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The cyclicity of the period annulus of a quadratic reversible system
with one center of genus one∗

Linping Peng and Yannan Sun

Abstract

This paper is concerned with a quadratic reversible and non-Hamiltonian system with one center of genus

one. By using the properties of related elliptic integrals and the geometry of some planar curves defined

by them, we prove that the cyclicity of the period annulus of the considered system under small quadratic

perturbations is two. This verifies Gautier’s conjecture about the cyclicity of the related period annulus.

Key Words: Cyclicity, bifurcation of limit cycles, quadratic perturbations, period annulus, a quadratic

reversible system with one center of genus one

1. Introduction and statement of the main result

It is well known that the weak Hilbert 16th problem asks for the least upper bound of the number of
zeros of the associated Abelian integral. This problem in the quadratic Hamiltonian case has already been
solved, that is, the least upper bound of the number of zeros of the Abelian integrals associated with quadratic
Hamiltonian systems under quadratic perturbations is two; see [9, 19, 7, 2, 14, 3] and the references therein.

The next natural step is to consider quadratic reversible but non-Hamiltonian systems. Form [10], the
quadratic reversible systems can be written in the real form

ẋ = y + (a + b + 2)x2 − (a + b − 2)y2,
ẏ = −x[1− 2(a − b)y], (1.1)

where a, b ∈ R . If c = a − b �= 0, we can make the transformation (x, y, t) → (x/c, y/c,−t), and let

a = −(a + b + 2)/(a − b), b = (a + b − 2)/(a − b), then system (1.1) becomes the following

ẋ = −y + ax2 + by2,
ẏ = x(1 − 2y).

(1.2)

Studies show that the orbital topological properties of quadratic reversible systems under quadratic
perturbations are very rich. Most mathematicians working in this field believe that the weak Hilbert 16th
problem for quadratic reversible systems is very interesting and difficult.
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The bifurcation of limit cycles from system (1.2) under quadratic perturbations has been studied in recent

years. Such as [1] for the isochronous centers; [17] for the unbounded heteroclinic loop; [6, 11, 16, 18, 12] for

ā = −3 with different b̄ ; [4] for ā = −4 and ā = 2 with 0 < b̄ < 2; [5] for ā = −1/2 with 0 < b̄ < 2 and [15]

for ā = −3/2 with b ∈ (−∞, 0] ∪ {2} . However, to our knowledge, known results are very limited.

Recently, reference [8] lists all quadratic centers of genus one, including 18 reversible cases (r1)–(r18), 6

reversible Lotka-Volterra cases (rlv1)-(rlv6) and 5 generic (i.e. non-reversible) Lotka-Volterra cases (lv1)–(lv5),
and gives the conjecture about the cyclicity of the period annuli of quadratic centers of genus one. In this
paper, we will study the case a = −8, b = −2 in (1.1), which is (r9) from [8], and verify Conjecture 1 about the
cyclicity of the period annulus of the system

ẋ = y − 8x2 + 12y2,
ẏ = −x(1 + 12y). (1.3)

See [8] for more details.

In order to have y = 0 as a symmetric axis, we make the change (x, y) → (y,−x), and get

ẋ = y(1 − 12x),
ẏ = −x + 12x2 − 8y2,

(1.4)

which has a first integral of the form

H∗(x, y) = (1 − 12x)−
4
3 (

1
2
y2 +

1
96

(1 − 12x)2 +
1
48

(1 − 12x)) = h

with the integrating factor (1 − 12x)−7/3.

If we make the transformation (x, y, t) → ((1 − X)/12, Y,−τ/12) followed by (X, Y, τ ) → (x, y, t), then

system (1.4) becomes

ẋ = xy,
ẏ = 2

3y2 + 1
144x − 1

144x
2 (1.5)

with a first integral of the form

H(x, y) = x− 4
3 (

1
2

y2 +
1
96

x2 +
1
48

x) = h (1.6)

and the corresponding integrating factor μ(x) = x−7/3 .

System (1.5) has two singularities (0, 0) and (1, 0). The former is a degenerate singularity, and the latter

is a center. The closed orbits of system (1.5) are

Γh = {(x, y) : x− 4
3 (

1
2

y2 +
1
96

x2 +
1
48

x) = h}, h ∈ (
1
25

, +∞).

The orientation of Γh is clockwise, and 1/25 corresponds to the critical value of H at the center (1, 0).

As h → +∞ , Γh expands to the hemicycle H formed by the invariant line {x = 0} and the half of the equator
and surrounding the center.

The phase portrait of system (1.5) in the Poincaré disk is shown in Figure 1.

The main result of this paper is the following theorem.
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Figure 1. The phase portrait of system (1.5) in the Poincaré disk.

Theorem 1.1 The cyclicity of the period annulus of system (1.5) under small quadratic perturbations is two.

Theorem 1.1 here is in fact Conjecture 1 for system (1.3) in [8].

As is well known, the problem concerning the cyclicity of the period annulus can be reduced to counting the
number of zeros of the associated Abelian integral. From [10], we know that under small quadratic perturbations,

the cyclicity of the period annulus of system (1.5) is equal to the least upper bound of the number of zeros of
the following Abelian integral

I(h) =
∫ ∫

H(x,y)<h

x− 7
3 (α + βx + γx−1)dxdy

= αI0(h) + βI1(h) + γI−1(h),

(1.7)

where Ik(h) =
∮
Γh

xk−7/3ydx > 0 for h ∈ (1/25, +∞) and Ik(1/25) = 0 with k = 0, 1 and −1, α, β and γ are

any constants.

Hence Theorem 1.1 is equivalent to the following theorem.

Theorem 1.2 For h ∈ ( 1
25 , +∞) , the least upper bound of zeros(counting multiplicity) of the Abelian integral

I(h) related to system (1.5) under small quadratic perturbations is equal to two.

In the following sections, we will prove Theorem 1.2 instead of Theorem 1.1.

The remainder of this paper is organized as follows. In Section 2, we derive the closed Picard-Fuchs

equations satisfied by Ik(h) for h ∈ (1/25, +∞) and the expansions of Ik(h) in terms of h as h → +∞ with

k = 0, 1,−1 and −1/3. The properties of two planar curves called the auxiliary curve, and centroid curve such
as the monotonicity and convexity and so on, are studied respectively in Sections 3 and 4. In the last section,
we first estimate the number of zeros of the associated Abelian integral, and then prove Theorem 1.2.

2. Some preliminary results

The aim of this section is to derive the Picard-Fuchs equation satisfied by Ik(h) for h ∈ (1/25, +∞) and

the expansions of Ik(h) in terms of h as h → +∞ with k = 0, 1,−1 and −1/3.
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Lemma 2.1 For system (1.5), the vector function U(h) = (I0(h), I1(h), I−1(h), I−1/3(h))T satisfies the Picard-

Fuchs equation

U(h) = A(h)U ′(h), (2.1)

where

A(h) =

⎛
⎜⎜⎝

−2h 0 0 1
16

−6h h 0 5
32

0 0 2
11h − 1

176
− 1

3584h 0 0 2
7h

⎞
⎟⎟⎠ .

Proof. Differentiating (1.6) with respect to h and x respectively, we get

∂y

∂h
=

x
4
3

y
, (2.2)

∂y

∂x
=

4
3
hx

1
3 − 1

48
x− 1

48

y
. (2.3)

Noting the orientation of Γh and (2.2), we obtain that

I′k(h) =
∮

Γh

xk−7
3

∂y

∂h
dx =

∮
Γh

xk−1

y
dx > 0, h ∈ (

1
25

, +∞). (2.4)

From (1.6) and (2.4), we know

Ik(h) =
∮

Γh

xk−7
3 y2

y
dx =

∮
Γh

xk−7
3 (2hx

4
3 − 1

48x2 − 1
24x)

y
dx

= 2hI′k(h) − 1
48

I′k+ 2
3
(h) − 1

24
I′k−1

3
(h).

(2.5)

Meanwhile, if k �= 4
3 , by integrating by parts and using (2.3) and (2.4), we express Ik(h) as follows

Ik(h) =
∮

Γh

xk−7
3 y dx =

1
k − 4

3

∮
Γh

y dxk−4
3

= − 1
k − 4

3

∮
Γh

xk−4
3

4
3
hx

1
3 − 1

48
x − 1

48

y
dx

= − 4
3k − 4

hI′k(h) +
1

16(3k − 4)
I′k+ 2

3
(h) +

1
16(3k − 4)

I′k− 1
3
(h).

(2.6)

Removing I′k+2/3(h), I′k−1/3(h) and Ik(h) from (2.5) and (2.6), respectively, we have

Ik(h) =
2

3k − 1
hI′k(h) − 1

16(3k − 1)
I′k− 1

3
(h), (2.7)

Ik(h) = − 2
6k − 5

hI′k(h) +
1

16(6k − 5)
I′k+ 2

3
(h), (2.8)
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and

96(3k − 2)hI′k(h) − (6k − 5)I′k−1
3
(h) − (3k − 1)I′k+ 2

3
(h) = 0, k �= 4

3
. (2.9)

Taking k = 0, k = 1 in (2.7) and k = −1, k = −1/3 in (2.8) respectively, we get

I0(h) = −2hI′0(h) +
1
16

I′− 1
3
(h),

I1(h) = hI′1(h) − 1
32

I′2
3
(h),

I−1(h) =
2
11

hI′−1(h) − 1
176

I′− 1
3
(h),

I− 1
3
(h) =

2
7
hI′− 1

3
(h) − 1

112
I′1

3
(h).

(2.10)

To get the closed Picard-Fuchs equation of I0(h), I1(h), I−1(h) and I−1/3(h), we take k = 0, k = 1/3

in (2.9), then obtain

I′2
3
(h) = 192hI′0(h) − 5I′− 1

3
(h),

I′1
3
(h) =

1
32h

I′0(h).
(2.11)

Substituting (2.11) into (2.10), and taking U(h) = (I0(h), I1(h), I−1(h), I−1/3(h))T , we finally get the

Picard-Fuchs equation (2.1). �

By direct calculation, we have

G(h)U ′′(h) = A1(h)U ′(h), (2.12)

and

G(h)U ′(h) = A2(h)U(h), (2.13)

where

G(h) = 2h(1 − 32768h3),

A1(h) =

⎛
⎜⎜⎝

2 + 98304h3 0 0 −5120h2

−1 + 196608h3 0 0 −5120h2

5 0 9 − 294912h3 −5120h2

160h 0 0 −163840h3

⎞
⎟⎟⎠ ,

and

A2(h) =

⎛
⎜⎜⎝

32768h3 0 0 −7168h2

−5 + 196608h3 2 − 65536h3 0 −7168h2

1 0 11 − 360448h3 −7168h2

32h 0 0 −229376h3

⎞
⎟⎟⎠ .
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Lemma 2.2 When h → +∞ , we have the following expansions

I0(h) = a0h
5
2 + a1h

−1
2 lnh + O(h− 1

2 ),

I1(h) = b0h + O(h− 1
2 ),

I−1(h) = c0h
11
2 + O(h

5
2 ),

I− 1
3
(h) = d0h

7
2 + O(h

1
2 ),

(2.14)

where

a0 = 2
19
2 33B(2,

3
2
) > 0, a1 = −2−

11
2 3 < 0, b0 = 233

3
2 B(

1
2
,
3
2
) > 0,

c0 = 2
43
2 36B(5,

3
2
) > 0, d0 = 2

27
2 34B(3,

3
2
) > 0,

and B(α, β) is the following Beta-function

B(α, β) =
∫ 1

0

xα−1(1 − x)β−1 dx =
1
α

+
+∞∑
n=1

(−1)n(β − 1)(β − 2) · · · (β − n)
n!(α + n)

.

Proof. In the following, we deduce the expansion of I0(h) in terms of h as h → +∞ . Others are similar.
We omit them here.

Since Γh is symmetric with respect to x -axis, we only need to consider the case y > 0.

We know that the equation of Γh is

1
2
y2 +

1
96

x2 +
1
48

x − x
4
3 h = 0.

Assume that Γh has two intersection points with x -axis, denoted respectively by (ξh, 0) and (ηh, 0) with
0 < ξh < 1 < ηh < +∞ , see Figure 2.

ξ η

Γ

Figure 2. The behavior of Γh above x -axis.

It is easy to know

ξh ∼ (48h)−3
, ηh ∼ (96h)

3
2 , h → +∞.
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By the definition of I0(h), we get

I0(h) =
∮

Γh

x− 7
3 y dx = 2

∫ ηh

ξh

x−7
3

√
2hx

4
3 − 1

48
x2 − 1

24
x dx

= 2
∫ ηh

ξh

x− 7
3 (2hx

4
3 )

1
2

√
1 +

1
h

(− 1
96

x
2
3 − 1

48
x−1

3 ) dx

= 2
3
2 h

1
2

∫ ηh

ξh

x− 5
3 [1 +

+∞∑
n=1

1
2(1

2 − 1) · · · (1
2 − n + 1)

n!
(− 1

96
x

2
3 − 1

48
x−1

3 )nh−n] dx

= 332
17
2 h

5
2 − 2−

9
2 h−1

2 + M,

where

M = 2
3
2 h

1
2

∫ ηh

ξh

x−5
3

+∞∑
n=1

1
2(1

2 − 1) · · · (1
2 − n + 1)

n!
(− 1

96
x

2
3 − 1

48
x−1

3 )n
h−n dx

= 2
3
2

+∞∑
n=1

1
2 (1

2 − 1) · · · (1
2 − n + 1)

n!
(− 1

96
)nh

1
2−n

n∑
k=0

Ck
n2n−k

∫ ηh

ξh

x− 1
3n+k−5

3 dx.

When −1
3
n + k − 5

3
�= −1, we have

M = 2
3
2 [

+∞∑
n=1

1
2(1

2 − 1) · · · (1
2 − n + 1)

n!
(− 1

96
)n

· (
n∑

k=0

Ck
n2n−k 1

−1
3n + k − 2

3

(96)−
1
2n+ 3

2 k−1
h− 3

2n+ 3
2k− 1

2

−
n∑

k=0

Ck
n2n−k 1

−1
3
n + k − 2

3

(48)n−3k+2
h

5
2−3k)].

Taking k = 0, we get the leading term of M , that is

332
17
2 h

5
2 + 2

3
2

+∞∑
n=1

1
2
(1
2
− 1) · · · (1

2
− n + 1)

n!
(− 1

96
)n2n 3

n + 2
(48)n+2h

5
2

= 332
19
2 B(2,

3
2
)h

5
2 .

When −1
3
n + k − 5

3
= −1, i.e. k = 1

3
n + 2

3
,

M = 2
3
2

+∞∑
n=1

1
2 (1

2 − 1) · · · (1
2 − n + 1)

n!
(− 1

96
)n

· (C
1
3n+ 2

3
n 2

2
3n− 2

3
9
2
h

1
2−n ln h + C

1
3n+ 2

3
n 2

2
3n− 2

3 ln(3
9
2 2

39
2 )h

1
2−n).

In this case, taking n = 1, then k = 1, we obtain the following term

2
3
2
1
2
(− 1

96
)(

9
2
h− 1

2 lnh) = −2−
11
2 3h−1

2 lnh,
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and O(h− 1
2 ).

Hence we have

I0(h) = a0h
5
2 + a1h

−1
2 lnh + O(h− 1

2 ),

where a0 = 219/233B(2, 3/2) > 0 and a1 = −2−11/23 < 0. �

Remark 2.3

1. Integrals I′k(h) =
∮
Γh

xk−1/y dx > 0 for h ∈ (1/25, +∞) with k = 0, 1,−1,−1
3 .

2. In Lemma 2.2, the terms O(h−1/2), O(h5/2) and O(h1/2) have no contribution to our following calculation.
Hence we omit their exact expressions.

Definition 2.4 For h ∈ (1/25, +∞) , we define the functions

ν(h) =
I′0(h)

I′− 1
3
(h)

, ω(s) = hν(h),

where s = h3 .
For s ∈ (1/215, +∞) , we obtain a curve

Cω = {(s, ω) : s ∈ (
1

215
, +∞), ω = ω(s)}

in (s, ω)-plane, which is called the auxiliary curve.

3. The properties of the auxiliary curve Cω

Lemma 3.1 For s ∈ (1/215, +∞) , ω(s) satisfies the following Riccati equation

3s(1 − 32768s)ω′ = −80ω2 + (2 + 98304s)ω − 2560s,

which is equivalent to

ṡ = 3s(1 − 32768s),

ω̇ = −80ω2 + (2 + 98304s)ω − 2560s.
(3.1)

Proof. Differentiating ν(h) = I′
0(h)

I′
−1/3(h) with respect to h , we get

ν ′(h) =
I′′0 (h)I′− 1

3
(h) − I′0(h)I′′− 1

3
(h)

(I′− 1
3
(h))2

.

Removing I′′0 (h) and I′′− 1
3
(h) by (2.12), we get the following Riccati equation
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ν ′ =
−80hν2 + (1 + 131072h3)ν − 2560h2

h(1 − 32768h3)
. (3.2)

Since
dω

ds
=

dω

dh

dh

ds
= (ν + hν ′)

1
3h2

,

Removing ν ′ by (3.2), we get

dω

ds
=

−80h2ν2 + (98304h3 + 2)hν − 2560h3

3h3(1 − 32768h3)

=
−80ω2 + (2 + 98304s)ω − 2560s

3s(1 − 32768s)
.

Lemma 3.1 is proved. �

Since ω → 1/25 as s → 1/215 , if we define the value of ω(s) at 1/215 by its limit as s → 1/215 , then the

domain of ω(s) can be extended to [1/215, +∞). It is easy to know (1/215, 1/25) is the saddle-node of system

(3.1), hence curve Cω is a trajectory of system (3.1) passing through saddle-node (1/215, 1/25).

In the following, we study the convexities of Cω near the two endpoints.

Lemma 3.2 We have

ω′(
1

215
) = −512

3
, ω′′(

1
215

) =
322961408

27
.

Proof. From Lemma 3.1, we know that ω(s) satisfies equation (3.1).

Since I0(h) and I−1/3(h) are analytical at h = 1/25 , we suppose that ω(s) has the following expansion

near the point (1/215, 1/25)

ω(s) =
1
25

+ ω1(s −
1

215
) +

ω2

2!
(s − 1

215
)2 + · · · . (3.3)

Then substituting (3.3) into the following equality

ω̇ − ṡ
dω

ds
= 0,

and comparing the coefficients on both side, we have

ω1 = −512
3

, ω2 =
322961408

27
.

�

Lemma 3.3 When 0 < 1/s 	 1 , we have that ω′(s) < 0, ω′′(s) > 0 .
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Proof. From (2.14), we know that when h → +∞ ,

(h
I′0(h)

I′− 1
3
(h)

)′ ∼ 3a1 lnh

7d0h4
.

Hence when s → +∞ , we have that

ω′(s) ∼ a1 ln s

21d0s2
< 0,

ω′′(s) ∼ −2a1 ln s

21d0s3
> 0.

This implies the result of the lemma. �

Lemma 3.4 The auxiliary curve Cω is strictly decreasing for s ∈ (1/215, +∞) .

Proof. From Lemmas 3.2 and 3.3, we know that ω(s) is strictly decreasing near two endpoints, and

ω(s) → 5a0/(7d0) < ω(1/215) = 1/25 as s → +∞, if Cω is not monotonically decreasing for s ∈ (1/215, +∞),
then it must have at least one minimum and one maximum points, and we would find a value c such that the
straight line lc = {(s, ω) : ω = c} cuts Cω at least at three points, which implies that there are at least two

points on this line for s ∈ (1/215, +∞) where the vector field (3.1) is horizontal.

However, we know from the Riccati equation

ω̇|ω=c = (98304c− 2560)s− 80c2 + 2c. (3.4)

Obviously (3.4) has at most one root, which is a contradiction.

Hence Cω is strictly decreasing for s ∈ (1/215, +∞). �

Lemma 3.5 The auxiliary curve Cω is globally convex for s ∈ (1/215, +∞) .

Proof. Assume that the auxiliary curve Cω is not globally convex for s ∈ (1/215, +∞). From Lemmas 3.2
and 3.3, it must have even inflection points. Without loss of generality, we suppose there are two inflection
points on the auxiliary curve Cω .

Since we have proved that Cω is monotonically decreasing for s ∈ (1/215, +∞) and convex at two

endpoints, there exists a straight line la,b = {(s, ω) : ω = as + b, a < 0} on (s, ω)-plane which has three

intersection points with Cω , denoted by A , B and C respectively, and la,b cuts the line s = 1/215 at point F

below the saddle node E(1/215, 1/25), see Figure 3.

Since ω(s) → 5a0/(7d0) > 0 and la,b → −∞ as s → +∞ , there must be another intersection point D

of the straight line la,b with the auxiliary curve Cω for some s .

Hence the straight line la,b has at least four intersection points with the curve Cω . Then there are at

least three tangent points with system (3.1) on the straight line la,b .

On the other hand, from the Riccati equation we have

(ω̇ − aṡ)|ω(s)=as+b

=(−80a2 + 196608a)s2 + (−160ab− a + 98304b− 2560)s− 80b2 + 2b.
(3.5)
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ω

Figure 3. The behaviors of the straight line la,b and auxiliary curve Cω .

Obviously (3.5) has at most two zeros. This leads to a contradiction.

Hence the auxiliary curve Cω is globally convex for s ∈ ( 1
215 , +∞). �

Definition 3.6 Define three functions

P (h) =
I1(h)
I0(h)

, Q(h) =
I−1(h)
I0(h)

, R(h) =
I− 1

3
(h)

I0(h)

for h ∈ (1/25, +∞). Then we obtain a curve

Λ = {(Q, P ) : Q = Q(h), P = P (h), h ∈ (
1
25

, +∞)}

in (Q, P )-plane, which is called the centroid curve.

Remark 3.7 In fact, the definition of the centroid curve here is not standard, see [9]. For convenience, we
also call it the centroid curve.

Since I0(h) �= 0 for h ∈ (1/25, +∞), we can rewrite I(h) in the following form

I(h) = I0(h)(α + β
I1(h)
I0(h)

+ γ
I−1(h)
I0(h)

),

then the number of zeros of I(h) is equal to the number of the intersection points of the straight line

Lαβγ = {(Q, P ) : α + βP + γQ = 0}

and the centroid curve Λ. Hence we need to study the properties of the centroid curve.

4. The properties of the centroid curve Λ

Since Ik(h) > 0 with k = 0, 1,−1 and −1/3, we easily know that P (h) > 0, Q(h) > 0 and R(h) > 0

for h ∈ (1/25, +∞). Moreover, When h → 1/25 , we have that (P, Q)(h) → (1, 1) and R(h) → 1. Hence

we can extend the domain of functions P (h), Q(h) and R(h) from (1/25, +∞) to [1/25, +∞). Besides these,

P (h), Q(h) and R(h) also satisfy the following properties.
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Lemma 4.1 For h ∈ (1/25, +∞) , P (h), Q(h) and R(h) satisfy the following 4-dimension system

ḣ = G(h),

Ṗ = −5 + 196608h3 + (2 − 98304h3)P − 7168h2R + 7168h2PR,

Q̇ = 1 + (11 − 393216h3)Q − 7168h2R + 7168h2QR,

Ṙ = 32h − 262144h3R + 7168h2R2,

(4.1)

where G(h) = 2h(1 − 32768h3).

Proof. Differentiating the function P (h) = I1(h)
I0(h)

with respect to h , we have

P ′(h) =
I′1(h)I0(h) − I′0(h)I1(h)

(I0(h))2
.

Removing I′0(h) and I′1(h) by (2.13) from P ′(h), we get

G(h)P ′(h) = −5 + 196608h3 + (2 − 98304h3)P − 7168h2R + 7168h2PR,

which is equivalent to

ḣ = G(h) = 2h(1− 32768h3),

Ṗ = −5 + 196608h3 + (2 − 98304h3)P − 7168h2R + 7168h2PR.

We can compute Q′(h) and R′(h) similarly, then it is easy to obtain the 4-dimension system (4.1).

�

Lemma 4.2 We have that

P ′(
1
25

) = −24, Q′(
1
25

) = 96,

P ′′(
1
25

) =
2624

3
, Q′′(

1
25

) =
17152

3
.

Proof. At the singularity (1/25, 1, 1, 1), the linear matrix of system (4.1) is

6

⎛
⎜⎜⎝

−1 0 0 0
48 1 0 0

−192 0 1 0
−48 0 0 1

⎞
⎟⎟⎠ .

From (4.1), we know that the function (h, P (h), Q(h), R(h)) is given by the one dimensional stable
manifold at this singularity.

Noting (P (h), Q(h), R(h)) → (1, 1, 1) as h → 1/25 and the analyticities of I0(h), I1(h), I−1(h) and

I−1/3(h) at h = 1/25 , we suppose that near the singularity (1/25, 1, 1, 1), P (h), Q(h) and R(h) have the
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following expansions

P = 1 + p1(h − 1
25

) +
p2

2!
(h − 1

25
)2 + · · · ,

Q = 1 + q1(h − 1
25

) +
q2

2!
(h − 1

25
)2 + · · · ,

R = 1 + r1(h − 1
25

) +
r2

2!
(h − 1

25
)2 + · · · .

(4.2)

Substituting (4.2) into the following equations

Ṗ − ḣ
dP

dh
= 0,

Q̇ − ḣ
dQ

dh
= 0,

Ṙ − ḣ
dR

dh
= 0,

and comparing the coefficients on both sides, we get

p1 = −24, p2 =
2624

3
,

q1 = 96, q2 =
17152

3
.

�

From Lemma 2.2, we easily obtain the following lemma.

Lemma 4.3 When h → +∞ , we have that

P (h) ∼ b0

a0
h− 3

2 , Q(h) ∼ c0

a0
h3,

P ′(h) ∼ − 3b0

2a0
h−5

2 , Q′(h) ∼ 3c0

a0
h2,

P ′′(h) ∼ 15b0

4a0
h− 7

2 , Q′′(h) ∼ 6c0

a0
h.

Lemma 4.4 For h ∈ (1/25, +∞) , we have P ′(h) < 0 and Q′(h) > 0 .

Proof. According to Theorem 2 of [13], we will prove this lemma by using the criterion function

ζ(x) =
f2(x)

√
φ(x̃)Φ′(x̃) − f2(x̃)

√
φ(x)Φ′(x)

f1(x)
√

φ(x̃)Φ′(x̃) − f1(x̃)
√

φ(x)Φ′(x)
,

where x̃ = x̃(x) is defined by Φ(x) = Φ(x̃) for 0 < x < 1 < x̃ < +∞ .
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In our case, since

P (h) =
I1(h)
I0(h)

=

∮
Γh

x− 4
3 y dx∮

Γh
x− 7

3 y dx
,

and

H(x, y) = x− 4
3 (

1
2
y2 +

1
96

x2 +
1
48

x) =
1
2
x− 4

3 y2 +
1
96

x
2
3 +

1
48

x−1
3 ,

we take

f1(x) = x−7
3 , f2(x) = x−4

3 ,

φ(x) =
1
2
x− 4

3 , Φ(x) =
1
96

x
2
3 +

1
48

x−1
3 ,

then

ζ(x) =
x− 4

3 x̃−2(x̃ − 1) − x̃−4
3 x−2(x − 1)

x− 7
3 x̃−2(x̃ − 1) − x̃−7

3 x−2(x − 1)
=

xx̃
1
3 (x̃ − 1) − x̃x

1
3 (x − 1)

x̃
1
3 (x̃ − 1) − x

1
3 (x − 1)

.

Let ψ(x) = x1/3(x − 1), thus the criterion function ζ(x) is simplified as

ζ(x) =
xψ(x̃) − x̃ψ(x)
ψ(x̃) − ψ(x)

.

Differentiating ζ(x) with respect to x , we have

ζ′(x) = ζx + ζx̃
dx̃

dx
, (4.3)

where

ζx =
ψ(x̃)[(ψ(x̃) − ψ(x)) + ψ′(x)(x − x̃)]

(ψ(x̃) − ψ(x))2
,

ζx̃ =
ψ(x)[(ψ(x) − ψ(x̃)) + ψ′(x̃)(x̃ − x)]

(ψ(x̃) − ψ(x))2
.

By using the mean value theorem, we get

ζx =
ψ(x̃)(x̃ − x)(ψ′(ξ) − ψ′(x))

(ψ(x̃) − ψ(x))2
(x < ξ < x̃),

and

ζx̃ =
ψ(x)(x̃ − x)(ψ′(x̃) − ψ′(η))

(ψ(x̃) − ψ(x))2
(x < η < x̃).

Since ψ′′(x) = 2/9x−5/3(2x + 1) > 0, we get that

ψ′(ξ) > ψ′(x), ψ′(x̃) > ψ′(η).

Recalling ψ(x) < 0, ψ(x̃) > 0, x̃ − x > 0, hence we have

ζx > 0, ζx̃ < 0. (4.4)
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On the other hand, by Φ′(x) = 1/144x−4/3(x − 1), we easily get

dx̃

dx
=

Φ′(x)
Φ′(x̃)

=
x−4

3 (x − 1)
x̃−4

3 (x̃ − 1)
< 0, (4.5)

(4.3), (4.4) and (4.5) yield

ζ′(x) > 0.

By Theorem 2 of [13], we have

P ′(h) < 0.

Similarly we can get Q′(h) > 0. �

Remark 4.5 Lemma 4.4 implies that we may treat P as a function of Q , then we rewrite the centroid curve
as follows

Λ = {(Q, P ) : P = P̃ (Q) = P (h(Q)), Q ∈ [1, +∞)},

where h = h(Q) is the inverse function of Q = Q(h) .

Thus we have that for h ∈ [1/25, +∞),

dP

dQ
=

P ′(h)
Q′(h)

< 0,

which implies the centroid curve Λ is strictly decreasing. Moreover, we have

Corollary 4.6

lim
h→ 1

25

dP

dQ
= −1

4
, lim

h→ 1
25

d2P

dQ2
=

1
4
;

When h → +∞,

dP

dQ
∼ −b0

2c0
h− 9

2 ,
d2P

dQ2
∼ 3a0b0

4c2
0

h− 15
2 .

Corollary 4.7 The centroid curve has the same convexity near the two endpoints.

In the following, we study the number of zeros of I(h) for h ∈ (1/25, +∞).

5. Proof of Theorem 1.2

Removing Ik(h) (k = 0, 1,−1) from (1.7) by using Picard-Fuchs equation (2.1), we get

I(h) =(−2αh − 6βh)I′0(h) + βhI′1(h) +
2
11

γhI′−1(h)

+ (
1
16

α +
5
32

β − 1
176

γ)I′− 1
3
(h).

(5.1)
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Differentiating (1.7) with respect to h , we have

I′(h) = αI′0(h) + βI′1(h) + γI′−1(h). (5.2)

Using equalities (5.1) and (5.2), we get

ϕ(h) : = − 2
11

h
13
2 (h− 11

2 I(h))′ = I(h) − 2
11

hI′(h)

= ᾱhI′0(h) + β̄hI′1(h) + γ̄I′− 1
3
(h),

(5.3)

where

ᾱ = (−24
11

α − 6β), β̄ =
9
11

β, γ̄ =
1
16

α +
5
32

β − 1
176

γ,

then we have

(
ϕ(h)

h
)′ = ᾱI′′0 (h) + β̄I′′1 (h) +

γ̄

h2
(I′′− 1

3
(h)h − I′− 1

3
(h)). (5.4)

Removing I′′k (h) (k = 0, 1,−1/3) by using (2.12) from (5.4), we can get

ϕ̃(h) : = 2(1 − 32768h3)h2(
ϕ(h)

h
)′

= (m1 + n1h
3)hI′0(h) + (m2 + n2h

3)I′− 1
3
(h),

(5.5)

where
m1 = 2ᾱ− β̄ + 160γ̄, n1 = 98304ᾱ + 196608β̄,

m2 = −2γ̄, n2 = −5120ᾱ − 5120β̄ − 98304γ̄.

Lemma 5.1 The function ϕ(h) has at most three zeros for h ∈ (1/25, +∞) , taking into account the multi-
plicity.

Proof. Since ϕ̃(h) = 2(1 − 32768h3)h2(ϕ(h)/h)′ , we can study the zeros of ϕ̃(h) instead of ϕ(h) for

h ∈ (1/25, +∞).

Noting I′−1/3(h) �= 0 for h ∈ (1/25, +∞), from (5.5), we know that

ϕ̃ (h) = I′− 1
3
(h)((m1 + n1s)ω(s) + (m2 + n2s)), (5.6)

where s and ω(s) is defined as before.

If m1n2 − n1m2 = 0, then there exists a constant λ , such that

ϕ̃ (h) = I′− 1
3
(h)(m1 + n1s)(ω(s) + λ).

Since ω(s) is strictly decreasing for s ∈ [1/215, +∞), it has at most one intersection point with the line

{ω = −λ} , then ϕ̃(h) has at most two zeros for h ∈ (1/25, +∞).

From now on, we suppose m1n2 − n1m2 �= 0.
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If there exists s1 ∈ (1/215, +∞) such that m1 + n1s1 = 0, then ϕ̃(h1) = I′−1/3(h1)(m2 + n2s1) �= 0,

where s1 = h3
1 . Without loss of generality, we assume m1 + n1s �= 0 for s ∈ (1/215, +∞), then (5.6) can be

rewritten as

ϕ̃ (h) = I′− 1
3
(h)(m1 + n1s)(ω(s) +

m2 + n2s

m1 + n1s
)

= I′− 1
3
(h)(m1 + n1s)(ω(s) − ρ(s)),

where

ρ(s) = −m2 + n2s

m1 + n1s
,

and m1, n1, m2 , and n2 are defined in (5.5).

For convenience, we define

Cρ = {(s, ρ(s)) : ρ(s) = −m2 + n2s

m1 + n1s
, s ∈ (

1
215

, +∞)}.

Since I′−1/3(h) �= 0 for h ∈ (1/25, +∞), the number of zeros of ϕ̃(h) is equal to the number of intersection

points of Cω and Cρ .

If n1 = 0, then Cρ is a straight line. Since Cω is globally decreasing and convex for h ∈ [1/25, +∞),

there are at most two intersection points for Cω and Cρ .

Now we suppose n1 �= 0, then Cρ are two branches of the hyperbola with asymptotes s = −m1/n1 ,

ρ(s) = −n2/n1 , see Figure 4.

ω=ωω=ω

ρ=−

ρ

Figure 4. The behaviors of curve Cω and curve Cρ .

If the hyperbola is increasing, see Figure 4(a), we know that the curve Cρ has at most two intersection

points with Cω , because Cω is monotonically decreasing for s ∈ [1/215, +∞).

If the hyperbola is decreasing, see Figure 4(b), Cω can only intersect with one branch of the hyperbola. If
Cω intersects with the left-lower branch, then they have at most two intersection points, because the left-lower
branch is concave and Cω is globally convex.

Now we only need to consider the case that Cω intersects with the right-upper branch of the hyperbola
denoted by C ′ .
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From the Riccati equation of ω(s) and the definition of ρ(s), we know for s ∈ (1/215, +∞),

(
ω̇

ṡ
− ρ′(s))|ω=ρ(s) =

−4
3s(160γ̄ + 2ᾱ − β̄ + 98304αs + 196608βs)2

(α1s
2 + β1s + γ1),

where α1, β1 and γ1 are constants depending on ᾱ , β̄ and γ̄ . This implies Cω and C ′ have at most three

intersection points for s ∈ [1/215, +∞).

Note the fact that ω(1/215) = lims→1/215 ρ(s) = 1/25 , hence for s ∈ (1/215, +∞), Cω and C ′ have at

most two intersection points.

Thus we know that for m1n2 − n1m2 �= 0, Cω and Cρ have at most two intersection points.

Summing up the discussions above, the function ϕ̃(h) has at most two zeros for h ∈ (1/25, +∞), taking

into account the multiplicity, which, by (5.5), implies that the function ϕ(h) has at most three zeros. �

Now we begin to prove Theorem 1.2.

Proof. From Lemma 5.1 and the definition of the function ϕ(h), we know that the associated Abelian

integral I(h) has at most four zeros for h ∈ [1/25, +∞). Since I(1/25) = 0 for any constants α, β and γ , I(h)

has at most three zeros for h ∈ (1/25, +∞).

In the following, we will prove that the centroid curve is globally convex without zero curvature, which

yields that the associated Abelian integral I(h) has at most two zeros for h ∈ (1/25, +∞), taking into account
the multiplicities.

From Corollary 4.7, we know that the centroid curve Λ is convex near the two endpoints, which implies
that its infection points (if exists) must appear in pair. Without loss of generality, suppose there exist two
inflection points on Λ.

Since P ∼ (a−3/2
0 b0c

1/2
0 )Q−1/2 as h → +∞ and P ′(Q) < 0 for Q > 1, using the same arguments as in

the proof of Lemma 3.5, we can find a straight line which has at least four intersection points with the centroid
curve Λ. That is, there exist some α0, β0, γ0 such that Abelian integral I(h) = α0I0(h) + β0I1(h) + γ0I−1(h)

has at least four zeros for h ∈ (1/25, +∞), which contradicts the above result. Hence for h ∈ (1/25, +∞),
the centroid curve Λ is globally convex without zero curvature. Otherwise, there exists one point with at least

quadruple tangency, which also implies that I(h) has four zero points for h ∈ (1/25, +∞), leading to the same
contradiction.

Since the centroid curve Λ is strictly convex for h ∈ (1/25, +∞), we can find some constants α̃, β̃ and

γ̃ , such that I(h) = α̃I0(h) + β̃I1(h) + γ̃I−1(h) has exactly two zeros for h ∈ (1/25, +∞).

Therefore we conclude that two is the least upper bound of the zeros of I(h) for h ∈ (1/25, +∞).

This finishes the proof of Theorem 1.2. �
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