. (c) \Rightarrow (a) Let I be an ideal of R. The exact sequence $0 \rightarrow I \rightarrow R \rightarrow R/I \rightarrow 0$ implies $wpd(R/I) \leq 1$ by Proposition 3.5. So (a) follows from Theorem 3.10 (b).

It is well known that if M is finitely generated projective R-module, then $Hom_R(M, R)$ is finitely generated projective R-module. Here we have the following corollary.

Corollary 3.12 If R is a semi-Dedekind domain with $wpD(R) \leq 1$, then the dual module $Hom_R(M, R)$ of any finitely generated R-module M is weak-projective.

In addition, if w.D(R) = 1, then the following are equivalent:

(a) Every torsion-free R-module is weak-projective;

(b) M^b is weak-projective for every injective R-module M;

(c) N^{bb} is weak-projective for every torsion-free R-module N.

Proof. Let M be a finitely generated R-module. Then there exists an exact sequence $P \to M \to 0$ with P finitely generated projective. So we have an R-module exact sequence $0 \to Hom_R(M, R) \to Hom_R(P, R)$. Note that $Hom_R(P, R)$ is projective, therefore $Hom_R(M, R)$ is weak-projective by Proposition 3.11.

Also, if w.D(R) = 1, then (a) \Rightarrow (b) \Rightarrow (c) are clear.

(c) \Rightarrow (a) Let N be any torsion-free R-module. There exists an exact sequence $0 \rightarrow N \rightarrow N^{bb}$. Since $wpD(R) \leq 1$ and N^{bb} is weak-projective by (c), we have that N is weak-projective by Proposition 3.11. \Box

A ring R is called semi-Artinian if every nonezero cyclic R-module has a nonezero socle. The following proposition shows that we may compute the weak-projective dimension of semi-Artinian ring using just the weak-projective dimension of simple modules.

Proposition 3.13 If R is a semi-Artinian semi-Dedekind domain, then $wpD(R) = sup\{wpd(M): M \text{ is a simple } R \text{-module}\}.$

Proof. It suffices to show that $wpD(R) \leq sup\{wpd(M): M \text{ is a simple } R\text{-module}\}$. We may assume that $sup\{wpd(M): M \text{ is a simple } R\text{-module}\} = n < \infty$. Let N be a weak-injective R-module and I a maximal ideal of R. Consider the injective resolution of N

$$0 \to N \to E^0 \to E^1 \to E^2 \to \dots \to E^{n-1} \to E^n \to \dots$$

Write $L = coker(E^{n-2} \to E^{n-1})$. Then $Ext_R^1(R/I, L) = Ext_R^{n+1}(R/I, N) = 0$ by Proposition 3.5. Therefore L is injective by [8, Lemma 4], since R is semi-Artinian. So $id(N) \le n$, and hence $wpD(R) \le n$ by Theorem 3.10.

Proposition 3.14 Let R be a semi-Dedekind domain. Then $\sup\{pd(M): M \text{ is a weak-projective } R \text{-module}\} \le wiD(R)$.

Proof. Let M be a weak-projective R-module. It is enough to show that $pd(M) \leq wiD(R)$. We may assume that $wiD(R) = n < \infty$. M admits a projective resolution

$$\cdots \to P_n \to P_{n-1} \to \cdots \to \cdots \to P_1 \to P_0 \to M \to 0.$$

Let N be any R-module. We have $wid(N) \leq n$, thus by Lemma 3.2, there is an exact sequence

$$0 \to N \to E^0 \to E^1 \to \dots \to E^{n-1} \to E^n \to 0,$$

where E^0, E^1, \dots, E^n are weak-injective. Therefore we form a double complex

Note that all rows are exact except for the bottom row, since M is weak-projective and all E^i are weak-injective; also note that all columns are exact except for the left column since all P_i are projective.

Using a spectral sequence argument, we know that the two complexes

$$0 \to Hom_R(P_0, N) \to Hom_R(P_1, N) \to \cdots \to Hom_R(P_n, N) \to \cdots$$

and

$$0 \to Hom_R(M, E^0) \to Hom_R(M, E^1) \to \cdots \to Hom_R(M, E^n) \to 0$$

have isomorphic homology groups. Thus $Ext_R^{n+j}(M, N) = 0$ for all $j \ge 1$. Hence $pd(M) \le n$.

It is known that $D(R) = \sup\{pd(M): M \text{ is a weak-projective } R \text{-module}\}$ if R is a Prüfer domain, and it is easy to see that D(R) = wpD(R) if R is a semisimple ring. In general, we have

Proposition 3.15 Let R be a semi-Dedekind domain and M be an R-module. Then $D(R) \leq \sup\{pd(M): M \text{ is a weak-projective } R \text{-module}\} + wpD(R).$

Proof. We may assume without loss of generality that wpD(R) is finite. Let $wpD(R) = m < \infty$ and $\sup \{pd(M): M \text{ is a weak-projective R-module}\} = n < \infty$. If M is an R-module, then $wpd(M) \leq m$ by Theorem 3.10. So M admits a weak-projective resolution

$$0 \to P_m \to P_{m-1} \to \cdots \to P_1 \to P_0 \to M \to 0,$$

where each P_i is weak-projective, $i = 0, 1, 2, \dots, m$. Let $K_i = Ker(P_i \rightarrow P_{i-1}), i = 0, 1, 2, \dots, m-1, P_{-1} = M, K_{m-1} = P_m$. Then we have the following short exact sequence

$$0 \to P_m \to P_{m-1} \to K_{m-2} \to 0,$$
$$0 \to K_{m-2} \to P_{m-2} \to K_{m-3} \to 0$$
$$\vdots$$
$$0 \to K_0 \to P_0 \to M \to 0$$

It follows that $pd(K_{m-2}) \leq 1+n$, $pd(K_{m-3}) \leq 2+n, \cdots, pd(M) \leq m+n$, and hence $D(R) \leq m+n$. This completes the proof.

Acknowledgement

The authors express their thank to the referee for his careful reading, and for helpful suggestions.

References

- [1] Ding, N.: On envelopes with the unique mapping property. Comm. Alg. 24(4), 1459-1470(1996).
- Fuchs, L. and Salce, L.: Modules Over Non-Noetherian Domains. Math. Surveys and Monographs. 84. Providence R.I. Amer. Math. Society(2001).
- [3] Gilmer, R.: Multiplicative Ideal Theory. Queens Papers Pure Appl. Math. 90. Kingston: Queens University(1972).
- [4] Lee, S. B.: *h-divisible modules*. Comm. Alg. 31, 513-525(2003).
- [5] Lee, S. B.: Weak-injective modules. Comm. Alg. 34, 361-370(2006).
- [6] Mao, L. and Ding N. Q.: Notes on FP-projective modules and FP-injective modules. Advances in ring theory. 151-166(2005).
- [7] Rotman, J. J.: An Introduction to Homological Algebra. New York: Academic Press(1979).
- [8] Smith, P. F.: Injective modules and Prime ideals. Comm. Alg. 9, 989-999(1981).
- [9] Trlifaj, J.: Covers, Envelopes and Cotorsion Theories. Lecture Notes for the Workshop Homological Methods in Modules Theory. Cortona(2000).

Received: 27.05.2008

Mohammad Javad NIKMEHR Zahra POORMAHMOOD and Reza NIKANDISH Department of Mathematics, K. N. Toosi University of Technology, P. O. Box 16315-1618, Tehran-IRAN e-mail: nikmehr@kntu.ac.ir, e-mail: poormahmood@sina.kntu.ac.ir e-mail: r_nikandish@sina.kntu.ac.ir