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Abstract

In this paper, the notions of weak-projective modules and weak-projective dimension over commutative
domain R are given. It is shown that over semisimple rings with weak global dimension 1, these modules
are equivalent to weak-injective modules. The weak-projective dimension measures how far away a domain

is from being a Priifer domain. Several properties of these modules are also presented.
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1. Introduction

In this note, R will denote a commutative domain with identity and @ (# R) will denote its field
of quotients. The R-module @/R will be denoted by K. Lee in [5] studied the structure of weak-injective
modules. An R-module M is called weak-injective if Ext}h(N, M) =0 for all R-modules N of weak dimension
< 1. In section 2, we introduce a class of R-modules under the name of weak-projective R-modules. We
show that weak-projective R-modules are identical to projective R-modules if and only if R is semisimple.
Recall that R is called Priifer domain if every finitely generated ideal of R is projective. There are numerous
characterizations of Priifer domains, which can be found in [3]. We show that each weak-projective R-module
is F'P-projective when R is a Noetherian ring. The domain R is called semi-Dedekind if every h-divisible

R-module is pure-injective. For more details of these domains, we refer the reader to [4].

In section 3, we introduce the concept weak-projective dimension wpd(M) of an R-module M and give
some results. We show that this dimension has the properties that we expect of a “dimension” when the domain

is semi-Dedekind.
Throughout this paper, M is an R-module. The notation (w.)D(R) stands for the (weak) global

dimension of R. Also, pd(M) and id(M) denote the projective and injective dimension of M, respectively.
The character module Homgz(M,Q/Z) of an R-module M will be denoted by M?".
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2. Weak-projective modules

Recall that an R-module M is called weak-injective if Exth(N, M) = 0, for all R-modules N of weak

dimension < 1.

Definition 2.1 An R-module M is called weak-projective if Exth(M,N) = 0, for every weak-injective R-
module N .

Evidently, direct products and summands of weak-projective R-modules are again weak-projective. All projec-
tive R-modules are trivially weak-projective, but the converse is not true. For example, Q/Z as a Z-module
is weak-projective, but is not projective. Over a semisimple ring R, weak-projective R-modules are projective.
It is obvious that if R is a semisimple ring with w.D(R) = 1, then every R-module M is weak-projective
if and only if M is weak-injective. Also, if R is semisimple and M is a weak-projective R-module, then
Exth(M,R) = 0.

A well-known result states that an R-module F is flat if and only if its character module F? is injective.

The following lemma is an analog of this equivalence.

Lemma 2.2 (Lee [5, Lemma 8.1]) An R-module A is torsion-free if and only if A® is weak-injective.

An R-module M is called FP-injective if Exth(N, M) =0 for all finitely presented R-modules N.

Lemma 2.3 (Lee/5, Lemma 3.2]) For a domain R, the following are equivalent:
(a) R is Prifer;
(b) Every weak-injective R-module is F' P -injective;

(¢) Every weak-injective R-module is injective.

We may obtain some elementary results on the notion of the weak-projective modules.
Recall that the R-module M is called FP-projective [6] if Exth(M,N) = 0, for every F P-injective
R-module N.

Lemma 2.4 If R is a Noetherian ring and M a weak-projective R-module, then M is F P -projective.
Proof. Let M be a weak-projective R-module. We must prove that Exth(M, N) = 0, for any F P-injective

R-module N. Since R is a Noetherian ring, N is an injective R-module, and therefore N is weak-injective.
O

The converse is an easy application of Lemma 2.3.

Lemma 2.5 Let R be a semi-Dedekind domain and M an R-module. Then the following are equivalent:

(a) M is weak-projective;

(b) Torf (M, A) =0, for all torsion-free R-modules A;

(c) pd(M) < 1.

Proof. (a) = (b) The isomorphism Exth(M, A®) = Homgz(Torf'(M, A),Q/Z), together with Lemma 2.2,

proves the result.
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(b) = (a) This follows from [4, Lemma 4.1].
(b) & (c) See [4, Lemma 4.9]. O

It is easy to check that the quotient Z-module Z/2Z is weak-projective.
Combining Lemma 2.5, with the simple fact that an R-module D is divisible if and only if D is

torsion-free gives the next corollary.

Corollary 2.6 Let R be a semi-Dedekind domain and M an R-module. Then M is weak-projective if and
only if Torf(M, D) =0, for all divisible R-modules D .

The following fact can be easily verified, so we omit its proof.
Lemma 2.7 If R is a Prifer domain, then every R-module is weak-projective.

Lemma 2.8 Let 0 - A — B — C — 0 be an exact sequence such that A and C are weak-projective R-

modules. Then B is weak-projective.

Proof. Let N be a weak-injective R-module. From the induced exact sequence
Exth(C,N) — Extyp(B,N) — Exti(A, N),

we have ExthL(B,N) =0, since ExthL(C,N)= ExthL(A,N)=0. 0

Corollary 2.9 If every submodule and quotient of an R-module M is weak-projective, then M is weak-
projective.

From the previous corollary we have the following example.

Example 2.10 The Z-module Q is weak-projective.

Recall that R is called a Matlis domain if the projective dimension of @ (or, equivalently, K) is 1. The R-
module C is called Matlis cotorsion if Exth(Q,C) =0, and M is called strongly flat if Exth(M,C) =0 for
every Matlis cotorsion R-module C'.

The next result gives a relationship between weak-projective R-modules and strongly flat R-modules.

Lemma 2.11 If R is a Matlis domain and M a strongly flat R-module, then M is weak-projective.
Proof. If M is a strongly flat R-module, then Exzth(M,N) =0, for all Matlis cotorsion R-modules N. It

is easy to see that if R is a Matlis domain, then every weak-injective R-module is Matlis cotorsion. O

Lemma 2.12 Let R be a semi-Dedekind domain. If M is a projective R-module and N a weak-projective
R-module, then M ®r N is weak-projective.

Proof. The isomorphism TorX(M®@N, A) 2 M®TorE(N, A), together with Lemma 2.5, proves the result. O
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The converse is true when R is a local semi-Dedekind domain.
In what follows, oy : M — E(M) denotes the injective envelope of an R-module M. Recall that

an injective envelope opr : M — E(M) has the unique mapping property (see [1]) if for any homomorphism

f: M — N with N injective, there exists a unique homomorphism ¢ : E(M) — N such that gop = f.

Corollary 2.13 The following statements are equivalent:

(a) R is a Prifer domain;

(b) Every R-module is weak-projective;

(¢) Exth(M,N) =0, for all weak-injective R-modules N ;

(d) Every weak-injective R-module has an injective envelope with the unique mapping property.
Proof. It is enough to show that (d)= (a).

(d)= (a) Let M be any weak-injective R-module. We have the following exact commutative diagram:

0
) !

0 — M ZM, E(M) 2% L — 0
lO laLv laL

E(L) = EL) = EWL).

Note that oryop = 0= 00p, so oy =0 by (d). Therefore L = im(y) C ker(or) = 0, and hence M
is injective. Thus (a) follows. O

We end this section with the following characterizations of weak-projective R-modules.

Let ¢ be a class of R-modules and M an R-module. A homomorphism ¢ € Homp(N, M) with N € ¢
is called an ¢-precover of M if the induced map

Hompr(1n/,¢) : Homg(N', N) — Hompg(N', M)

is surjective for all N’ € £. An {-precover ¢ € Hompr(N, M) is called an £-cover if each v € Hompg(N, N)
satisfying ¢ = ¢y is an automorphism of N. The class ¢ is called a precover(cover) class if every R-module
has an {-precover(£-cover).

The £-preenvelope, £-envelope, preenvelope and envelope classes are defined dually (see [9]). In particular,

if ¢ is the class of weak-injective R-modules, an ¢-envelope is called a weak-injective envelope.

Proposition 2.14 If M is an R-module, then the following are equivalent:
(a) M is weak-projective;
(b) M is projective with respect to every exact sequence 0 — A — B — C — 0, where A is weak-injective;

(c) For every exact sequence 0 — K — F — M — 0, where F is weak-injective, K — F is a weak-injective
preenvelope of K ;

(d) M is cokernel of a weak-injective preenvelope K — F with F projective.
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Proof. (a) = (b)Let 0 = A — B — C — 0 be an exact sequence, where A is weak-injective. Then
Exth(M,A) =0 by (a). Thus Hompg(M,B) — Homg(M,C) — 0 is exact, and (b) holds.

(b)= (a) For every weak-injective R-module N, there is a short exact sequence 0o = N — E — L — 0
with F injective, which induces an exact sequence Hompg (M, E) — Hompg(M,L) — ExthL(M,N) — 0. Since
Homp (M, E) — Homg(M, L) — 0 is exact by (b), we have ExtL(M,N) =0, and (a) follows.

(a) = (c) is easy to verify.

(¢) = (d) Let 0 = K — P —- M — 0 be an exact sequence with P projective. Note that P is
weak-injective by hypothesis, thus K — P is a weak-injective preenvelope.

(d) = (a) By (d), there is an exact sequence 0 — K — P — M — 0, where K — P is a weak-
injective preenvelope with P projective. It gives rise to the exactness of Hompg(P,N) — Homg(K,N) —
ExzL(M,N) — 0, for each weak-injective R-module N. Note that Hompg (P, N) — Hompg(K, N) — 0 is exact
by (d). Hence Exth(M,N) =0, as desired. 0

3. The weak-projective dimension over semi-Dedekind domains

We begin this section with the definition of weak-injective dimension.

Definition 3.1 (a) For any R-module M , let weak-injective dimension wid(M) of M, denote the smallest
integer m > 0 such that E:ct%“(N, M) = 0 for every R-module N of weak dimension < 1. (If no such n
exists, set wid(M) = o0 ).

(b) wiD(R) = sup{wid(M): M is an R-module}.

Lemma 3.2 Let R be a semi-Dedekind domain. For an R-module M , the following statements are equivalent:
(a) wid(M) <n;
(b) Extit™ (N, M) =0 for all R-modules N of weak dimension < 1;
(c) If the sequence 0 - M — Ey — E1 — --- — E,, — 0 is exact with Ey, E1,--- , E,_1 weak-injective, then
also E, is weak-injective.
Proof. (a) = (b) Use induction on n. Clear if wid(M) = n. If wid(M) < n —1 resolve N by
0> K —> P — N — 0 with K and P flat. K have weak dimension < 1 by [4, Corollary 4.4], and
Ext%H(N, M) = Ext} (K, M) = 0 by induction hypothesis.

(b) « (c) follows from the isomorphism Exty™ (N, M) = Exth(N, E,).

(b) = (a) are trivial. O

Definition 3.3 For an R-module M , let wpd(M) denotes the smallest integer n > 0 such that Exts™ (M, N) =
0 for every weak-injective R-module N and call wpd(M) the weak-projective dimension of M . If no such n
exists, set wpd(M) = co.
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Put rwpD(R) = sup{wpd(M) : M is a right R-module} and call rwpD(R) the right weak-projective
dimension of R. Similarly, we have lwpD(R) (we drop the unneeded letters r and I, because R is commutative).

M s called weak-projective if wpd(M) = 0, i.e., ExtL(M,N) = 0 for every weak-injective R-module
N.

Remark 3.4 For every ring R and every R-module M, the inequalities wpD(R) < D(R) and wpd(M) <
pd(M) are valid. It is easy to see that wpd(M) = pd(M) for any R-module M if and only if every weak-

projective R-module is projective.

Proposition 3.5 Let R be a semi-Dedekind domain. For any R-module M and an integer n > 0, the following
are equivalent:

(a) wpd(M) < n;

(b) Ext%“(M, N) =0 for any weak-injective R-module N;

(c) E:ct?;rj (M,N) =0 for any weak-injective R-module N and j > 1;

(d) There exists an exact sequence 0 — P, — Py — -+ — P — Py — M — 0, where each P; is weak-
projective.

Proof. (c)= (a) is obvious.

(b)= (c¢) For any weak-injective R-module N, there is a short exact sequence 0 - N - F — L — 0,
where E is injective. Then the sequence Ext’s™ (M, L) — Ext%™(M, N) — Ext's™(M, E) = 0 is exact. Note
that L is weak-injective by Lemma 3.2, so Fxts"™(M,L) = 0 by (b). Hence Ext’;**(M,N) = 0, and (c)
follows by induction.

The proof of (a)=- (b) is similar to that of (b)= (c).

(a) < (d) is straightforward. O

Proposition 3.6 For an R-module M, the following are equivalent:
(a) wpD(R) =0;
(b) Torf (M, A) =0, for all torsion-free R-modules A;
(¢) M has weak dimension < 1;
(d) R is Priifer;
(e) Every R-module is weak-projective.
Proof. (a) = (b) The isomorphism Ezk(M, A®) = Homg(Torf (M, A),Q/Z), together with Lemma 2.2,
proves the result.
b) = (c) see [5, Corollary 2.4].
) is trivial.
(e) see Lemma 2.7.
)

is trivial. O
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Remark 3.7 (a) By Proposition 3.6, wpD(R) measures how far away a domain R is from being a Prifer

domain.
(b) It is well known that R is semihereditary domain if and only if R is Prifer domain.

The proof of the next proposition is standard homological algebra.

Proposition 3.8 Let R be a semi-Dedekind domain, 0 — A — B — C' — 0 an exact sequence of R-modules.
If two of wpd(A), wpd(B), and wpd(C) are finite, so is the third. Moreover,

(a) wpd(B) < maz{wpd(A), wpd(C)}.

(b) wpd(A) < mazx{wpd(B),wpd(C)—1}.

(¢) wpd(C) < maz{wpd(B),wpd(A)+ 1}.

Corollary 3.9 Let R be a semi-Dedekind domain.
(a) If 0 = A — B — C — 0 is an exact sequence of R-modules, where 0 < wpd(A) < oo and B is weak-
projective, then wpd(C) = wpd(A) + 1.
(b) wpD(R) = n if and only if sup{wpd(I):I is any ideal of R}= n —1 for any integer n > 2.
Proof. (a) is true by Proposition 3.8.
(b) For an ideal of R, consider the exact sequence 0 — I — R — R/I — 0. Then (b) follows from (a). O

Theorem 3.10 Let R be a semi-Dedekind domain. Then The following values are identical:
(a) wpD(R);

(b) sup{wpd(M): M is a cyclic R-module};

(¢) sup{wpd(M): M is any R-module};

(d) sup{id(F): F is a weak-injective R-module}.

Proof. (b) < (a) < (c) are obvious.

(¢) < (d) We may assume sup {id(F): F is a weak-injective R-module}=m < oco. Let M be any
R-module and N any weak-injective R-module. Since id(N) < m, it follows that Ext7;™! (M, N) = 0. Hence
wpd(M) < m.

(d) < (b) We may assume sup{wpd(M): M is a cyclic R-module}=n < co. Let N be a weak-injective

R-module and I any ideal, then wpd(R/I) < n. By Proposition 3.5, Ext}s™ (R/I, N) = 0, and so id(N) < n.
O

Proposition 3.11 Let R be a semi-Dedekind domain. Then the following are equivalent:
(a) wpD(R) <1;
(b) Every submodule of a (weak-)projective R-module is weak-projective;

(¢) Every ideal of R is weak-projective.

Proof. (a) = (b) Let N be a submodule of a weak-projective R-module M . Then, for any weak-injective

R-module L, we get an exact sequence

0 = Exth(M, L) — Exth(N, L) — Ext%(M/N, L).
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Note that the last term is zero by (a), hence Exth(N, L) =0, and (b) follows.

(b) = (c) is trivial.

(¢)= (a) Let I be an ideal of R. The exact sequence 0 — I — R — R/I — 0 implies wpd(R/I) < 1 by
Proposition 3.5. So (a) follows from Theorem 3.10 (b). O

It is well known that if M is finitely generated projective R-module, then Hompg (M, R) is finitely generated

projective R-module. Here we have the following corollary.

Corollary 3.12 If R is a semi-Dedekind domain with wpD(R) < 1, then the dual module Homg (M, R) of
any finitely generated R-module M is weak-projective.

In addition, if w.D(R) =1, then the following are equivalent:
(a) Every torsion-free R-module is weak-projective;
(b) M" is weak-projective for every injective R-module M ;
(c) N is weak-projective for every torsion-free R-module N .
Proof. Let M be a finitely generated R-module. Then there exists an exact sequence P — M — 0 with
P finitely generated projective. So we have an R-module exact sequence 0 — Hompr(M,R) — Homg(P, R).
Note that Hompg(P, R) is projective, therefore Homp(M, R) is weak-projective by Proposition 3.11.

Also, if w.D(R) =1, then (a) = (b) = (c) are clear.

(c)= (a) Let N be any torsion-free R-module. There exists an exact sequence 0 — N — N Since

wpD(R) <1 and N is weak-projective by (c), we have that N is weak-projective by Proposition 3.11. O

A ring R is called semi-Artinian if every nonezero cyclic R-module has a nonezero socle. The following
proposition shows that we may compute the weak-projective dimension of semi-Artinian ring using just the

weak-projective dimension of simple modules.

Proposition 3.13 If R is a semi-Artinian semi-Dedekind domain, then wpD(R) = sup{wpd(M): M is a
simple R-module}.

Proof. It suffices to show that wpD(R) < sup{wpd(M): M is a simple R-module}. We may assume that
sup{wpd(M): M is a simple R-module}=n < oco. Let N be a weak-injective R-module and I a maximal

ideal of R. Consider the injective resolution of N
0—-N-—-E'"E' B2 ... 5 g LB ...

Write L = coker(E""% — E"™1). Then Exth(R/I,L) = Ext}y™ (R/I,N) = 0 by Proposition 3.5. Therefore
L is injective by [8, Lemma 4], since R is semi-Artinian. So id(N) < n, and hence wpD(R) < n by Theorem
3.10. O

Proposition 3.14 Let R be a semi-Dedekind domain. Then sup{pd(M): M is a weak-projective R-module} <
wiD(R).
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Proof. Let M be a weak-projective R-module. It is enough to show that pd(M) < wiD(R). We may

assume that wiD(R) =n < co. M admits a projective resolution
s P, —> Py —— P, — Py— M —0.

Let N be any R-module. We have wid(N) < n, thus by Lemma 3.2, there is an exact sequence
0—-N—->E"-F' —-... 5 E"! S E" 0,

where E°, E', ... E™ are weak-injective. Therefore we form a double complex

0 0 0
T T T

0 — Homgr(M,E™ — Hompr(Py,E") — — Hompg(P,,E") —
T T T
T T T

0 — Homgr(M,E') — Homg(Py,E') — —  Homg(P,, E') —
T T T

0 — Hompr(M,E°) — Homg(Py,E°) — —  Homg(P,, E°) —
T T T

0 —  Hompg(Py,N) — —  Homg(P,,N) —
T T
0 0

Note that all rows are exact except for the bottom row, since M is weak-projective and all E’ are
weak-injective; also note that all columns are exact except for the left column since all P; are projective.

Using a spectral sequence argument, we know that the two complexes
0 — Hompr(Po, N) - Hompr(P;,N) — --- — Homp (P, N) — - -

and
0 — Homg(M, E®) — Homgr(M,E") — --- — Homgr(M,E™) — 0

have isomorphic homology groups. Thus E:ct?;rj (M,N)=0 for all j > 1. Hence pd(M) <n. O

It is known that D(R)=sup{pd(M): M is a weak-projective R-module} if R is a Priifer domain, and it is
easy to see that D(R)= wpD(R) if R is a semisimple ring. In general, we have

Proposition 3.15 Let R be a semi-Dedekind domain and M be an R-module. Then D(R) < sup{pd(M):
M is a weak-projective R-module} + wpD(R).

Proof. = We may assume without loss of generality that wpD(R) is finite. Let wpD(R) = m < oo and
Sup{pd(M): M is a weak-projective R-module}=n < oco. If M is an R-module, then wpd(M) < m by

Theorem 3.10. So M admits a weak-projective resolution

0—-P,—Pp1—--—>P—>PFP—>M-—0,
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where each P; is weak-projective, ¢ = 0,1,2,---,m. Let K; = Ker(P; — Pi_1), i = 0,1,2,---,m — 1,

P ,=M, K,,_1 = P,,. Then we have the following short exact sequence

O*)PmﬂpmflﬂKm72*>Oa

0— Km72 - Pm72 - Km73 - Oa

0—-Ky—Py— M —0.

It follows that pd(Kpy—2) < 1+4+n, pd(Kmnm-3) <2+mn,---, pd(M) <m+n, and hence D(R) < m +n. This
completes the proof. O
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