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GPQ modules and generalized Armendariz modules

Liang Zhao, Xiaosheng Zhu

Abstract

Let MR be a right R -module. We introduce the concept of right generalized p.q.-Baer modules (or

simply, right GPQ modules) to extend the notion of right p.q.-Baer modules. We study on the relationship

between the GPQ property of a module MR and various quasi-Armendariz properties. We prove that every

right GPQ module is a quasi-Armendariz module. As a sequence, we obtain a general form of some known

results considering the p.q.Baer property of a ring, some known results are extended. Moreover, we prove

that for the formal triangular ring R constructed from a pair of rings S, T and a bimodule SMT , R is weak

Armendariz if and only if (1) S and T are weak Armendariz rings. (2) SM and MT are weak Armendariz

as a left S -module and right R -module. (3) If s(x)s
′
(x) = t(x)t

′
(x) = 0, then s(x)M [x] ∩ M [x]t

′
(x) = 0.

This gives the relationship of weak Armendarizness between R and S, T,S MT , which plays a very important

role in ring theory.
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1. Introduction

Throughout this paper, all rings are associative with identity and modules are unital right modules and
α : R → R is an endomorphism of the ring R . Clark defined quasi-Baer rings in [9] and use them to characterize
when a finite dimensional algebra with unity over an algebraically closed field is isomorphic to a twisted matrix
units semigroup algebra. A ring R is called quasi-Baer if the right annihilator of each right ideal of R is
generated by an idempotent. As a generalization of quasi-Baer rings, Birkenmeier [5] introduced the concept of

principally quasi-Baer rings. A ring R is called right principally quasi-Baer (or simply right p.q.-Baer) if the
right annihilator of a principal right ideal of R is generated by an idempotent. Similarly, left p.q.-Baer rings
can be defined. A ring R is called p.q. -Baer if it is both right and left p.q.-Baer. Another generalization of
Baer rings is a p.p.-ring. A ring R is called a right (resp. left) p.p.-ring [6] if the right (resp. left) annihilator
of every element of R is generated by an idempotent. R is called a p.p. -ring if it is both right and left p.p.

An ideal I of R is said to be right (resp. left) s-unital [18] if, for each a ∈ I there exists an element

x ∈ I such that ax = a (resp. xa = a). Note that if I and J are right s-unital ideal of R , then so is I ∩ J (if

a ∈ I ∩ J , then a ∈ aIJ ⊆ a(I ∩ J)). It is well known that I is right s-unital if and only if R/I is flat as a left
R -module if and only if I is pure as a left ideal of R .
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For a subset X of a module MR , let rR(X) = {r ∈ R : Xr = 0} . In [15], Lee-Zhou introduced Baer

modules, quasi-Baer modules, p.p.-modules and reduced modules as follows: (1) MR is called Baer if, for any

subset X of M , rR(X) = eR where e2 = e ∈ R . (2) MR is called quasi-Baer if, for any submodule N of

M , rR(N) = eR where e2 = e ∈ R . (3) MR is called p.p. if, for any m ∈ M , rR(m) = eR where e2 = e ∈ R .

(4)MR is said to be reduced if, for any m ∈ M and a ∈ R , ma = 0 implies mR ∩ Ma = 0. It is clear that R

is reduced if and only if RR is a reduced module. Recently, Baser et al. introduced the notion of principally

quasi-Baer modules. A module MR is called principally quasi-Baer [3] (or simply p.q. -Baer ) module if,

for any m ∈ M , rR(mR) = eR , where e2 = e ∈ R . It is clear that R is a right p.q. -Baer ring if and only if RR

is a p.q. -Baer module. Moreover, every quasi-Baer module is p.q.-Baer and every Baer module is quasi-Baer.

We introduce the concept of right generalized p.q.-Baer modules (or simply right GPQ modules) to extend

the notion of right p.q.-Baer modules. We prove that NR is a right GPQ module if and only if Mn(N) is a right

GPQ module and MR is a right GPQ module if and only if M [x]R[x] is a right GPQ module. We study the

relationship between the GPQ property of a module MR and various quasi-Armendariz properties (including

skew power series, skew Laurent polynomials and skew polynomials). It is shown that every right GPQ module
is a quasi-Armendariz module. As an immediate consequence of these facts, we obtain a unified form of some
well-known results considering the p.q.Baer property of a ring. We show that if R is an α -compatible ring,
then R is a right p.q.-Baer ring if and only if R[x; α] is a right p.q.-Baer-ring. We prove, among others, that

the trivial extension T (R, R) of R by R is a weak Armendariz ring if and only if the following two conditions

are satisfied: (1) R is a weak Armendariz ring. (2) If f(x)g(x) = 0 in R[x] , then f(x)R[x] ∩ R[x]g(x) = 0.

2. GPQ modules and quasi-Armendariz modules

Following [4], MR is called quasi-Armendariz if, whenever m(x)R[x]f(x) = 0 where m(x) =
∑n

i=0 mix
i ∈

M [x] and f(x) =
∑s

j=0 ajx
j ∈ R[x] , then miRaj = 0 for all i and j . It is clear that R is a quasi-Armendariz

ring if and only if RR is a quasi-Armendariz right R -module. Note that every reduced module is a quasi-
Armendariz module.

Our focus in this section is to introduce the concepts of right GPQ modules and quasi-Armendariz
modules relative to skew power series modules, skew Laurent polynomial modules and skew polynomial modules,
respectively. Moreover, we study on the relationship between the GPQ property of a module MR and those of
various quasi-Armendariz properties.

We first give the notion of a right GPQ module which is a generalization of right p.q.-Baer modules. We
begin with the following definition.

Definition 2.1. A module MR is called right GPQ if the right annihilator rR(mR) is left s-unital as an ideal
of R for any m ∈ M .

The left version for a left R -module can be defined similarly. It is obvious that every right p.q. -Baer
module is a right GPQ module. Moreover, if M is a bimodule RMR , then every left p.p. module is right GPQ
by [10, Proposition 1]. The following example shows that there exists a right GPQ module which is neither p.p.
nor p.q.-Baer.

Example 2.1 (see 17, Example 2.5) Let Z be the ring of integers. We consider the ring
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S = (
∞∏

i=1

Z/2Z)/(
∞⊕

i=1

Z/2Z).

It is clear that S is a Boolean ring. Let R = S[[x]] , then RR is a right GPQ module by [17 , Example

2.5] , but it is neither p.p. nor p.q.-Baer.

Recall that a module MR is called semicommutative if rR(m) is an ideal of R for all m ∈ M , or

equivalently, if for any m ∈ M and a ∈ R , then ma = 0 implies that mRa = 0. It was shown in [1] that if
MR is a semicommutative module, then MR is a p.q. -Baer module if and only if the right annihilator of every
finitely generated submodule is generated (as a right ideal) by an idempotent. Similarly, we have the following

Lemma 2.1 The following conditions are equivalent for a module MR :

(1) MR is a right GPQ module.

(2) If N is a finitely generated submodule of MR then for all a ∈ rR(N), a ∈ rR(N)a.

Proof. The implication (2) ⇒ (1) is straightforward. Now suppose that MR is a right GPQ module. Let

N = m1R + m2R + · · · + mnR be a finitely generated submodule of MR , then rR(N) = ∩n
i=1rR(miR). If

a ∈ rR(N), then a ∈ rR(miR) for each i . Since MR is a right GPQ module, there exists ti ∈ rR(miR) such

that a = tia for each i . So we have ta = a , where t = tntn−1 · · · t1 ∈ rR(N). This yields desired result.

Let n be a positive integer and let Mn(R) be the ring of n× n matrixes over R . For a module NR , we

denote Mn(N) the formal n × n matrixes over N . Then Mn(N) is an Abelian group under obvious addition

operation. Moreover, Mn(N) becomes a module over Mn(R) under the usual scalar product operation. The
next result shows one way to build new GPQ -modules from old ones. �

Proposition 2.1 NR is a right GPQ module if and only if Mn(N) is a right GPQ module.

Proof. Suppose that NR is a right GPQ module and Ñ = (nij) ∈ Mn(N). Let A = (aij) ∈ Mn(R) is

such that A ∈ rMn(R)(ÑMn(R)), then we have ÑMn(R)A = 0. Let Eij denote the (i, j)-matrix unit. Then

(
∑

p,q npqEpq)rEij(
∑

s,t astEst) = 0 for any r ∈ R and any i and j , where npq is the element of Ñ in (p, q)

and ast is the element of A in (s, t). It is easy to see that
∑

p,t npirajtEpt = 0, this shows that npirajt=0 for

any p and t . Hence ajt ∈ rR(npiR) for all i, j, t and p . Then ast ∈ rR(
∑

i,j nijR) for all s, t , and so there

exists c ∈ rR(
∑

i,j nijR) such that ast = cast for all s, t by Lemma 2.1. Now we have the following equation

(†).

A =

⎛
⎜⎜⎜⎝

c 0 · · · 0
0 c · · · 0
...

...
. . .

...
0 0 · · · c

⎞
⎟⎟⎟⎠A (†), ÑMn(R)

⎛
⎜⎜⎜⎝

c 0 · · · 0
0 c · · · 0
...

...
. . .

...
0 0 · · · c

⎞
⎟⎟⎟⎠ = 0. (‡)

It is straightforward to verify that (‡) is also true. This implies that Mn(N) is a right GPQ module.

Conversely, if Mn(N) is a right GPQ module. Let n ∈ N and a ∈ R such that a ∈ rR(nR). Let
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Ñ =

⎛
⎜⎜⎜⎝

n 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎞
⎟⎟⎟⎠ and A =

⎛
⎜⎜⎜⎝

a 0 · · · 0
0 0 · · · 0
...

...
. . . 0

0 0 · · · 0

⎞
⎟⎟⎟⎠ .

It is clear that ÑMn(R)A=0, so A ∈ rMn(R)(ÑMn(R)). Since Mn(N) is a right GPQ module, there

exists B = (bij) ∈ Mn(R) such that B ∈ rMn(R)(ÑMn(R)) and A = BA . Since ÑMn(R)B=0, it follows that

nRb11 = 0. This implies that b11 ∈ rR(nR). It is easy to see that a = b11a and so NR is a right GPQ module.
�

Lemma 2.2 Let MR be a right R -module. If MR is a right GPQ module, then MR is a quasi-Armendariz
module.
Proof. Assume that MR is a right GPQ module. Let m(x) = m0 + m1x + · · · + mnxn ∈ M [x] and

f(x) = a0 + a1x + · · ·+ asx
s ∈ R[x] such that m(x)R[x]f(x) = 0 with mi ∈ M and aj ∈ R . We shall prove

that miRaj = 0 for all i, j . Let c be an arbitrary element of R . Then we have the following equation:

0 = m(x)cf(x) = m0ca0 + · · ·+ (mncas−2 + mn−1cas−1 + mn−2cas)xn+s−2

+(mncas−1 + mn−1cas)xn+s−1 + mncasx
n+s.

(∗)

It follows that mncas = 0, and so as ∈ rR(mnR). Since rR(mnR) is left s-unital by hypothesis, there

exists tn ∈ rR(mnR) such that tnas = as . Replacing c by ctn in equation (∗), we obtain

m0ctna0 + · · ·+ (mn−1ctnas−1 + mn−2ctnas)xn+s−2 + mn−1ctnasx
n+s−1 = 0

.
Then we have mn−1cas = mn−1ctnas = 0, so as ∈ rR(mnR + mn−1R). Since rR(mn−1R) is left

s-unital, there exists h ∈ rR(mn−1R) such that has = as . If we put tn−1 = htn , then tn−1as = as and

tn−1 ∈ rR(mnR + mn−1R). Next, replacing c by ctn−1 in equation (∗), we obtain mn−2cas = 0 in the same

way as above. Hence we have as ∈ rR(mnR+mn−1R+mn−2R). Continuing this process, we obtain miRas = 0
for all i = 1, 2, · · · , n . Thus we get

(m0 + m1x + · · ·+ mnxn)R[x](a0 + a1x + · · ·+ as−1x
s−1) = 0.

Using induction on m+n , we obtain miRaj = 0 for all i, j . This implies that MR is a quasi-Armendariz

module, as desired. �

The following example shows that there exists a quasi-Armendariz module MR which is not right GPQ.

Example 2.2 (see 7, Example 2.3) For a given field F . Let

S = {(an)∞n=1 ∈
∏

F |an is eventually constant},

which is a subring of the countably infinite direct product
∏

F . Then the ring S is a commutative von Neumann

regular ring. Let R = S[[x]] . It is clear that S is a reduced ring, it follows from [17 , Example 2.4] that R is a
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reduced ring and so R is Armendariz as a right R -module. This implies that R is quasi-Armendariz as a right
R -module. But R is neither right p.q.Baer by [8, Example 3.6] nor GPQ as a right R -module by [17 , Example

2.4] .

Lemma 2.3. Let MR be a right R -module. If M [x]R[x] is a right GPQ module, then MR is a right GPQ

module.
Proof. Let m be any element of M . Suppose that M [x]R[x] is a right GPQ module, then rR[x](mR[x]) is

left s-unital. Hence for any a ∈ rR(mR), there exists a polynomial f(x) ∈ R[x] such that f(x)a = a . Let

b0 be the constant term of f(x). Then b0 ∈ rR(mR) and b0a = a . This implies that rR(mR) is left s-unital. �

In view of the foregoing lemma, we are now in a position to give the following characterization of GPQ
modules.

Proposition 2.2 Let MR be a right R -module. Then MR is a right GPQ module if and only if M [x]R[x] is

a right GPQ module.

Proof. This follows directly from Lemma 2.2, Lemma 2.3 and [18, Theorem 1]. �

Note that if MR is a p.q.-Baer module and let m ∈ M . Then rR(mR) = eR for some idempotent

e2 = e ∈ R , and so R/rR(mR) = R/eR ∼= (1 − e)R is projective. Therefore a p.q.-Baer module satisfies the
hypothesis of Proposition 2.2, hence we have the following corollary.

Corollary 2.1 [3, Theorem 11] Let MR be a right R -module. Then MR is a p.q.Baer-module if and only if

M [x]R[x] is a p.q.Baer-module.

Based on the fact that if R is a commutative ring then MR is a p.p.-module if and only if MR is a
p.q.Baer-module. We have the following corollaries.

Corollary 2.2 Assume that R is a commutative ring. Then MR is a p.p.-module if and only if M [x]R[x] is

a p.p.-module.

Corollary 2.3 [8, Theorem 3.1] A ring R is a right p.q.Baer-ring if and only if R [x ] is a right p.q.Baer-ring.

In [15], Lee-Zhou introduced the following notation. For a module MR , we consider M [[x; α]] =

{
∑∞

i=0 mix
i : mi ∈ M} . Then M [[x; α]] becomes a module over R[[x; α]] with the usual addition and the

following scalar product operation: For m(x) =
∑∞

i=0 mix
i ∈ M [[x; α]] and f(x) =

∑∞
j=0 ajx

j ∈ R[[x; α]] ,

m(x)f(x) =
∑

k(
∑

i+j=k miα
i(aj))xk . The module M [[x; α]] is called the skew power series extension of M .

Following [11], a ring R is called α -compatible if for each a, b ∈ R, ab = 0 ⇔ aα(b) = 0. According to

Krempa [13], an endomorphism α of a ring R is called to be rigid if aα(a) = 0 implies a = 0 for a ∈ R . A

ring R is said to be α -rigid if there exists a rigid endomorphism α of R . It was shown in [11, Lemma 2.2]
that R is α -rigid if and only if R is α -compatible and reduced. Thus the α -compatible ring is a generalization
of α -rigid rings to the more general case where R is not assumed to be reduced. We extend the definition of
an α -compatible ring to the version of modules as follows.

Definition 2.2 A module MR is called α-compatible if, for any m ∈ M and any a ∈ R , ma = 0 if and only
if mα(a) = 0 .
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The left version for a left R -module can be defined similarly. Motivated by the results in Baser [4], Lee

and Zhou [15], we introduce the concept of power series α -quasi-Armendariz modules which is the power
series version of quasi-Armendariz modules.

Definition 2.3 MR is called a power series α-quasi-Armendariz module if the following conditions are satisfied:

(1) MR is α-compatible.

(2) For any m(x) =
∑∞

i=0 mix
i ∈ M [[x; α]] and f(x) =

∑∞
j=0 ajx

j ∈ R[[x; α]] , m(x)R[[x; α]]f(x) = 0

implies that miRaj = 0 for all i and j .

Proposition 2.3 Let MR be a α-compatible module. Then we have the following:

(1) If MR is a right GPQ module, then MR is a power series α-quasi-Armendariz module.

(2) If M [[x; α]]R[[x;α]] is a right GPQ module, then MR is right GPQ.

Proof. (1) Assume that m(x) =
∑∞

i=0 mix
i ∈ M [[x; α]] and f(x) =

∑∞
j=0 ajx

j ∈ R[[x; α]] such that

(
∑∞

i=0 mix
i)R[[x; α]](

∑∞
j=0 ajx

j) = 0 with mi ∈ M , aj ∈ R . Let c be an arbitrary element of R . Then we

have the following equation:

∞∑
k=0

(
∑

i+j=k

mix
icajx

j) =
∞∑

k=0

(
∑

i+j=k

miα
i(caj)xi+j) = 0. (∗)

We will show that miRaj = 0 for all i and j . We proceed by induction on i + j . It is true for i + j = 0

since m0Rb0 = 0 by (∗). Suppose that miRaj = 0 is true for i + j � n − 1. Then aj ∈ rR(miR) for

j = 0, 1, · · · , n − 1 and i = 0, 1, · · · , n − 1 − j . Since MR is a right GPQ module, there exists tij ∈ rR(miR)

such that tijaj = aj for j = 0, 1, · · · , n− 1 and i = 0, 1, · · · , n− 1 − j . From (∗), we have

∑
i+j=k

miα
i(caj) = 0 for all k ≥ 0. (†)

Let fj = tn−1−j, j · · · t1,j for j = 0, 1, · · · , n − 1. It is clear that fjaj = aj , and so fj ∈ rR(m0R) ∩
rR(m1R) ∩ · · · ∩ rR(mn−1−jR). If k = n , then the equation (†) becomes

m0can + m1α(can−1) + · · ·+ mnαn(ca0) = 0. (�)

Replacing c by cf0 in (�), we obtain m0cf0an + m1α(cf0an−1) + · · · + mnαn(cf0a0) = 0. Since MR

is α -compatible and m0Rfj = m1Rfj = · · · = mn−1−jRfj = 0 for j = 0, 1, · · · , n − 1, it follows that

mnαn(cf0a0) = mncf0a0 = mnca0 = 0. Hence mnRa0 = 0. Continuing this process by replacing c by cfj in

(†) and using α -compatibility of MR , we obtain miRaj = 0 for all i + j = n . This shows that MR is power

series α -quasi-Armendariz.

(2) The proof is similar to that of Lemma 2.3. �

Corollary 2.4 Let R be an α-compatible ring. If R is right GPQ as a module, then R is a power series
α-quasi-Armendariz ring.
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For a module MR , let M [x; α] = {
∑s

i=0 mix
i : s ≥ 0, mi ∈ M} . Then M [x; α] becomes a module over

R[x; α] . Recall that MR is called α -quasi-Armendariz module if the following conditions are satisfied:

(1) MR is α -compatible .

(2) m(x)R[x; α]f(x) = 0 with m(x) =
∑s

i=0 mix
i ∈ M [x; α] and f(x) =

∑t
j=0 ajx

j ∈ R[x; α] implies

that miRaj = 0 for all i and j .

By analogy with the case of Lemma 2.3 and the proof of Proposition 2.3 we give the following proposition.

Proposition 2.4 Let MR be an α-compatible module. Then MR is a right GPQ module if and only if
M [x; α]R[x;α] is a right GPQ module. In this case, MR is α-quasi-Armendariz.

Corollary 2.5 Let R be an α-compatible ring. Then R is a right p.q.-Baer ring if and only if R[x; α] is a
right p.q.-Baer-ring.

For a module MR , consider M [x, x−1; α] = {
∑t

i=−s mix
i : s ≥ 0, t ≥ 0, mi ∈ M} . Then M [x, x−1; α]

becomes a module over R[x, x−1; α] . We give the following definition by considering the definition of a quasi-
Armendariz module.

Definition 2.4 A module MR is called Laurent α-quasi-Armendariz if the following conditions are satisfied:

(1) MR is α-compatible.

(2) For any m(x) =
∑t

i=−s mix
i ∈ M [x, x−1; α] and f(x) =

∑β
j=−α ajx

j ∈ R[x, x−1; α] ,

m(x)R[x, x−1; α]f(x) = 0 implies that miRaj = 0 for all i and j .

Proposition 2.5 Let α be an automorphism of a ring R and let MR be an α-compatible module. Then MR

is a right GPQ module if and only if M [x, x−1; α]R[x,x−1;α] is a right GPQ module. In this case, MR is Laurent

α-quasi-Armendariz.

Corollary 2.6 Let R be an α-compatible ring. Then R is a right p.q.-Baer ring if and only if R[x, x−1; α] is
a right p.q.-Baer-ring.

Corollary 2.7 Let R be an α-rigid ring. Then R is a right p.q.-Baer ring if and only if R[x, x−1; α] is a
right p.q.-Baer-ring.

3. Related topics

In this section we relate the problem on the weak Armendariz property of a module to the formal
triangular matrix ring constructed from a pair of rings S, T and a bimodule SMT . Due to Lee and Wong [14],

a ring R is called weak Armendariz if for given f(x) = a0 + a1x and g(x) = b0 + b1x ∈ R[x] , f(x)g(x) = 0

implies that aibj = 0 for each i, j (the converse is obviously true).

We say a module MR is a weak Armendariz module if whenever m(x)f(x) = 0 where m(x) = m0+m1x ∈
M [x] and f(x) = a0 + a1x ∈ R[x] , then miaj = 0 for each i, j . It is obvious that Armendariz modules are

weak Armendariz. Note that there exists a weak Armenariz module MR which is not right GPQ by Example
2.2. The following example shows that there exists a weak Armendariz module which is not Armendariz.

Example 3.1 Let R = Z3[x, y]/(x3, x2y2, y3) , where Z3 is the Galois field of order 3. Z3[x, y] is the polynomial

643



ZHAO, ZHU,

ring with two indeterminates x, y over Z3 , and (x3, x2y2, y3) is the ideal of Z3[x, y] generated by x3, x2y2, y3 .

Let R[t] be the polynomial ring with an indeterminate t over R . Since (x̄+ȳt)3 = (x̄+ȳt)(x̄2+2x̄ȳt+ȳ2t2) = 0 ,

but x̄ȳ2 �= 0 . Then RR is not Armendariz, but it is weak Armendariz by [14, Example 3.2].

Proposition 3.1 . If MR be a reduced module and R is a reduced ring. Then MR is a weak Armendariz
module if and only if its torsion submodule T (M) is weak Armendariz as a right R -module.

Proof. If T (M) is weak Armendariz. Let m(x) = m0 + m1x ∈ M [x] and f(x) = a0 + a1x ∈ R[x] such

that m(x)f(x) = 0. Then we have m0a0 = 0, m0a1 + m1a0 = 0, m1a1 = 0. we can assume a0 �= 0. If

we multiply the second equation by a0 from the right, we can obtain that m(x) ∈ T (M)[x] by the hypoth-

esis. Since T (M) is weak Armendariz, it follows that miaj = 0 for each i, j . The other implication is trivial. �

Given a pair of rings S, T and a bimodule SMT , let R =
(

S M
0 T

)
denote the set

of all symbols
(

s m
0 t

)
, where s ∈ S, t ∈ T , m ∈ M . It is straightforward to verify that R is a ring with

the usual rules for addition and the following multiplication of matrices:

(
s m
0 t

) (
s
′

m
′

0 t
′

)
=

(
ss

′
sm

′
+ mt

′

0 tt
′

)
.

The ring R above constructed from S, T and SMT is called the formal triangular matrix ring. Note that
if M is an (S, T )-bimodule, then M [x] is an (S[x], T [x])-bimodule.

The rest of this section is devoted to a discussion of some basic facts concerning the foregoing formal
triangular matrix ring. The following proposition gives the relationship of weak Armendariz property between
R, S, T and SM , MT .

Proposition 3.2 Suppose that S and T are two rings, M is an (S ,T )-bimodule and R is the formal triangular
matrix ring constructed from S, T and SMT . Then R is a weak Armendariz ring if and only if the following
three conditions hold:

(1) S and T are weak Armendariz rings.

(2) SM and MT are weak Armendariz as a left S -module and right R -module.

(3) If s(x)s
′
(x) = t(x)t

′
(x) = 0 , then s(x)M [x] ∩ M [x]t

′
(x) = 0 .

Proof. First we shall prove that R is a weak Armendariz ring if the given three conditions are satisfied.
Suppose that f(x)g(x) = 0 with

f(x) =
(

s0 m0

0 t0

)
+

(
s1 m1

0 t1

)
x, g(x) =

(
s
′

0 m
′

0

0 t
′

0

)
+

(
s
′

1 m
′

1

0 t
′

1

)
x ∈ R[x].

Let s(x) = s0 + s1x , s
′
(x) = s

′

0 + s
′

1x , m(x) = m0 + m1x , m
′
(x) = m

′

0 + m
′

1x and t(x) = t0 + t1x ,

t
′
(x) = t

′

0 + t
′

1x . Then s(x), s
′
(x) ∈ S[x] , m(x), m

′
(x) ∈ M [x] and t(x), t

′
(x) ∈ T [x] . It is easy to see:

[(
s0 m0

0 t0

)
+

(
s1 m1

0 t1

)
x

] [(
s
′

0 m
′

0

0 t
′

0

)
+

(
s
′

1 m
′

1

0 t
′

1

)
x

]
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=
(

s(x)s
′
(x) s(x)m

′
(x) + m(x)t

′
(x)

0 t(x)t
′
(x)

)
=

(
0 0
0 0

)
.

Thus s(x)s
′
(x) = 0, t(x)t

′
(x) = 0 and s(x)m

′
(x) + m(x)t

′
(x) = 0. Since S and T are both weak

Armendariz rings, we have sis
′

j = 0 and tit
′

j = 0 for each i, j . Moreover, s(x)m
′
(x) = −m(x)t

′
(x) ∈

s(x)M [x] ∩ M [x]t
′
(x) = 0 by (3). It follows that s(x)m

′
(x) = m(x)t

′
(x) = 0. Since SM and MT are weak

Armendariz as a left S -module and right R -module by (2), we have sim
′

j = 0 and mit
′

j = 0 for each i, j .

Therefore

(
si mi

0 ti

) (
s
′

j m
′

j

0 t
′

j

)
=

(
sis

′

j sim
′

j + mit
′

j

0 tit
′

j

)
=

(
0 0
0 0

)

for all i and j . This shows that the desired implication is established.

Conversely, if R is a weak Armendariz ring. We shall prove that the other implication is true.

(1) This is because

S ∼=
{(

s 0
0 0

)
|s ∈ S

}
, T ∼=

{(
0 0
0 t

)
|t ∈ T

}
.

(2) Let s(x) = s0+s1x ∈ S[x] , t(x) = t0+t1x ∈ T [x] and m(x) = m0 +m1x , m
′
(x) = m

′

0+m
′

1x ∈ M [x] .

Suppose s(x)m(x) = m
′
(x)t(x) = 0. Then

[(
s0 0
0 0

)
+

(
s1 0
0 0

)
x

] [(
0 m0

0 0

)
+

(
0 m1

0 0

)
x

]
=

(
s (x) 0

0 0

) (
0 m (x)
0 0

)

=
(

0 s(x)m(x)
0 0

)
=

(
0 0
0 0

)
.

Since R is a weak Armendariz ring, we have
(

si 0
0 0

)(
0 mj

0 0

)
=

(
0 0
0 0

)
for each i, j . This

implies that simj = 0 for each i, j . Therefore SM is weak Armendariz as a left S -module. The argument that

MT is weak Armendariz as a right R -module is similar.

(3) Note that if R is weak Armendariz, we can prove that R[x] is weak Armendariz by a similar

way in [2, Theorem 2]. Assume that s(x)s
′
(x) = t(x)t

′
(x) = 0 and s(x)m(x) = −m

′
(x)t

′
(x) �= 0 with

m(x), m
′
(x) ∈ M [x] . Then

[(
s (x) 0

0 t (x)

)
+

(
0 m

′
(x)

0 0

)
y

]
·
[(

s
′
(x) 0
0 t

′
(x)

)
+

(
0 m (x)
0 0

)
y

]
= 0,

but (
s (x) 0

0 t (x)

)(
0 m (x)
0 0

)
�=

(
0 0
0 0

)
.

This is a contradiction. It follows that (3) is true, as desired. �
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Given a ring R and a bimodule RMR , the trivial extension of R by M is the ring T (R, M) = R
⊕

M

with the usual addition and the multiplication

(r1, m1)(r2, m2) = (r1r2, r1m2 + m1r2).

This is isomorphic to the ring of all matrix
(

r m
0 r

)
, where r ∈ R , m ∈ M and the usual matrix

operations are used. Note that if M is an (R, R)-bimodule, then M [x] is an (R[x], R[x])-bimodule and

T (R[x], M [x])=T (R, M)[x] .

As an immediate consequence of the foreging proposition we have the following characterization consid-
ering the trivial extension for a given ring R and a module RMR .

Corollary 3.1 Let M be an (R, R)-bimodule. Then the trivial extension T (R, M) is a weak Armendariz ring
if and only if the following three conditions hold:

(1) R is a weak Armendariz ring.

(2) M is a left and right weak Armendariz R -module.

(3) If f(x)g(x) = 0 in R[x] , then f(x)M [x] ∩ M [x]g(x) = 0 .

As an application, we consider the case when the trivial extension T (R, R) of R by R is weak Armendariz
if R is a weak Armendariz ring.

Corollary 3.2 The trivial extension T (R, R) is a weak Armendariz ring if and only if the following two
conditions are satisfied:

(1) R is a weak Armendariz ring.

(2) If f(x)g(x) = 0 in R[x] , then f(x)R[x] ∩ R[x]g(x) = 0 .

The following example shows that the condition If f(x)g(x) = 0 in R[x] , then f(x)M [x]∩M [x]g(x) = 0
in Corollary 3.2 is not superfluous.

Example 3.2 Let S be a reduced ring. Then the trivial extension T (S, S) is an Armendariz ring by [14 ,

Theorem 2.3] , and hence T (S, S) is weak Armendariz. Let R = T (S, S) , we prove that T (R, R) is not weak
Armendariz. In fact, let

f (x) =

⎛
⎜⎜⎝

(
0 1
0 0

) (
0 0
0 0

)
(

0 0
0 0

) (
0 1
0 0

)
⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

(
0 1
0 0

) (
−1 0
0 −1

)
(

0 0
0 0

) (
0 1
0 0

)
⎞
⎟⎟⎠x

and

g (x) =

⎛
⎜⎜⎝

(
0 1
0 0

) (
0 0
0 0

)
(

0 0
0 0

) (
0 1
0 0

)
⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

(
0 1
0 0

) (
1 0
0 1

)
(

0 0
0 0

) (
0 1
0 0

)
⎞
⎟⎟⎠x
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be two polynomials in T (R, R) . Then f(x)g(x) = 0 , but

⎛
⎜⎜⎝

(
0 1
0 0

) (
0 0
0 0

)
(

0 0
0 0

) (
0 1
0 0

)
⎞
⎟⎟⎠

⎛
⎜⎜⎝

(
0 1
0 0

) (
1 0
0 1

)
(

0 0
0 0

) (
0 1
0 0

)
⎞
⎟⎟⎠ �= 0.

This shows that T (R, R) is not weak Armendariz.

It was shown in [15] that a module MR is Armendariz if and only if M [x, x−1]R[x,x−1] is Armendariz.

Similar to the proof of [15, Theorem 1.12], we can get the following

Proposition 3.3 MR is a weak Armendariz module if and only if M [x, x−1]R[x,x−1] is weak Armendariz.
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