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doi:10.3906/mat-0805-34

Weak-projective dimensions

Mohammad Javad Nikmehr, Zahra Poormahmood and Reza Nikandish

Abstract

In this paper, the notions of weak-projective modules and weak-projective dimension over commutative

domain R are given. It is shown that over semisimple rings with weak global dimension 1, these modules

are equivalent to weak-injective modules. The weak-projective dimension measures how far away a domain

is from being a Prüfer domain. Several properties of these modules are also presented.
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1. Introduction

In this note, R will denote a commutative domain with identity and Q (�= R) will denote its field

of quotients. The R -module Q/R will be denoted by K . Lee in [5] studied the structure of weak-injective

modules. An R -module M is called weak-injective if Ext1R(N, M) = 0 for all R -modules N of weak dimension

≤ 1. In section 2, we introduce a class of R -modules under the name of weak-projective R -modules. We
show that weak-projective R -modules are identical to projective R -modules if and only if R is semisimple.
Recall that R is called Prüfer domain if every finitely generated ideal of R is projective. There are numerous
characterizations of Prüfer domains, which can be found in [3]. We show that each weak-projective R -module
is FP -projective when R is a Noetherian ring. The domain R is called semi-Dedekind if every h-divisible
R -module is pure-injective. For more details of these domains, we refer the reader to [4].

In section 3, we introduce the concept weak-projective dimension wpd(M) of an R -module M and give
some results. We show that this dimension has the properties that we expect of a “dimension” when the domain
is semi-Dedekind.

Throughout this paper, M is an R -module. The notation (w.)D(R) stands for the (weak) global

dimension of R . Also, pd(M) and id(M) denote the projective and injective dimension of M , respectively.

The character module HomZ(M, Q/Z) of an R -module M will be denoted by M b.
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2. Weak-projective modules

Recall that an R -module M is called weak-injective if Ext1R(N, M) = 0, for all R -modules N of weak
dimension ≤ 1.

Definition 2.1 An R -module M is called weak-projective if Ext1R(M, N) = 0 , for every weak-injective R -
module N .

Evidently, direct products and summands of weak-projective R -modules are again weak-projective. All projec-
tive R -modules are trivially weak-projective, but the converse is not true. For example, Q/Z as a Z -module
is weak-projective, but is not projective. Over a semisimple ring R , weak-projective R -modules are projective.
It is obvious that if R is a semisimple ring with w.D(R) = 1, then every R -module M is weak-projective
if and only if M is weak-injective. Also, if R is semisimple and M is a weak-projective R -module, then

Ext1R(M, R) = 0.

A well-known result states that an R -module F is flat if and only if its character module F b is injective.
The following lemma is an analog of this equivalence.

Lemma 2.2 (Lee [5, Lemma 3.1]) An R -module A is torsion-free if and only if Ab is weak-injective.

An R -module M is called FP -injective if Ext1R(N, M) = 0 for all finitely presented R -modules N .

Lemma 2.3 (Lee[5, Lemma 3.2]) For a domain R , the following are equivalent:

(a) R is Prüfer;

(b) Every weak-injective R -module is FP -injective;

(c) Every weak-injective R -module is injective.

We may obtain some elementary results on the notion of the weak-projective modules.

Recall that the R -module M is called FP -projective [6] if Ext1R(M, N) = 0, for every FP -injective

R -module N .

Lemma 2.4 If R is a Noetherian ring and M a weak-projective R -module, then M is FP -projective.

Proof. Let M be a weak-projective R -module. We must prove that Ext1R(M, N) = 0, for any FP -injective
R -module N . Since R is a Noetherian ring, N is an injective R -module, and therefore N is weak-injective.
�

The converse is an easy application of Lemma 2.3.

Lemma 2.5 Let R be a semi-Dedekind domain and M an R -module. Then the following are equivalent:
(a) M is weak-projective;

(b) TorR
1 (M, A) = 0 , for all torsion-free R -modules A ;

(c) pd(M) ≤ 1 .

Proof. (a) ⇒ (b) The isomorphism Ext1R(M, Ab) ∼= HomZ(TorR
1 (M, A), Q/Z), together with Lemma 2.2,

proves the result.
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(b) ⇒(a) This follows from [4, Lemma 4.1].

(b) ⇔ (c) See [4, Lemma 4.9]. �

It is easy to check that the quotient Z -module Z/2Z is weak-projective.

Combining Lemma 2.5, with the simple fact that an R -module D is divisible if and only if Db is
torsion-free gives the next corollary.

Corollary 2.6 Let R be a semi-Dedekind domain and M an R -module. Then M is weak-projective if and

only if TorR
1 (M, Db) = 0 , for all divisible R -modules D .

The following fact can be easily verified, so we omit its proof.

Lemma 2.7 If R is a Prüfer domain, then every R -module is weak-projective.

Lemma 2.8 Let 0 → A → B → C → 0 be an exact sequence such that A and C are weak-projective R -
modules. Then B is weak-projective.

Proof. Let N be a weak-injective R -module. From the induced exact sequence

Ext1R(C, N) → Ext1R(B, N) → Ext1R(A, N),

we have Ext1R(B, N) = 0, since Ext1R(C, N) = Ext1R(A, N) = 0. �

Corollary 2.9 If every submodule and quotient of an R -module M is weak-projective, then M is weak-
projective.

From the previous corollary we have the following example.

Example 2.10 The Z-module Q is weak-projective.

Recall that R is called a Matlis domain if the projective dimension of Q (or, equivalently, K ) is 1. The R -

module C is called Matlis cotorsion if Ext1R(Q, C) = 0, and M is called strongly flat if Ext1R(M, C) = 0 for
every Matlis cotorsion R -module C .

The next result gives a relationship between weak-projective R -modules and strongly flat R -modules.

Lemma 2.11 If R is a Matlis domain and M a strongly flat R -module, then M is weak-projective.

Proof. If M is a strongly flat R -module, then Ext1R(M, N) = 0, for all Matlis cotorsion R -modules N . It
is easy to see that if R is a Matlis domain, then every weak-injective R -module is Matlis cotorsion. �

Lemma 2.12 Let R be a semi-Dedekind domain. If M is a projective R -module and N a weak-projective
R -module, then M ⊗R N is weak-projective.

Proof. The isomorphism TorR
n (M⊗N, A) ∼= M⊗TorR

n (N, A), together with Lemma 2.5, proves the result. �
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The converse is true when R is a local semi-Dedekind domain.
In what follows, σM : M → E(M) denotes the injective envelope of an R -module M . Recall that

an injective envelope σM : M → E(M) has the unique mapping property (see [1]) if for any homomorphism

f : M → N with N injective, there exists a unique homomorphism g : E(M) → N such that gσM = f .

Corollary 2.13 The following statements are equivalent:
(a) R is a Prüfer domain;

(b) Every R -module is weak-projective;

(c) Ext1R(M, N) = 0 , for all weak-injective R -modules N ;

(d) Every weak-injective R -module has an injective envelope with the unique mapping property.

Proof. It is enough to show that (d)⇒ (a).

(d)⇒ (a) Let M be any weak-injective R -module. We have the following exact commutative diagram:

0
↓

0 −→ M −→σM E(M) −→γ L −→ 0
↓0 ↓σLγ ↓σL

E(L) ∼= E(L) ∼= E(L).

Note that σLγσM = 0 = 0σM , so σLγ = 0 by (d). Therefore L = im(γ) ⊆ ker(σL) = 0, and hence M

is injective. Thus (a) follows. �

We end this section with the following characterizations of weak-projective R -modules.

Let � be a class of R -modules and M an R -module. A homomorphism φ ∈ HomR(N, M) with N ∈ �

is called an �-precover of M if the induced map

HomR(1N′ , φ) : HomR(N ′, N) → HomR(N ′, M)

is surjective for all N ′ ∈ � . An �-precover φ ∈ HomR(N, M) is called an �-cover if each γ ∈ HomR(N, N)

satisfying φ = φγ is an automorphism of N . The class � is called a precover(cover) class if every R -module

has an �-precover(�-cover).

The �-preenvelope, �-envelope, preenvelope and envelope classes are defined dually (see [9]). In particular,
if � is the class of weak-injective R -modules, an �-envelope is called a weak-injective envelope.

Proposition 2.14 If M is an R -module, then the following are equivalent:
(a) M is weak-projective;

(b) M is projective with respect to every exact sequence 0 → A → B → C → 0 , where A is weak-injective;

(c) For every exact sequence 0 → K → F → M → 0 , where F is weak-injective, K → F is a weak-injective
preenvelope of K ;
(d) M is cokernel of a weak-injective preenvelope K → F with F projective.
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Proof. (a) ⇒ (b) Let 0 → A → B → C → 0 be an exact sequence, where A is weak-injective. Then

Ext1R(M, A) = 0 by (a). Thus HomR(M, B) → HomR(M, C) → 0 is exact, and (b) holds.

(b)⇒ (a) For every weak-injective R -module N , there is a short exact sequence o → N → E → L → 0

with E injective, which induces an exact sequence HomR(M, E) → HomR(M, L) → Ext1R(M, N) → 0. Since

HomR(M, E) → HomR(M, L) → 0 is exact by (b), we have Ext1R(M, N) = 0, and (a) follows.

(a) ⇒ (c) is easy to verify.

(c) ⇒ (d) Let 0 → K → P → M → 0 be an exact sequence with P projective. Note that P is
weak-injective by hypothesis, thus K → P is a weak-injective preenvelope.

(d) ⇒ (a) By (d), there is an exact sequence 0 → K → P → M → 0, where K → P is a weak-

injective preenvelope with P projective. It gives rise to the exactness of HomR(P, N) → HomR(K, N) →
Ex1

R(M, N) → 0, for each weak-injective R -module N . Note that HomR(P, N) → HomR(K, N) → 0 is exact

by (d). Hence Ext1R(M, N) = 0, as desired. �

3. The weak-projective dimension over semi-Dedekind domains

We begin this section with the definition of weak-injective dimension.

Definition 3.1 (a) For any R -module M , let weak-injective dimension wid(M) of M , denote the smallest

integer n ≥ 0 such that Extn+1
R (N, M) = 0 for every R -module N of weak dimension ≤ 1 . (If no such n

exists, set wid(M) = ∞).

(b) wiD(R) = sup{wid(M) : M is an R -module}.

Lemma 3.2 Let R be a semi-Dedekind domain. For an R -module M , the following statements are equivalent:
(a) wid(M) ≤ n ;

(b) Extn+1
R (N, M) = 0 for all R -modules N of weak dimension ≤ 1 ;

(c) If the sequence 0 → M → E0 → E1 → · · · → En → 0 is exact with E0, E1, · · · , En−1 weak-injective, then
also En is weak-injective.

Proof. (a) ⇒ (b) Use induction on n . Clear if wid(M) = n . If wid(M) ≤ n − 1 resolve N by

0 → K → P → N → 0 with K and P flat. K have weak dimension ≤ 1 by [4, Corollary 4.4], and

Extn+1
R (N, M) ∼= ExtnR(K, M) = 0 by induction hypothesis.

(b) ⇔ (c) follows from the isomorphism Extn+1
R (N, M) ∼= Ext1R(N, En).

(b) ⇒ (a) are trivial. �

Definition 3.3 For an R -module M , let wpd(M) denotes the smallest integer n ≥ 0 such that Extn+1
R (M, N) =

0 for every weak-injective R -module N and call wpd(M) the weak-projective dimension of M . If no such n

exists, set wpd(M) = ∞ .
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Put rwpD(R)= sup{wpd(M) : M is a right R -module} and call rwpD(R) the right weak-projective

dimension of R . Similarly, we have lwpD(R) (we drop the unneeded letters r and l , because R is commutative).

M is called weak-projective if wpd(M) = 0 , i.e., Ext1R(M, N) = 0 for every weak-injective R -module
N .

Remark 3.4 For every ring R and every R -module M , the inequalities wpD(R) ≤ D(R) and wpd(M) ≤
pd(M) are valid. It is easy to see that wpd(M) = pd(M) for any R -module M if and only if every weak-
projective R -module is projective.

Proposition 3.5 Let R be a semi-Dedekind domain. For any R -module M and an integer n ≥ 0 , the following
are equivalent:
(a) wpd(M) ≤ n ;

(b) Extn+1
R (M, N) = 0 for any weak-injective R -module N;

(c) Extn+j
R (M, N) = 0 for any weak-injective R -module N and j ≥ 1 ;

(d) There exists an exact sequence 0 → Pn → Pn−1 → · · · → P1 → P0 → M → 0 , where each Pi is weak-
projective.

Proof. (c)⇒ (a) is obvious.

(b)⇒ (c) For any weak-injective R -module N , there is a short exact sequence 0 → N → E → L → 0,

where E is injective. Then the sequence Extn+1
R (M, L) → Extn+2

R (M, N) → Extn+2
R (M, E) = 0 is exact. Note

that L is weak-injective by Lemma 3.2, so Extn+1
R (M, L) = 0 by (b). Hence Extn+2

R (M, N) = 0, and (c)

follows by induction.

The proof of (a)⇒ (b) is similar to that of (b)⇒ (c).

(a) ⇔ (d) is straightforward. �

Proposition 3.6 For an R -module M , the following are equivalent:
(a) wpD(R) = 0 ;

(b) TorR
1 (M, A) = 0 , for all torsion-free R -modules A ;

(c) M has weak dimension ≤ 1;

(d) R is Prüfer;

(e) Every R -module is weak-projective.

Proof. (a) ⇒ (b) The isomorphism Ex1
R(M, Ab) ∼= HomZ(TorR

1 (M, A), Q/Z), together with Lemma 2.2,
proves the result.

(b) ⇒ (c) see [5, Corollary 2.4].

(c) ⇒ (d) is trivial.

(d) ⇒ (e) see Lemma 2.7.

(e) ⇒ (a) is trivial. �
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Remark 3.7 (a) By Proposition 3.6, wpD(R) measures how far away a domain R is from being a Prüfer
domain.
(b) It is well known that R is semihereditary domain if and only if R is Prüfer domain.

The proof of the next proposition is standard homological algebra.

Proposition 3.8 Let R be a semi-Dedekind domain, 0 → A → B → C → 0 an exact sequence of R -modules.
If two of wpd(A) , wpd(B) , and wpd(C) are finite, so is the third. Moreover,

(a) wpd(B) ≤ max{wpd(A), wpd(C)} .

(b) wpd(A) ≤ max{wpd(B), wpd(C)− 1} .

(c) wpd(C) ≤ max{wpd(B), wpd(A) + 1} .

Corollary 3.9 Let R be a semi-Dedekind domain.
(a) If 0 → A → B → C → 0 is an exact sequence of R -modules, where 0 < wpd(A) < ∞ and B is weak-

projective, then wpd(C) = wpd(A) + 1 .

(b) wpD(R) = n if and only if sup{wpd(I) :I is any ideal of R}= n − 1 for any integer n ≥ 2 .

Proof. (a) is true by Proposition 3.8.

(b) For an ideal of R , consider the exact sequence 0 → I → R → R/I → 0. Then (b) follows from (a). �

Theorem 3.10 Let R be a semi-Dedekind domain. Then The following values are identical:
(a) wpD(R) ;

(b) sup{wpd(M) : M is a cyclic R -module};
(c) sup{wpd(M) : M is any R -module};
(d) sup{id(F ) : F is a weak-injective R -module}.

Proof. (b) ≤ (a) ≤ (c) are obvious.

(c) ≤ (d) We may assume sup {id(F ): F is a weak-injective R -module}=m < ∞ . Let M be any

R -module and N any weak-injective R -module. Since id(N) ≤ m , it follows that Extm+1
R (M, N) = 0. Hence

wpd(M) ≤ m .

(d) ≤ (b) We may assume sup{wpd(M): M is a cyclic R -module}=n < ∞ . Let N be a weak-injective

R -module and I any ideal, then wpd(R/I) ≤ n . By Proposition 3.5, Extn+1
R (R/I, N) = 0, and so id(N) ≤ n .

�

Proposition 3.11 Let R be a semi-Dedekind domain. Then the following are equivalent:
(a) wpD(R) ≤ 1 ;

(b) Every submodule of a (weak-)projective R -module is weak-projective;

(c) Every ideal of R is weak-projective.

Proof. (a) ⇒ (b) Let N be a submodule of a weak-projective R -module M . Then, for any weak-injective
R -module L , we get an exact sequence

0 = Ext1R(M, L) → Ext1R(N, L) → Ext2R(M/N, L).
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Note that the last term is zero by (a), hence Ext1R(N, L) = 0, and (b) follows.

(b) ⇒ (c) is trivial.

(c)⇒ (a) Let I be an ideal of R . The exact sequence 0 → I → R → R/I → 0 implies wpd(R/I) ≤ 1 by

Proposition 3.5. So (a) follows from Theorem 3.10 (b). �

It is well known that if M is finitely generated projective R -module, then HomR(M, R) is finitely generated
projective R -module. Here we have the following corollary.

Corollary 3.12 If R is a semi-Dedekind domain with wpD(R) ≤ 1 , then the dual module HomR(M, R) of
any finitely generated R -module M is weak-projective.

In addition, if w.D(R) = 1 , then the following are equivalent:

(a) Every torsion-free R -module is weak-projective;

(b) M b is weak-projective for every injective R -module M ;

(c) N bb is weak-projective for every torsion-free R -module N .

Proof. Let M be a finitely generated R -module. Then there exists an exact sequence P → M → 0 with
P finitely generated projective. So we have an R -module exact sequence 0 → HomR(M, R) → HomR(P, R).

Note that HomR(P, R) is projective, therefore HomR(M, R) is weak-projective by Proposition 3.11.

Also, if w.D(R) = 1, then (a) ⇒ (b) ⇒ (c) are clear.

(c)⇒ (a) Let N be any torsion-free R -module. There exists an exact sequence 0 → N → N bb . Since

wpD(R) ≤ 1 and N bb is weak-projective by (c), we have that N is weak-projective by Proposition 3.11. �

A ring R is called semi-Artinian if every nonezero cyclic R -module has a nonezero socle. The following
proposition shows that we may compute the weak-projective dimension of semi-Artinian ring using just the
weak-projective dimension of simple modules.

Proposition 3.13 If R is a semi-Artinian semi-Dedekind domain, then wpD(R) = sup{wpd(M) : M is a

simple R -module}.

Proof. It suffices to show that wpD(R) ≤ sup{wpd(M): M is a simple R -module}. We may assume that

sup{wpd(M): M is a simple R -module}=n < ∞ . Let N be a weak-injective R -module and I a maximal
ideal of R . Consider the injective resolution of N

0 → N → E0 → E1 → E2 → · · · → En−1 → En → · · · .

Write L = coker(En−2 → En−1). Then Ext1R(R/I, L) = Extn+1
R (R/I, N) = 0 by Proposition 3.5. Therefore

L is injective by [8, Lemma 4], since R is semi-Artinian. So id(N) ≤ n , and hence wpD(R) ≤ n by Theorem
3.10. �

Proposition 3.14 Let R be a semi-Dedekind domain. Then sup{pd(M) : M is a weak-projective R -module}≤
wiD(R) .

634



NIKMEHR, POORMAHMOOD, NIKANDISH

Proof. Let M be a weak-projective R -module. It is enough to show that pd(M) ≤ wiD(R). We may

assume that wiD(R) = n < ∞ . M admits a projective resolution

· · · → Pn → Pn−1 → · · · → · · ·P1 → P0 → M → 0.

Let N be any R -module. We have wid(N) ≤ n , thus by Lemma 3.2, there is an exact sequence

0 → N → E0 → E1 → · · · → En−1 → En → 0,

where E0, E1, · · · , En are weak-injective. Therefore we form a double complex

0 0 0
↑ ↑ ↑

0 → HomR(M, En) → HomR(P0, E
n) → · · · → HomR(Pn, En) → · · ·

↑ ↑ ↑
...

...
...

↑ ↑ ↑
0 → HomR(M, E1) → HomR(P0, E

1) → · · · → HomR(Pn, E1) → · · ·
↑ ↑ ↑

0 → HomR(M, E0) → HomR(P0, E
0) → · · · → HomR(Pn, E0) → · · ·

↑ ↑ ↑
0 → HomR(P0, N) → · · · → HomR(Pn, N) → · · ·

↑ ↑
0 0.

Note that all rows are exact except for the bottom row, since M is weak-projective and all Ei are
weak-injective; also note that all columns are exact except for the left column since all Pi are projective.

Using a spectral sequence argument, we know that the two complexes

0 → HomR(P0, N) → HomR(P1, N) → · · · → HomR(Pn, N) → · · ·

and
0 → HomR(M, E0) → HomR(M, E1) → · · · → HomR(M, En) → 0

have isomorphic homology groups. Thus Extn+j
R (M, N) = 0 for all j ≥ 1. Hence pd(M) ≤ n . �

It is known that D(R)=sup{pd(M): M is a weak-projective R -module} if R is a Prüfer domain, and it is

easy to see that D(R)= wpD(R) if R is a semisimple ring. In general, we have

Proposition 3.15 Let R be a semi-Dedekind domain and M be an R -module. Then D(R) ≤ sup{pd(M) :

M is a weak-projective R -module} + wpD(R) .

Proof. We may assume without loss of generality that wpD(R) is finite. Let wpD(R) = m < ∞ and

Sup{pd(M): M is a weak-projective R-module}=n < ∞ . If M is an R -module, then wpd(M) ≤ m by
Theorem 3.10. So M admits a weak-projective resolution

0 → Pm → Pm−1 → · · · → P1 → P0 → M → 0,
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where each Pi is weak-projective, i = 0, 1, 2, · · · , m . Let Ki = Ker(Pi → Pi−1), i = 0, 1, 2, · · · , m − 1,
P−1 = M , Km−1 = Pm . Then we have the following short exact sequence

0 → Pm → Pm−1 → Km−2 → 0,

0 → Km−2 → Pm−2 → Km−3 → 0,

...

0 → K0 → P0 → M → 0.

It follows that pd(Km−2) ≤ 1 + n , pd(Km−3) ≤ 2 + n , · · · , pd(M) ≤ m + n , and hence D(R) ≤ m + n . This
completes the proof. �
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