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Multi-dimensional Weiss operators

Sergey Borisenok, M. Hakan Erkut, Yaşar Polatoğlu, Murat Demirer

Abstract

We present a solution of the Weiss operator family generalized for the case of �d and formulate a d -

dimensional analogue of the Weiss Theorem. Most importantly, the generalization of the Weiss Theorem

allows us to find a subset of null class functions for a partial differential equation with the generalized

Weiss operators. We illustrate the significance of our approach through several examples of both linear and

non-linear partial differential equations.
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1. Introduction

To investigate the integrability of nonlinear partial differential equations, many different methods have

been developed; among them is Painlevé test [1]. In the framework of this approach, the class of one-dimensional

(’scalar’) differential operators was defined first in [2], and in [3] has been applied to solitonic-type PDEs.

The family of Weiss operators performs a special kind of ordinary derivative operators of integer order n

(n > 0 and for each order only one such an operator exists), and the general solution for each Weiss operator
can be found in a very simple form. Following [2], let’s define for a differentiable scalar function φ(x) the class

of factorized differential operators as

Ln+1 =
n∏

j=0

[
d

dx
+

(
j − n

2

)
V

]
=

(
d

dx
− n

2
V

)
· · · · ·

(
d

dx
+

n

2
V

)
, (1)

where V = φxx/φx is the so-called pre-Schwarzian. For n = 0 equation (1) produces the ordinary derivative

L1 = d/dx ; for n = 1, we get the Schrödinger operator

L2 =
(

d

dx
− 1

2
V

)(
d

dx
+

1
2
V

)
=

(
d

dx

)2

+
1
2
S ;
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for n = 2, we get the the Lenard operator

L3 =
(

d

dx
− V

)
d

dx

(
d

dx
+ V

)
=

(
d

dx

)3

+ 2S
d

dx
+ Sx ,

where by S we denote the Schwarzian of the function φ(x)

S = Vx − 1
2
V 2 =

(
φxx

φx

)
x

− 1
2

(
φxx

φx

)2

. (2)

The important result from [2] is related to the null space of Weiss operators:

Theorem 1.1 The null space of the operator family (1) is given by the set of linearly independent n+1 solutions

{φ−n/2
x φk} ; k = 0, 1, 2, ..., n , i.e. for every k

Ln+1[φ−n/2
x φk] = 0 . (3)

In this paper we propose the generalization of Weiss family Ln+1 for multi-dimensional case of R
d . We

formulate a d -dimensional analogue of Theorem 1.1 for a special class of partial differential operators that

provides us with a sub-set of null class functions for a partial differential equation in terms of the generalized
Weiss operators. Our generalization therefore extends the role played by the Weiss operators in the construction

of some special class of ordinary differential equations to partial differential equations as well. We illustrate the

significance of our approach through several examples of both linear and non-linear partial differential equations.

2. Generalized Weiss operators in R
d

Let’s define for the vector x = (x1, x2, ..., xd) ∈ R
d the linear differential operator

D =
d∑

i=1

ai(x)
∂

∂xi
(4)

with differentiable scalar functions ai(x). Note that, for ai(x) = xi , the definition (4) becomes the so-called

homogeneous operator.

Definition (4) implies for the power m of some scalar function A(x)

D(Am(x)) =
d∑

i=1

ai(x)
∂Am(x)

∂xi
= mAm−1(x)DA(x) . (5)

Also, for a given differentiable function φ(x), we define with (4) a generalized pre-Schwarzian:

V =
D2φ(x)
Dφ(x)

. (6)
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The class of differential operators in d -dimensional space, given by:

Ln+1 =
n∏

j=0

[
D +

(
j − n

2

)
V

]
=

(
D − n

2
V

)
· ... ·

(
D +

n

2
V

)
, (7)

includes Weiss’ operators (1) as a particular case for d = 1 and a1 = 1. The index n + 1 in (7) denotes the

order of the differential operator Ln+1 .

If, for instance, for d = 1, we put x ≡ x , a(x) ≡ a1(x1), then V = ax + aφxx/φx and

L2 = a2 d2

dx2
+ aax

d

dx
+

1
2
aVx − 1

4
V 2 .

Also, if we suggest the particular case
ai(x) = F (x)ci ,

where ci �= 0 are constants, then defining

ξ =
d∑

i=1

xi

ci
,

we get

∂

∂ξ
=

d∑
i=1

ci
∂

∂xi

and D = F (x)∂/∂ξ , that allows to present the operators in one-dimensional form, i.e. Dφ = Fφξ ,

V = Fξ + F
φξξ

φξ
.

The “degenerated” case F = 1 corresponds to (1).

Now we can formulate the following theorem.

Theorem 2.1 A set of linearly-independent functions

{(Dφ(x)−n/2φk(x) , k = 0, 1, 2, ..., n} , (8)

forms a null function

fn+1(x) = [Dφ(x)]−n/2
n∑

k=0

ckφk(x) , (9)

where {ck} is a set of constants, such that fn+1(x) satisfies the equation

Ln+1fn+1(x) = 0 . (10)

Proof. Let’s check how the operator Ln+1 acts on Dφ−n/2φk . Its first (rightmost) bracket using (5) and
(6) produces

(
D +

n

2
V

)
(Dφ)−n/2φk = (Dφ)−n/2φk

[
−n

2
D2φ

Dφ
+ k

Dφ

φ
+

n

2
V

]
= k(Dφ)−n/2+1φk−1.
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The next bracket produces

(
D +

(
n − 1 − n

2

)
V

)
k(Dφ)−n/2+1φk−1 = k(k − 1)(Dφ)−n/2+2φk−2 ,

and so on. Each operator bracket from (7) increases the power of Dφ and decreases the power of φ by one.

After the application of all n + 1 brackets we end up with

Ln+1(Dφ)−n/2φk = k(k − 1)(k − 2) · ... · (k − n)(Dφ)−n/2+n+1φk−n−1 .

But k = 0, 1, 2, ..., n , and one of the factors k , k − 1, ... , k − n is zero, thus,

Ln+1(Dφ)−n/2φk = 0 . (11)

As each operator bracket (D + mV ) is a linear differential operator, (11) can be applied to each term of the

linearly independent set
∑

k(Dφ)−n/2φk , that is

Ln+1

n∑
k=0

(Dφ)−n/2φk = 0 .

Then we end up with (10). �

Thus, in our approach the function φ(x) plays the role of producing function. Choosing first φ(x) and

then using its pre-Schwarzian (6), we define the operator (7) and immediately get the solution (9) following
from Theorem 2.1.

Let’s give an example of our method. We consider the following 2-dimensional partial differential equation

for ψ(x, y):

ψxx + ψyy − 2ψxy = 0 . (12)

Now let’s choose for the simple producing function

φ(x, y) =
x

y
(13)

the operator

D =
∂

∂x
− ∂

∂y
, (14)

i.e. a1 = 1, a2 = −1, x1 = x , and x2 = y . Then

D

(
x

y

)
=

x + y

y2
; D2

(
x

y

)
=

2(x + y)
y3

and

V =
2
y

.

690



BORISENOK, ERKUT, POLATOĞLU, DEMİRER

The generalized Weiss operator for (14) is

L2 =
(

∂

∂x
− ∂

∂y
− 1

y

)(
∂

∂x
− ∂

∂y
+

1
y

)
=

=
∂2

∂x2
− 2

∂

∂x

∂

∂y
+

∂2

∂y2
≡ D2. (15)

Note it reproduces the differential operator in the left hand side of (12).

The solution of (12) by Theorem 2.1 is given by

ψ(x, y) =
c0 + c1φ

(Dφ)1/2
=

c0y + c1x√
x + y

. (16)

2.1. Linear and non-linear examples

Whether or not the partial differential equation under consideration is non-linear, the use of generalized
Weiss operators can be seen to be an effective method in the construction of some class of partial differential

equations. In order to make it clear, we provide the reader with one more linear example and two non-linear

examples of partial differential equations.

In general, the generalized Weiss operator

L2 =
(

D − V

2

) (
D +

V

2

)

acting on a continously differentiable function ψ(x, y) yields a partial differential equation in the form

D2ψ(x, y) + Q(x, y)ψ(x, y) = 0, (17)

where

Q =
1
2

(
DV − 1

2
V 2

)
=

1
2

[
D

(
D2φ

Dφ

)
− 1

2

(
D2φ

Dφ

)2
]

. (18)

In the following, as a linear example that corresponds to (17), we consider the partial differential equation

ψxx + x4ψyy + 2x2ψxy + 2xψy +
1 − 2x2

(1 + x2)2
ψ = 0. (19)

Choosing for the producing function φ = x + y the operator

D =
∂

∂x
+ x2 ∂

∂y
,

we get Dφ = 1 + x2 and D2φ = 2x . Then we obtain

V =
2x

1 + x2
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which yields

Q (x, y) =
1 − 2x2

(1 + x2)2
.

Thus the generalized Weiss operator

L2 =
(

∂

∂x
+ x2 ∂

∂y

)2

+
1 − 2x2

(1 + x2)2

reproduces (19) whose solution according to Theorem 2.1 is given by

ψ(x, y) =
c0 + c1 (x + y)√

1 + x2
.

Let us now discuss the following partial differential equation in the form of (17) which, however, is

non-linear:

ψψxx + ψψyy − 2ψψxy +
1
2
ψ2

x +
1
2
ψ2

y − ψxψy = 0. (20)

Next, we consider

D = −ψ
∂

∂x
+ ψ

∂

∂y

which leads to

Dψ = −ψψx + ψψy

and

D2ψ = ψ2ψxx − 2ψ2 (ψxy) + ψ2ψyy + ψψ2
x + ψψ2

y − 2ψψxψy

for ψxy = ψyx . Thus (17) can be written as

ψ2ψxx − 2ψ2ψxy + ψ2ψyy + ψψ2
x + ψψ2

y − 2ψψxψy + Qψ = 0. (21)

Here, Q can be specified once we define the producing function φ(x, y). Next, we choose φ(x, y) = y − x to
end up with Dφ = 2ψ and D2φ = −2ψψx + 2ψψy which together yield V = ψy − ψx for a non-trivial solution

(i.e., ψ �= 0). According to (18), we obtain

Q(x, y) =
1
2
ψψxx +

1
2
ψψyy − ψψxy − 1

4
ψ2

y +
1
2
ψxψy − 1

4
ψ2

x. (22)

Using (22) in (21), the non-linear partial differential equation can be expressed as in (20). Then,

ψ(x, y) =
[c0 + c1 (y − x)]2/3

21/3

can be identified to be a real solution of (20) in accordance with Theorem 2.1.
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Next, we present the second non-linear example for n = 2 for which the generalized Weiss operator can

be written as

L3 =
2∏

j=0

[D + (j − 1)V ] = (D − V )D (D + V )

or

L3 = D3 + 4QD + 2DQ,

where Q is given by (18). The operator L3 acting on a continuously differentiable function ψ(x, y, z) leads to

a partial differential equation in the form

D3ψ(x, y, z) + 4Q(x, y, z)Dψ(x, y, z) + 2ψ(x, y, z)DQ(x, y, z) = 0. (23)

Choosing, for instance,

D =
∂

∂x
+

∂

∂y
+ ψ

∂

∂z
(24)

for a producing function φ(x, y, z) = x−y+z , the partial differential equation in (23) becomes non-linear. One
can see, for (24), that

Dψ = ψx + ψy + ψψz .

The explicit form of (23) can be obtained using

Dφ = ψ,

D2φ = Dψ = ψx + ψy + ψψz ,

and therefore

V =
D2φ

Dφ
=

ψx + ψy + ψψz

ψ

together with (18) in (23). Following from Theorem 2.1,

ψ(x, y, z) = ±
√

c0 + c1 (x − y + z) + c2 (x − y + z)2

is given as a solution of (23).

3. Discussion

As we mentioned above, starting from the original work [3], the operator family Ln+1 is usually used in

the analysis of partial differential equations of solitonic type [4]. Now we can extend the class of those equations

to the case of multi-dimensional spatial variables. The appropriate choice of the coefficients ai can fit the
necessary form of operator.
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34156, İstanbul-TURKEY

e-mail: m.erkut@iku.edu.tr
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İstanbul Kültür University,
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