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Abstract

In this paper, an ordinary differential equation model of HIV infection of CD4+ T-cells with saturated

reverse function is studied. We prove that if the basic reproduction number R0 < 1, the virus-free equilibrium

is locally asymptotically stable. And there will exhibit backward bifurcation when R0 < 1. If R0 > 1, some

feasibly sufficient conditions are obtained for the global asymptotic stability of a positive equilibrium of

the model by using the theory of competitive systems, compound matrices and stability of periodic orbits.

Furthermore, we also obtain the conditions for which the model exists an orbitally asymptotically stable

periodic solution. Numerical simulations are presented to illustrate the results.
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1. Introduction

There has been much interest in mathematical modeling of epidemic and viral dynamics (see, for example,

[2, 6, 9, 11, 16, 22, 29, 30] and the references cited therein). This is because epidemic models can be very useful
in the control of epidemic diseases, and viral models can provide insights into the dynamics of viral load in
vivo and may play a significant role in the development of a better understanding of diseases and various drug
therapy strategies against them.

Like most viruses, HIV is a very tiny, simple organism. Viruses can not reproduce independently.
Therefore, they must rely on a host to aid reproduction. Most viruses carry copies of their DNA and insert
this into the host cell’s DNA. Then, when the host cell is stimulated to reproduce, it reproduces copies of the

virus [18]. When HIV infects the body, its target is CD4+ T cells. Since CD4+ T cells play the key role
in the immune response, this is cause for alarm and a key reason for HIV’s devastating impact. A protein on

the surface of the virus has a high affinity for the CD4+ protein on the surface of the T cell. Binding takes
place, and the contents of the HIV is injected into the host T cell. HIV differs from most viruses in that it
is a retrovirus: it carries a copy of its RNA which must first be transcribed into DNA. After the DNA of the
virus has been duplicated by the host cell, it is reassembled and new virus particles bud from the surface of the
host cell. This budding can take place slowly, sparing the host cell; or rapidly, bursting and killing the host
cell [7]. The course of infection with HIV is not clearcut. Clinicians are still arguing about what causes the
eventual collapse of the immune system, resulting in death. What is widely agreed upon, however, is that there
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are four main stages of disease progression [7, 8]. First is the initial innoculum when virus is introduced into
the body. Second is the initial transient—a relatively short period of time when both the T cell population
and virus population are in great flux. This is followed by the third stage, clinical latency—a period of time
when there are extremely large numbers of virus and T cells undergoing incredible dynamics, the overall result
of which is an appearance of latency (disease steady state). Finally, there is AIDS–this is characterized by the

T cells dropping to very low numbers (or zero) and the virus growing without bound, resulting in death. The
transitions between these four stages are not well understood, and presently there is controversy concerning
whether the virus directly kills all of the T cells in this final stage or if there is some other mechanism(s) at

work [7].

Currently, there are several drugs licensed for treatment of individuals infected with HIV. Drugs, such
as reverse transcriptase (RT) inhibitors, protease inhibitors and fusion inhibitors, have been developed so as

to attack on different phases of viral life cycle during infection [14, 15]. Reverse transcriptase (RT) inhibitors

work by inhibiting the action of reverse transcriptase. There are two classes of reverse transcriptase (RT)

inhibitors: nucleoside analogs (nucleoside RT inhibitors; NRTIs) and nonnucleoside RT inhibitors (NNRTIs).
NRTIs are incorporated into viral DNA during reverse transcription and terminate the synthesis of the viral
DNA chain, whereas NNRTIs bind directly to RT near the polymerase active site, blocking the chemical step
of DNA synthesis and preventing RT from copying the viral RNA genome into DNA [28]. Protease inhibitors
work by blocking a part of HIV called protease. When protease is blocked, HIV makes copies of itself that can’t
infect new cells. Studies have shown that protease inhibitors can reduce the amount of virus in the blood and

increase CD4+ T cell counts. In some cases these drugs have improved CD4+ T cell counts even when they
were very low or zero.

In this paper, we will construct and analyse an HIV infection model with reverse transcriptase (RT)
inhibitors. The model considers a set of cells susceptible to infection; that is, target cells, T , which, through

interactions with virus V become infected. In addition, we assume that a virus enters a resting CD4+ T cell,
the viral RNA may not be completely reverse transcribed into DNA and the un-integrated virus may decay
with time and partial DNA transcripts are labile and degrade quickly [26, 27]. Moreover, Srivastava et al. [23]
subdivided the infected cells class in two subclasses: pre-RT and post-RT. It is argued that the RT inhibitors
will prevent the infected cells in pre-RT class from proceeding to the post-RT class. If the efficacy of drug is
not 100% then a fraction of infected cells in pre-RT class will revert back to uninfected class and remaining will
proceed to post-RT class [23]. Therefore, a certain quantity of infected cells will revert back to uninfected class,

which is always omitted in many virus models, such as Alan S. Perelson et al. [17].

Since only small fraction on infected cells will revert back due to incompletion of reverse transcription

[3], the reverse will reach to its maximum. Hence, we propose a function h(I) = pI
1+aI with the form in the

assumptions, where p is the reverse rate. Now we can see that this function is more realistic than the linear
one. For small I , h(I) ∼ pI , whereas for large I , h(I) ∼ p

a . This just characterizes the saturated phenomenon

of the reverse by a continuous and differentiable function. And when a = 0, the saturated treatment function
returns to the linear one [24].

In this paper, we shall investigate an ordinary differential equation model of HIV infection of CD4+
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T-cells with saturated reverse function

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dT

dt
= s − dT − βTV +

pI

1 + aI
,

dI

dt
= βTV − δI − pI

1 + aI
,

dV

dt
= qI − cV,

(1.1)

where T is the number of target cells, I is the number of infected cells, V is the viral load of the virions.
The simplest and most common method of modeling infection is to augment (1.1) with a “mass-action” term
in which the rate of infection is given by βTV , with β being the infection rate constant. This type of term
is sensible, since virus must meet T cells in order to infect them and the probability of virus encountering a
T cell at low concentrations (when V and T motions can be regarded as independent) can be assumed to be
proportional to the product of their concentration, which is called linear infection rate. Thus, in what follows,
the classical models assume that infected T cells at rate −βTV and the generation of infected T cells at rate
βTV .

In model (1.1), s represents the rate at which new T cells are created from sources, β is the infection

rate constant, d is death rate of the T cells, δ is the death rate of the infective cells (δ includes the possibility

of death by bursting of infected T cells, hence δ ≥ d), q is the reproductive rate of the infected cells, c is the

clearance rate constant of virions. h(I) = pI/(1 + aI) is the reverse from the infected compartment. Here, p

gives the maximum reverse per unite of time, and a , the infected size at which is 50% saturation (h(a) = pa
1+a2 ),

measures how soon saturation occurs. The average lifespan of a productively infected cell is
1
δ

, and so if an

infected cell produces a total of
q

δ
virions during its lifetime, the average rate of virus production per cell is q .

Standard and simple arguments show that the solutions of system (1.1) exist and stay positive.

System (1.1) needs to be analyzed with the following initial conditions:

T (0) > 0, I(0) > 0, V (0) > 0. (1.2)

We denote
R3

+ = {(T, I, V ) ∈ R3 | T ≥ 0, I ≥ 0, V ≥ 0}.

2. Equilibria and their local stability

System (1.1) always has a viral free equilibrium (i.e., boundary equilibrium) E1(T1, 0, 0), where T1 =
s

d
.

The regions of parameter space for which the system (1.1) admits feasible interior equilibria must correspond
to a positive root I∗ of the quadratic equation

b0I
2 + b1I + b2 = 0, (2.1)

where b0, b1 , b2 are given by

b0 = aβqδ, b1 = βqδ + adcδ − aβqs, b2 = δdc + pdc − βqs.

651



SHI, LI, ZHOU, SONG

Let R0 =
qβs

(δ + p)cd
. It is well-known the importance of the value R0 , which is called as the basic

reproductive ratio of system (1.1). It represents the average number of secondary infection caused by a single
infected T cells in an entirely susceptible T cells population throughout its infectious period. And it determines
the dynamical properties of system (1.1) over a long period of time.

The quadratic (2.1) can be analyzed for the possibility of multiple endemic equilibria when R0 < 1. It is

worth noting that the coefficient b0 is always positive and b2 is positive (negative) if R0 is less than (greater

than) unity. Hence, the following result is established.

Theorem 2.1 The system (1.1) has

(i) a unique endemic equilibrium if b2 < 0 ⇔ R0 > 1 ;

(ii) a unique endemic equilibrium if b1 < 0 and b2 = 0 or b2
1 − 4b0b2 = 0 ;

(iii) two endemic equilibria if b2 > 0 , b1 < 0 and b2
1 − 4b0b2 > 0 ;

(iv) no endemic equilibrium otherwise.

Now, we will begin to analyze the geometric properties of the equilibria of system (1.1).

The Jacobian matrix of system (1.1) is

J =

⎛
⎜⎜⎝

−d − βV
p

(1 + aI)2
−βT

βV −δ − p

(1 + aI)2
βT

0 q −c

⎞
⎟⎟⎠ .

Let Ē(T̄ , Ī, V̄ ) be any arbitrary equilibrium. Then the characteristic equation about Ē is given by

∣∣∣∣∣∣∣∣∣

−d − βV̄ − λ
p

(1 + aĪ)2
−βT̄

βV̄ −δ − p

(1 + aĪ)2
− λ βT̄

0 q −c − λ

∣∣∣∣∣∣∣∣∣
= 0. (2.2)

For equilibrium E1(T1, 0, 0) , (2.2) reduces to

(λ + d)[λ2 + (p + c + δ)λ + (p + δ)c − qβT1] = 0.

Hence, E1(T1, 0, 0) is locally asymptotically stable when R0 < 1 . And it is a saddle with dimW s(Ê) = 2 ,

dimWu(Ê) = 1 for R0 > 1 .

Theorem 2.2 If R0 < 1 , E1(T1, 0, 0) is locally asymptotically stable. If R0 > 1 , E1(T1, 0, 0) is a saddle point
with a two-dimensional stable manifold and a one-dimensional unstable manifold.

Remark 2.3 It is clear from Theorem 2.1 (Case (i)) that the system (1.1) has a unique endemic equilibrium

whenever R0 > 1 . Further, Case (iii) indicates the possibility of backward bifurcation (where a locally asymp-
totical stable viral free equilibrium coexists with a locally asymptotical stable endemic equilibrium when R0 < 1
[1]) in the system (1.1) when R0 < 1 . In such a scenario, viral elimination would depend upon the initial sizes
of the populations of the model.
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In the following, we will discuss the locally asymptotical stability of the endemic equilibrium when R0 > 1.

When R0 > 1, the only positive root of equation (2.1) is given by I∗ = 1
2b0

[−b1 +
√

b2
1 − 4b0b2].

Additionally, T ∗ = 1
d
(s − δI∗), V ∗ = q

c
I∗ . Hence, the endemic equilibrium is E∗(T ∗, I∗, V ∗).

The Jacobian matrix J∗ = J(T ∗, I∗, V ∗) of system (1.1) at E∗ takes the form

J(E∗) =

⎛
⎜⎜⎝

−d − βV ∗ p

(1 + aI∗)2
−βT ∗

βV ∗ −δ − p

(1 + aI∗)2
βT ∗

0 q −c

⎞
⎟⎟⎠ . (2.3)

The eigenvalue problem for the Jacobian matrix (2.3) provides the characteristic equation

λ3 + a1λ
2 + a2λ + a3 = 0, (2.4)

where the coefficients ai , i = 1, 2, 3, are

a1 = c + δ +
p

(1 + aI∗)2
+ d + βV ∗,

a2 = c(δ +
p

(1 + aI∗)2
) − qβT ∗ + d(c + δ) + βV ∗(c + δ) +

pd

(1 + aI∗)2
,

a3 = dcδ +
dcp

(1 + aI∗)2
+ βcδV ∗ − dqβT ∗.

Note that a1 > 0. And if dcδ + dcp
(1+aI∗)2

+ βcδV ∗ > dqβT ∗ , then a3 > 0.

Furthermore,

Δ = a1a2 − a3

= [c + δ + p
(1+aI∗)2 + d + βV ∗][cδ + cp

(1+aI∗)2 − qβT ∗ + (d + βV ∗)(c + δ)
+ dp

(1+aI∗)2 ] − dcδ − dcp
(1+aI∗)2 − βcδV ∗ + dqβT ∗.

By the Routh-Hurwitz criterion, we know that the unique endemic equilibrium E∗ is locally asymptotically
stable if it exists and the following conditions hold

(A1) : R0 > 1;
(A2) : dcδ + dcp

(1+aI∗)2 + βcδV ∗ > dqβT ∗,

(A3) : [c + δ + p
(1+aI∗)2 + d + βV ∗][cδ + cp

(1+aI∗)2 − qβT ∗ + (d + βV ∗)(c + δ)
+ dp

(1+aI∗)2
] + dqβT ∗ > dcδ + dcp

(1+aI∗)2
+ βcδV ∗.

3. The permanence of system (1.1)

In this section, we shall present the permanence of the system (1.1).

Definition 3.1 System (1.1) is said to be persistent if there are positive constants m, M such that each positive

solution (T (t), I(t), V (t)) of system (1.1) with initial conditions (1.2) satisfies

m ≤ lim
t→+∞

inf T (t) ≤ lim
t→+∞

sup T (t) ≤ M,
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m ≤ lim
t→+∞

inf I(t) ≤ lim
t→+∞

sup I(t) ≤ M,

m ≤ lim
t→+∞

inf V (t) ≤ lim
t→+∞

sup V (t) ≤ M.

Definition 3.2 [4] (Metzler matrix) Matrix A is a Metzler matrix iff all its off-diagonal elements are non-
negative.

Lemma 3.3 [4] (Perron-Frobenius Theorem) Let A be an irreducible Metzler matrix . Then, λM , the
eigenvalue of A of largest real part, is real and the elements of its associated eigenvector vM are positive.
Moreover, any eigenvector of A with non-negative elements belongs to the span vM .

In order to prove the permanence of system (1.1), we firstly present the following useful lemma. Firstly,
we require the following compactness condition.

Condition 3.4 There exist ε > 0 and a subset B of X with the following properties:

(1) If x ∈ X and d(x, X2) < ε , then d(Φt(X), B) → 0 as t → ∞.

(2) The intersection B
⋃

Bε(X2) of B with the ε-neighborhood of X2 , Bε(X2) = {x ∈ X; d(x, X2) < ε}
has compact closure.

Lemma 3.5 [25] Let X1 be open in X and forward invariant under Φ . Further, let the compactness assump-

tion (Condition 3.4) hold. Assume the Ω2 ,

Ω2 = ∪y∈Y2ω(y), Y2 = {x ∈ X2; Φt ∈ X2, ∀t > 0}

has an acyclic isolated covering M = ∪m
k=1Mk such that each part Mk of M is a weak repeller of X1 . Then

X2 is a uniform strong repeller for X1 .

Theorem 3.6 There is an M > 0 such that, for any positive solution (T (t), I(t), V (t)) of system (1.1), T ≤ M,

I ≤ M and V ≤ M for all large t .

Proof. Let L1(t) = T (t) + I(t). Calculating the derivative of L1(t) along the solution of system (1.1), we
find

dL1(t)
dt |(1.1) = dT (t)

dt + dI(t)
dt

= s − dT − δI
≤ s − dL1(t).

Thus dL1(t)
dt

+ dL1(t) ≤ s. Applying a theorem in differential inequalities, we obtain

0 ≤ L1(T (t), I(t)) ≤ s

d
(1 − e−dt) + L1(T (0), I(0))e−dt

and, for t → +∞ , 0 ≤ L1 ≤ s
d
. Then T (t) and I(t) ultimately have above bound s

d
+ ε for any ε > 0. It

follows from the third equation of system (1.1) that V (t) ultimately has an above bound, say, their maximum
is M . The proof is complete.

Define Ω = {(T, I, V ) | 0 ≤ T ≤ M, 0 ≤ I ≤ M, 0 ≤ V ≤ M}. �
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Theorem 3.7 If R0 > 1 , then system (1.1) is permanent.

Proof. The result follows from an application of Lemma 3.5. Let us define X1 to be the interior of R3
+

and X2 be the boundary of R3
+ , i.e., X1 =

∫
(R3

+) and X2 = bd(R3
+). This choice is in accordance with the

conditions stated in this theorem. We begin by showing that sets X1 and X2 repel the positive solution of
system (1.1) uniformly. Furthermore, note that by virtue of Theorem 3.6, there exists a compact set B in

which all solutions of system (1.1) initiated in R3
+ ultimately enter and remain forever after. The compactness

condition is easily verified for this set B . Denoting the ω -limit set of the solution x(t, x0) of system (1.1)

starting in x0 ∈ R3
+ by ω(x0), we need to determine the following set:

Ω = ∪y∈Y2ω(y), where Y2 = {x0 ∈ X2|x(t, x0) ∈ X2, ∀t > 0}.

From the system (1.1), it follows that all solutions starting in bd(R3
+) but not on the T -axis leave bd(R3

+) and

that the T -axis is an invariant set, implying that Y2 = {(T, I, V )T ∈ bd(R3
+)|I = V = 0}. Furthermore, it is

easy to see that Ω = {E1} as all solutions initiated on the T -axis converge to E1 . In fact, in the set Y2 , system

(1.1) becomes

Ṫ = s − dT.

It is easy to see that the equilibrium of the above equation is globally asymptotically stable. Hence, any solution
(T (t), I(t), V (t)) of system (1.1) initiating from Y2 is such that (T (t), I(t), V (t)) → E1(T1, 0, 0). E1 is isolated

invariant set because it is a saddle, as we will show soon. And {E1} is isolated and is an acyclic covering. Next,

we show that W s(E1) ∩ X1 = Ø, i.e., E1 is a weak repeller for X1 .

By definition, E1 is a weak repeller for X1 if for every solution starting in x0 ∈ X1

lim
t→+∞

d(x(t, x0), E1) > 0. (3.2)

We claim that (3.2) is satisfied if the following holds:

W s(E1) ∩ int(R3
+) = Ø. (3.3)

To see this, suppose (3.2) does not hold for some solution x(t, x0) starting in x0 ∈ X1 . In view of the fact

that the closed positive orthant is positively invariant for system (1.1), it follows that lim
t→+∞

d(x(t, x0), E1) = 0

and thus that lim
t→+∞

x(t, x0) = E1, which is clearly impossible if (3.3) holds. What remains to be shown is that

(3.3) holds. The Jacobian matrix of system (1.1) at E1 is

J(E1) =

⎛
⎝ −d p −βT1

0 −δ − p βT1

0 q −c

⎞
⎠ .

It easy to see that J(E1) is unstable if R0 > 1. In particular, J(E1) possesses one eigenvalue with positive
real part, which we denote as λ+ , and two eigenvalues with negative real part, −d , and an eigenvalue which

we denote as λ− . We proceed by determining the location of Es(E1), the stable eigenspace of E1 . Clearly,

(1, 0, 0)T is an eigenvector of J0 associated to −d . If λ− �= −d , then the eigenvector associated to λ− has the
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following structure: (0, p2, p3)T , where p2 , p3 satisfy the eigenvector equitation

(
−(δ + p) βT1

q −c

) (
p2

p3

)
= λ−

(
p2

p3

)
. (3.4)

If λ− = −d , then λ− is a repeated eigenvalue, and associated generalized eigenvector will possess the following

structure: (∗, p2, p3)T , where the value of ∗ is irrelevant for what follows and p2 and p3 also satisfy (3.4).

We claim that in both cases, the vector (p2, p3)T �∈ R2
+ . Obviously, the matrix in (3.4) is an irreducible

Metzler matrix. From Definition 3.1, we know that it is a matrix with nonnegative off-diagonal entries. By
using Lemma 3.3 (Perron-Frobenius Theorem), we get that the matrix in (3.4) possesses a simple real eigenvalue
which is larger then the real part of any other eigenvalue, also called the dominant eigenvalue. Clearly, the
dominant eigenvalue here is λ+ . But the Perron-Frobenius Theorem also implies that every eigenvector that is
not associated with the dominant eigenvalue does not belong to the closed positive orthant. Applied here, this

means that (p2, p3)T �∈ R2
+ . Consequently, Es(E1) ∩ int(R3

+) = Ø, and therefore also W s(E1)∩ int(R3
+) = Ø,

which concludes the proof. �

4. Global asymptotical stability of equilibria

In this section we will the prove the global asymptotical stability of the nonnegative equilibria.

Theorem 4.1 Under the assumption βsq ≤ δcd + cpd2

d+as , the local stability of E1(T1, 0, 0) implies its global

stability.

Proof. By Theorem 3.6, lim supt→+∞(T (t) + I(t)) ≤ s
d
. Hence, for any ε > 0, for large enough time one

has the inequality
dI

dt
≤ β

s + ε

d
V − δI − pI

1 + a s+ε
d

.

So, from the last two equations of system (1.1), for t > t1 , we have

⎧⎪⎨
⎪⎩

dI

dt
≤ β

s + ε

d
V − δI − pI

1 + a s+ε
d

,

dV

dt
= qI − cV.

(4.1)

Consider the following equations

⎧⎪⎨
⎪⎩

du1

dt
= β

s + ε

d
u2 − δu1 −

pu1

1 + a s+ε
d

,

du2

dt
= qu1 − cu2.

(4.2)

Since R0 < 1, we can select any ε > 0 such that βsq < δcd + cpd2

d+as
. Obviously, for any solution of (4.2) with

nonnegative initial values we have lim
t→∞

ui(t) = 0 (i = 1, 2). Hence, we have lim
t→∞

I(t) = 0 and lim
t→∞

V (t) = 0.
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Thus, for any ε > 0, we have −ε ≤ I ≤ ε and −ε ≤ V ≤ ε . From the first equation of (1.1), we obtain

s − dT − εβT − pε

1 − aε
≤ dT

dt
≤ s− dT + εβT +

pε

1 − aε
.

Hence, lim
t→∞

T (t) =
s

d
.

In the following, we provide sufficient conditions leading to a globally asymptotically stable endemic
equilibrium when R0 > 1.

Firstly, we will present the main results related to our research.

Let D ∈ Rn be an open set, and x �→ f(x) ∈ Rn be a C1 function defined in D . We consider the
autonomous system in Rn given by

dX

dt
= F (X), X ∈ D, (4.3)

System (4.3) is competitive in D [5, 19, 20, 21] if, for some diagonal matrix H = diag(ε1, ε2, · · · , εn),

where εi is either 1 or −1, H(DF (X))H has nonpositive off-diagonal elements for X ∈ D , where DF (X) is

the Jacobian of Eq. (4.3). It is shown in [21] that if D is convex the flow of such a system preserves for t < 0

the partial order in R3 defined by the orthant

K1 = {(X1, X2, · · · , Xn) ∈ Rn | εiXi ≥ 0}.

By looking at its Jacobian matrix and choosing the matrix H as

H =

⎛
⎝ 1 0 0

0 −1 0
0 0 1

⎞
⎠ ,

we can see that system (1.1) is competitive in Ω, with respect to the partial order defined by the orthant

K1 = {(T, I, V ) ∈ R3 : T ≥ 0, I ≤ 0, V ≥ 0} .

Hirsch [5] and Smith [19, 21] proved that three-dimensional competitive systems that live in convex sets

have the Poincare-Bendixson property [13]; that is, any nonempty compact omega limit set that contains no
equilibria must be a closed orbit. �

Lemma 4.2 Assume n = 3 , and D is convex and bounded. Suppose system (4.3) is competitive and permanent
and has the property of stability of periodic orbits. If x̄0 is the only equilibrium point in intD and if it is locally
asymptotically stable, then it is globally asymptotically stable in intD .

Our main results will follow from this observation and the above lemma.

Theorem 4.3 Suppose that

(i) R0 > 1 ;

(ii) dqβT ∗ < dcδ + dcp
(1+aI∗)2

+ βcδV ∗ .

Then system (1.1) has the property of stability of periodic orbits.
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Proof. Let P (t) = (T (t), I(t), V (t)) be a periodic solution whose orbit Γ is contained in int(R3
+). The

second compound equation is following periodic linear system:

Z′(t) =
∂f [2]

∂x
(P (t))Z(t), (4.4)

where Z = (Z1, Z2, Z3)T and ∂f [2]

∂x is derived from the Jacobian matrix of system (1.1) and defined as follows:

∂f [2]

∂x
=

⎛
⎜⎝

−d − βV − δ − p
(1+aI)2

βT βT

q −d − βV − c p
(1+aI)2

0 βV −(δ + c + p
(1+aI)2 )

⎞
⎟⎠ .

For the solution P (t), equation (4.4) becomes

⎧⎪⎨
⎪⎩

Ż1(t) = (−d − βV − δ − p
(1+aI)2 )Z1 + βTZ2 + βTZ3,

Ż2(t) = qZ1 + (−d − βV − c)Z2 + p
(1+aI)2

Z3,

Ż3(t) = βV Z2 − (δ + c + p
(1+aI)2

)Z3.

(4.5)

To prove that (4.5) is globally asymptotically stable, we shall use following Lyapunov function

L(Z1 , Z2, Z3; T (t), I(t), V (t)) = ||Z1(t),
I

V
Z2(t),

I

V
Z3(t)||,

where || · || is the norm in R3 defined by

||(Z1, Z2, Z3)|| = sup{|Z1|, |Z2| + |Z3|}.

From Theorem 3.7, we obtain that the orbit of P (t) remains at a positive distance from the boundary of

D . Therefore T (t) > 0, I(t) > 0, V (t) > 0. Hence the function L is well defined along P (t) and there exists
constant η > 0 such that

L(Z1, Z2, Z3; T (t), I(t), V (t)) ≥ η||(T, I, V )||.

Along a solution (Z1(t), Z2(t), Z3(t)) of system (4.5), L becomes

L(t) = sup{|Z1(t)|,
I

V
(|Z2(t)| + |Z3(t)|)}. (4.6)

Function (4.6) is positive, but not differentiable everywhere. Fortunately, this lack of differentiability can

be remedied by using the right derivative of L(t), denoted as D+L(t). The right-hand derivative of L(t) exists

and its calculation is described in [10, 12]. Then we have the following equalities:
⎧⎪⎨
⎪⎩

D+|Z1(t)| ≤ (−d − βV − δ − p
(1+aI)2 )|Z1| + βT |Z2 |+ βT |Z3|,

D+|Z2(t)| ≤ q|Z1|+ (−d − βV − c)|Z2| + p
(1+aI)2 |Z3|,

D+|Z3(t)| ≤ βV |Z2| − (δ + c + p
(1+aI)2

)|Z3|.
(4.7)

Therefore,

D+( I
V

(|Z2(t)| + |Z3(t)|)) = ( İ
I
− V̇

V
) I

V
(|Z2| + |Z3|) + I

V
D+(|Z2| + |Z3|)

≤ ( İ
I
− V̇

V
) I

V
(|Z2| + |Z3|) + qI

V
|Z1|

+(−d − c) I
V |Z2| − (c + δ) I

V |Z3|.
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Define
g1(t) = −d − βV + β TV

I
− δ − p

(1+aI)2

= İ
I − (d + βV )

(4.8)

and

g2(t) = q I
V + İ

I − V̇
V − 2c − d− δ

= İ
I − (d + δ + c)

≤ İ
I
− d.

Thus, we obtain
D+L(t) ≤ sup{g1(t), g2(t)}L(t). (4.9)

It follows from (4.8) that g1(t) ≤ İ
I − d and thus that g1(t) ≤ g2(t). Then (4.9) can be rewritten as

D+L(t) ≤ g2(t)L(t). (4.10)

Using the fact that P (t) is a periodic solution of (1.1), we see that

∫ ω

0

g2(t)dt ≤
∫ ω

0

(
İ

I
− d) = ln I(ω) − ln I(0) − ωd = −ωd. (4.11)

From (4.10) and (4.11), we have lim
t→∞

L(t) = 0.

Therefore, (Z1(t), Z2(t), Z3(t)) → (0, 0, 0) as t → ∞ .

This implies that the linear system (4.2) is asymptotically stable and therefore the periodic solution is
asymptotically orbitally stable. This proves Theorem 4.3. �

Theorem 4.4 Suppose that (A1) , (A2) and (A3) hold true and dqβT ∗ < dcδ + dcp
(1+aI∗)2 + βcδV ∗ . Then the

unique positive equilibrium E∗ of system (1.1) is globally asymptotically stable.

Proof. Since system (1.1) is competitive, permanent if R0 > 1, and E∗ is locally asymptotically stable if

conditions (A1), (A2) and (A3) hold true. Moreover, E∗ is the only equilibrium point in intD . Theorem 4.3

shows that system (1.1) has the property of stability of periodic orbits. Hence, all the conditions of Lemma

4.2 are satisfied. Therefore, the unique positive equilibrium E∗ of system (1.1) is globally asymptotically
stable. �

5. Existence of a stable periodic orbit

Out main result below gives sufficient conditions that almost every solution is asymptotically periodic.

The noncontinuable solution of (4.3) satisfying X(0) = X0 is denoted by X(t, X0), the positive (negative)

semi-orbit through X0 is denoted by φ+(X0) (φ−(X0)), and the orbit through X0 is denoted by φ(0) =

φ−(X0)∪φ+(X0). We use the notation ω(X0) (α(X0)) for the positive (negative) limit set of φ+(X0) (φ−(X0)),
provided the latter semi-orbit has compact closure in D .

The following lemma is proved in [19].
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Lemma 5.1 [19] Let (4.3) be a competitive system in D ⊂ R3 and suppose that D contains a unique equilibrium

point X∗ which is hyperbolic and assume that DF (X∗) is irreducible. Suppose further that W s(X∗) , the stable

manifold of X∗ , is one dimensional. If q ∈ D W s(X∗) and φ+(q) has compact closure in D , then ω(q) is a
nontrivial periodic orbit.

The existence of an orbitally stable periodic solution can also be proved. We introduce the following
hypotheses:

(H1) System (4.3) is dissipative: For each X ∈ D , φ+(X) has compact closure in D . Moreover, there

exists a compact subset B of D with property that for each X̄ ∈ D there exists T (X̄) > 0 such that X(t, X̄) ∈ B

for t ≥ T (X̄) .

(H2) System (4.3) is competitive and irreducible in D .

(H3) D is an open, p-convex subset of R3 .

(H4) D contains a unique equilibrium point X∗ and det(DF (X∗)) < 0 . The following result holds [13]:

Lemma 5.2 [19] Let (H1)–(H4) hold. Then either

(a) X∗ is stable or

(b) there exists a nontrivial orbitally stable periodic orbit in D . In addition, let us assume that F is
analytic in D . If X∗ is unstable, then there is at least one but no more than finitely many periodic orbits for
(4.3) and at least one of these is orbitally asymptotically stable.

Theorem 5.3 Suppose R0 > 1 and (A2) hold. Then the positive equilibrium is locally asymptotically stable if

(A3) holds. There exists a one-dimensional stable manifold W s(E∗) if (A3) is reversed. Furthermore, there

exists an orbitally asymptotically stable periodic orbit, and the omega limit set of every solution (T (t), I(t), V (t))

with T (0) > 0 , I(0) > 0 , V (0) > 0 and (T (0), I(0), V (0)) �∈ W s(E∗) is a nonconstant periodic orbit.

Proof. It suffices to prove the second assumption of Theorem 5.3. We apply Lemmas 5.1 and 5.2 to the
following transform system. A change of variables w1 = −T , w2 = I , w3 = −V transforms system (1.1) into

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dw1

dt
= −s − dw1 + βw1w3 −

pw2

1 + aw2
,

dw2

dt
= βw1w3 − δw2 −

pw2

1 + aw2
,

dw3

dt
= −qw2 − cw3.

(5.1)

If we write (5.1) as dw
dt = f(w), the Jacobian matrix of f at w is

J(E∗) =

⎛
⎜⎜⎝

−d − βw3 − p

(1 + aw2)2
βw1

βw3 −δ − p

(1 + aw2)2
βw1

0 −q −c

⎞
⎟⎟⎠ .

J(w) has nonpositive off-diagonal elements at each point of D = {(w1, w2, w3) : w1 < 0, w2 > 0, w3 < 0} .

Let w∗
1 = T ∗ , w∗

2 = I∗ , w∗
3 = V ∗ . It is obvious that (w∗

1 , w∗
2 , w∗

3 ) is the unique equilibrium of Eq. (5.1).

Since the inequality (A3) is reversed, the analysis in Section 2 shows that (w∗
1 , w∗

2 , w∗
3 ) is unstable and

det J(w∗) < 0. Furthermore, we see that the stable manifold of E∗ is one dimensional. The existence of an
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orbitally asymptotically stable periodic orbit follows from Lemma 5.2 and the analytically of the vector field.
Moreover, since Eq. (1.1) is permanent, there exists a compact subset B of D such that, for each w0 ∈ D ,

there exists a T (w0) such that w(t, w0) ∈ B for all t ≥ T (w0). Note that (H1)–(H4) hold and using Lemmas
5.1 and 5.2 implies the final assertion. �

6. Numerical simulations

In the previous sections, we introduced the analytical tools proposed and used them for a qualitative
analysis of the system obtaining some results about the dynamics of the system. In this section, we perform a
numerical analysis of the model based on the previous results.

Clinical data are becoming more available, making it possible to get actual values (or orders of values)
directly for the individual parameters in the model. By this we mean that it is possible to calculate the actual
rates for the different processes described above based on data collected from clinical experiments. For example,

it has been shown that infected CD4+ T cells live less than 1–2 days; therefore, we choose the rate of loss of
infected T cells, δ , to be values between 0.5 and 1.0. When this type of information is not available, estimation of
the parameters can be determined from simulations through behavior studies. Periodic solution and sensitivity
analysis can be carried out for each parameter to get a good understanding of the different behaviors seen
for variations of these values. For example, the parameter p in the model (representing the cure rate) is not

verifiable clinically; however, since it is a important parameter (a bifurcation parameter), we know that for large
values the infection would die out and that for small values the infection persists. This may be an indication to
clinicians that finding a drug which lowers this viral production may aid in suppressing the disease. In general,
this process can be helpful to clinicians, as a range for possible parameter values can be suggested. A complete
list of parameters and their estimated values for this model is given in Table.

Table. Parameter values for viral spread.

Parameters Meanings Values
s Source term for uninfected CD4+ T-cells 5 (day)−1(mm−3)
d atural death rate of CD4+ T-cells 0.01 day−1

β Rate CD4+ T-cells become infected with virus 0.00025 mm−3

a Infected size at which is 50% saturation 1 mm−3

δ Blanket death rate of infected CD4+ T-cells 1 day−1

q Reproductively rate of the infected CD4+ T-cells 800 mm3 day−1

c Death rate of free virus 8 day−1

p Cure rate 0.55 day−1

First we observe that there exists a unique interior equilibrium point E∗ (43.95652516, 4.560434748,

456.0434748) with the set of parameter values from Table. The positive steady state is locally asymptotically

stable, since the eigenvalues associated with the characteristic equation (2.3) at E∗ , given by

λ3 + 9.141799609λ2 + 0.4672805933λ+ 0.9055969983 = 0

have negative real parts (λ1 = −9.101390438, λ2 = −0.02020458552− 0.3147899698I , λ3 =−0.02020458552+

0.3147899698I). Simulation of the model in this situation, produce stable dynamics as is presented in Figure 1.

Plots (A)–(C) of Figure 1 show that uninfected cells, infected cells and virus converge to their equilibrium with
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Figure 1. (A)–(C) show that uninfected cells, infected cells and virus converge to their equilibrium with the parametric

values as stated in the text. (D) shows that the equilibrium E∗ is asymptotically stable. The initial conditions are

T (0) = 30, I(0) = 400, V (0) = 600.

Figure 2. (A)–(C) are the oscillations of uninfected cells, infected cells and virus. (D) shows that there are a periodic

solution. The initial conditions is T (0) = 30, I(0) = 400, V (0) = 600.
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Figure 3. (A)–(C) show that uninfected cells, infected cells and virus converge to their equilibrium with the parametric

values as stated in the text. (D) shows that the equilibrium E∗ is asymptotically stable. The initial conditions are

T (0) = 30, I(0) = 400, V (0) = 600.

the parametric values as stated in Table. Plot (D) of Figure 1 shows that the equilibrium E∗ (43.95652516,

4.560434748, 456.0434748) is asymptotically stable. The initial conditions is T (0) = 50, I(0) = 10, V (0) =
1200.

Next, we use a same set of parameter values as those in Table, but we vary the value of p (p = 0.85).

We can obtain that the characteristic roots of Eq. (2.3) at E∗ are λ1 = −9.158539698, λ2 = 0.002894150908−
0.3128262370I , λ3 = 0.002894150908+ 0.3128262370I . It is easy to see that the conditions of Theorem 5.3 are
satisfied. Then the system (1.1) exists an orbitally asymptotically stable periodic orbit (See Figure 2). Plots

(A)–(C) of Figure 2 are the oscillations of uninfected cells, infected cells and virus. Plot (D) of Figure 2 shows

that there is a periodic solution. The initial conditions are T (0) = 50, I(0) = 10, V (0) = 1200.

We also find that the infection would always keep stability when the rate of infection β is larger. This
can be analyzed from the expression of R0 and the conditions of Theorems 3.7 and 4.4. For example, we show
the oscillations of uninfected cells, infected cells and virus in Figure 3. If we select β = 0.00035 and p = 0.85
(the value p is same as Figure 2) and the other parameter values are same in Table then the infection would be

stale (See Figure 3). Thus, we can claim that the infective rate β is a very important parameter. The results
show that if we improve the infective rate, we will control the disease.

7. Discussion

In this paper, we have investigated a differential equation model of HIV infection of CD4+ T-cells with
cure rate. In this model, the basic reproduction number R0 is identified and is established as a sharp threshold
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parameter. If R0 < 1, the infected free equilibrium E∗ is locally stable in the interior of the feasible region.
Furthermore, there will exhibit backward bifurcation when R0 < 1. That is to say, viral elimination would
depend upon the initial sizes of the populations of the model. If R0 > 1, then system (1.1) is permanent. And
if R0 > 1, a unique endemic equilibrium E∗ exists and is globally stable in the interior of the feasible region
when the conditions of Theorem 4.4 are satisfied. We also obtain the conditions (i.e., conditions of Theorem

5.3) for the system (1.1) exists an orbitally asymptotically stable periodic orbit. Biologically, it implies that
some parameter values can cause the cell and virus population to fluctuate.

In [24], Srivastava and Chandra have obtained that the infection is cleared out when R0|a=0 < 1, i.e.,
the uninfected steady state is globally stable, whereas the infection persists and the steady state is globally
stable when R0|a=0 > 1. That is to say system (1.1) does not have periodic solutions when a = 0. Hence,
a > 0 is necessary for the occurrence of undamped oscillations. This would help much in understanding the
mechanisms that may lead to undamped oscillations in this model. Mathematically, since E∗ can be unstable
and periodic solutions may exist for the model (1.1), it is important to investigate if the basin of attraction of
E∗ contains all points in the feasible region, namely, if E∗ is globally stable. Clinical data an HIV positive
patients do not show sustained oscillations. This suggests that simple model like (1.1), which ignore features
such as chronically infected, latently infected cells, and drug sanctuaries that might damp the oscillations, are
clinically relevant only in the parameter regions for which no oscillations exist, in particular, for which the
chronic-infection equilibrium E∗ is globally stable. Therefore, identifying parameter ranges in which E∗ is
globally stable is of both mathematical and biological significance.

Finally, we need the drug to be highly effective if we use single drug to treat. Hence, combination anti-
HIV therapy is now the standard of care for people with HIV. Therefore, considering the effects of both RTIs
and PIs, model (1.1) can be modified to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dT

dt
= s− dT − βTV1 +

pI

1 + aI
,

dI

dt
= βTV1 − δI − pI

1 + aI
,

dV1
dt = (1 − p)NδI − cV1,

dV2
dt = pNδI − cV2,

(7.1)

where variables V1 and V2 denotes infectious and non-infectious virus, respectively. Parameter p (0 ≤ p < 1)

is the protease inhibitor efficacy. Study on the dynamic behavior of system (7.1) and the effect of the PIs will
be obtained in the future.
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