

Some results on g-frames in Hilbert spaces

Abdolaziz Abdollahi, Elham Rahimi

Abstract

In this paper we show that every g-frame for a Hilbert space \mathcal{H} can be represented as a linear combination of two g-orthonormal bases if and only if it is a g-Riesz basis. We also show that every g-frame can be written as a sum of two tight g-frames with g-frame bounds one or a sum of a g-orthonormal basis and a g-Riesz basis for \mathcal{H} . We further give necessary and sufficient conditions on g-Bessel sequences $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ and $\{\Gamma_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ and operators L_1 , L_2 on \mathcal{H} so that $\{\Lambda_i L_1 + \Gamma_i L_2 : i \in J\}$ is a g-frame for \mathcal{H} . We next show that a g-frame can be added to any of its canonical dual g-frame to yield a new g-frame.

Key Words: Frame, g-frame, g-orthonormal basis, tight g-frame, g-Bessel sequence

1. Introduction

Frames were first introduced in 1952 by Duffin and Schaeffer ([5]), reintroduced in 1986 by Daubechies, Grossman, and Meyer ([4]), and popularized from then on. In [11], a generalization of the frame concept was introduced. Sun introduced a g-frame and a g-Riesz basis in a complex Hilbert space and discussed some properties of them. A frame of subspaces ([1], [3]) and a system of bounded quasi-projectors ([6]) are a g-frame in a complex Hilbert space. From a g-frame, we may construct a frame for a complex Hilbert space ([11]). A natural question which immediately comes to mind is, "Which properties of the frame may be extended to the g-frame for a complex Hilbert space?". G-frames and g-Riesz bases in complex Hilbert spaces have some properties similar to those of frames, Riesz bases, but not all the properties are similar (see [11]). In this paper we generalize some results in [2], [7], [10] from frame theory to g-frames.

Throughout this paper, \mathcal{H} and \mathcal{K} are separable Hilbert spaces and $\{\mathcal{H}_i\}_{i\in J} \subseteq \mathcal{K}$ is a sequence of separable Hilbert spaces, where J is a subset of \mathbb{Z} , $\mathcal{L}(\mathcal{H}, \mathcal{H}_i)$ is the collection of all bounded linear operators from \mathcal{H} to \mathcal{H}_i . For each sequence $\{\mathcal{H}_i\}_{i\in J}$, we define the space $(\sum_{i\in J} \bigoplus \mathcal{H}_i)_{l_2}$ by

$$(\sum_{i\in J}\bigoplus \mathcal{H}_i)_{l_2} = \{\{f_i\}_{i\in J} : f_i \in \mathcal{H}_i, \ i\in J \ and \ \sum_{i\in J} \|f_i\|^2 < \infty\}$$

With the inner product defined by

$$\langle \{f_i\}, \{g_i\} \rangle = \sum_{i \in J} \langle f_i, g_i \rangle,$$

²⁰⁰⁰ AMS Mathematics Subject Classification: Primary 41A58; Secondary 42C15.

it is clear that $(\sum_{i \in J} \bigoplus \mathcal{H}_i)_{l_2}$ is a Hilbert space.

A frame for a complex Hilbert space \mathcal{H} is a family of vectors $\{f_i\}_{i \in J}$ so that there are two positive constants A and B satisfying

$$A||f||^2 \le \sum_{i \in J} |\langle f, f_i \rangle|^2 \le B||f||^2, f \in \mathcal{H}.$$

The constants A and B are called lower and upper frame bounds.

A sequence $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ is called a generalized frame, or simply a g-frame, for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i \in J}$ if there exist two positive constants A and B such that, for all $f \in \mathcal{H}$,

$$A||f||^{2} \leq \sum_{i \in J} ||\Lambda_{i}f||^{2} \leq B||f||^{2}$$

The constants A and B are called the lower and upper g-frame bounds, respectively. The supremum of all such A and the infimum of all such B are called the optimal bounds. If A = B we call this g-frame a tight g-frame and if A = B = 1, it is called a normalized tight g-frame. A g-frame is exact if it is ceases to be a g-frame whenever any single element is removed from $\{\Lambda_i\}_{i\in J}$. We say simply a g-frame for \mathcal{H} whenever the space sequence \mathcal{H}_i is clear. We say $\{\Lambda_i\}_{i\in J}$ is a g-frame sequence, if it is a g-frame for $\overline{span}\{\Lambda_i^*(\mathcal{H}_i)\}_{i\in J}$. If we only have the upper bound, we call $\{\Lambda_i\}_{i\in J}$ a g-Bessel sequence with bound B. We say that $\{\Lambda_i\}_{i\in J}$ is g-complete, if $\{f : \Lambda_i f = 0, \forall i \in J\} = \{0\}$; and is called g-orthonormal basis for \mathcal{H} , if

$$\langle \Lambda_i^* g_i, \Lambda_j^* g_j \rangle = \delta_{i,j} \langle g_i, g_j \rangle, \ i, j \in J, \ g_i \in \mathcal{H}_i, \ g_j \in \mathcal{H}_j,$$

and

$$\sum_{i \in J} \|\Lambda_i f\|^2 = \|f\|^2$$

We say that $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ is a g- Riesz basis for \mathcal{H} , if it is g-complete and there exist constants $0 < A \leq B < \infty$, such that for any finite subset $I \subseteq J$ and $g_i \in \mathcal{H}_i$, $i \in I$,

$$A\sum_{i\in I} \|g_i\|^2 \le \|\sum_{i\in I} \Lambda_i^* g_i\|^2 \le B\sum_{i\in I} \|g_i\|^2$$

Recall that a unitary operator $K : \mathcal{H} \longrightarrow \mathcal{H}$ is an onto isometry, a partial isometry is an operator that is an isometry on the orthogonal complement of its kernel, a co-isometry is an operator whose adjoint is an into isometry, and a maximal partial isometry is either an isometry or a co-isometry.

In order to present the main results of this paper, we need the following Theorems and Propositions which can be found in [11], [2] and [9]

Proposition 1.1 ([2]) Let $K : \mathcal{H} \longrightarrow \mathcal{H}$ be a bounded linear operator. Then the following hold:

- i) $K = a(U_1 + U_2 + U_3)$, where each U_j , j = 1, 2, 3, is a unitary operator and a is a constant.
- ii) If K is onto, then it can be written as a linear combination of two unitary operators if and only if K is invertible.

Theorem 1.2 ([11])Let $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ be a g-frame for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i \in J}$. The operator

$$S: \mathcal{H} \to \mathcal{H}, Sf = \sum_{i \in J} \Lambda_i^* \Lambda_i f,$$

is a positive invertible operator and every $f \in \mathcal{H}$ has an expansion

$$f = \sum_{i \in J} S^{-1} \Lambda_i^* \Lambda_i f = \sum_{i \in J} \Lambda_i^* \Lambda_i S^{-1} f.$$

So $\{\widetilde{\Lambda_i} = \Lambda_i S^{-1} \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ is a g-frame for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i \in J}$ and is called canonical dual g-frame of $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$. The operator S is called the g-frame operator of $\{\Lambda_i\}_{i \in J}$.

Definition 1.3 Let $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ be a g-frame for \mathcal{H} . Then the synthesis operator for $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ is the operator

$$T: (\sum_{i \in J} \bigoplus \mathcal{H}_i)_{l_2} \longrightarrow \mathcal{H}$$

defined by

$$T(\{f_i\}_{i\in J}) = \sum_{i\in J} \Lambda_i^\star(f_i)$$

We call the adjoint T^* of the synthesis operator the analysis operator.

Proposition 1.4 ([9])Let $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ be a g-frame for \mathcal{H} . Then the analysis operator for $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ is the operator

$$T^{\star}: \mathcal{H} \longrightarrow (\sum_{i \in J} \bigoplus \mathcal{H}_i)_{l_2},$$

defined by

$$T^{\star}(f) = \{\Lambda_i(f)\}_{i \in J}.$$

Proposition 1.5 ([9]) Let $\{\Lambda_i\}_{i \in J}$ be a sequence in $\mathcal{L}(\mathcal{H}, \mathcal{H}_i)$. Then the following are equivalent:

- i) $\{\Lambda_i\}_{i\in J}$ is a g-frame for \mathcal{H} ;
- *ii)* The operator $T: (\{f_i\}_{i \in J}) \mapsto \sum_{i \in J} \Lambda_i^{\star}(f_i)$ is well-defined and bounded from $(\sum_{i \in J} \bigoplus \mathcal{H}_i)_{l_2}$ onto \mathcal{H}_i
- iii) The operator $S: f \mapsto \sum_{i \in J} \Lambda_i^* \Lambda_i f$ is well-defined and bounded from \mathcal{H} onto \mathcal{H} .

Proposition 1.6 ([9]) Let $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ be a g-orthonormal basis for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i \in J}$ and $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ be a g-frame for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i \in J}$. Then there is a bounded and onto operator $K : \mathcal{H} \longrightarrow \mathcal{H}$ such that $\Lambda_i = \Theta_i K^*$ for all $i \in J$. Furthermore, K is invertible if $\{\Lambda_i\}_{i \in J}$ is a g-Riesz basis for \mathcal{H} and K is unitary if $\{\Lambda_i\}_{i \in J}$ is a g-orthonormal basis for \mathcal{H} .

2. Some g-frame representations

In this section we show that every g-frame for a Hilbert space \mathcal{H} can be written as a sum of three g-orthonormal bases for \mathcal{H} . We next show that a g-frame can be represented as a linear combination of two g-orthonormal bases if and only if it is a g-Riesz basis. We further show that every g-frame can be written as a sum of two tight g-frames with g-frame bounds one or a sum of a g-orthonormal basis and a g-Riesz basis for \mathcal{H} .

Proposition 2.1 If $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ is a g-frame for a Hilbert space \mathcal{H} , and $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ is a g-orthonormal basis for \mathcal{H} , there are g-orthonormal bases $\{\Upsilon_i\}$, $\{\Gamma_i\}$, $\{\Psi_i\}$ for \mathcal{H} and a constant a so that $\Lambda_i = a(\Upsilon_i + \Gamma_i + \Psi_i)$ for all $i \in J$.

Proof. By Proposition 1.6 there is a bounded and onto operator $K : \mathcal{H} \longrightarrow \mathcal{H}$ such that $\Lambda_i = \Theta_i K^*$ and by Proposition 1.1 we have $K^* = a(U_1 + U_2 + U_3)$, where each U_j is a unitary operator and a is a constant. So $\Lambda_i = \Theta_i K^* = a(\Theta_i U_1 + \Theta_i U_2 + \Theta_i U_3)$. Since $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ is a g-orthonormal basis and for each $r = 1, 2, 3, U_r$ is a unitary operator, we have

$$\langle (\Theta_i U_r)^* g_i, (\Theta_j U_r)^* g_j \rangle = \langle \Theta_i^* g_i, \Theta_j^* g_j \rangle = \delta_{i,j} \langle g_i, g_j \rangle,$$

and

$$\sum_{i \in J} \|\Theta_i U_r f\|^2 = \|U_r f\|^2 = \|f\|^2.$$

So $\{\Theta_i U_r\}_i$ is a g-orthonormal basis and the proof is complete by putting $\Upsilon_i = \Theta_i U_1, \Gamma_i = \Theta_i U_2$ and $\Psi_i = \Theta_i U_3$.

Proposition 2.2 ([12]) For the family $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ the following two statements are equivalent:

- i) The sequence $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ is a g-Riesz basis for \mathcal{H} .
- ii) The sequence $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ is a g-frame for \mathcal{H} , and if $\sum_{i \in J} \Lambda_i^* g_i = 0$ then $g_i = 0$ for all $i \in J$.

Proposition 2.3 If $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ is a g-orthonormal basis for \mathcal{H} then we have a g-frame $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ which can be written as a linear combination of two g-orthonormal bases for \mathcal{H} if and only if $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ is a g-Riesz basis for \mathcal{H} .

Proof. If $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ is a g-Riesz basis, by Proposition 1.6, there is an invertible operator $K: \mathcal{H} \longrightarrow \mathcal{H}$ such that $\Lambda_i = \Theta_i K^*$ and by Proposition 1.1 we have $K^* = aU_1 + bU_2$ for some constants a, b, and unitary operators U_1 and U_2 . So $\Lambda_i = \Theta_i K^* = a\Theta_i U_1 + b\Theta_i U_2$. Since $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ is a g-orthonormal basis and U_1 and U_2 are unitary operators, for $g_i \in \mathcal{H}_i, g_j \in \mathcal{H}_j$ and $f \in \mathcal{H}$, we have

$$\langle (\Theta_i U_r)^* g_i, (\Theta_j U_r)^* g_j \rangle = \langle \Theta_i^* g_i, \Theta_j^* g_j \rangle = \delta_{i,j} \langle g_i, g_j \rangle$$

and

$$\sum_{i \in J} \|\Theta_i U_r f\|^2 = \|U_r f\|^2 = \|f\|^2.$$

So $\{\Theta_i U_r\}_i$ is a g-orthonormal basis.

Now suppose that there are g-orthonormal bases $\{\Upsilon_i\}$, $\{\Gamma_i\}$ for \mathcal{H} and constants a, b such that $\Lambda_i = a\Upsilon_i + b\Gamma_i$ for all $i \in J$. By Proposition 1.6, there are an onto operator T, and unitary operators K and R such that $\Lambda_i = \Theta_i T^*$, $\Gamma_i = \Theta_i K^*$, $\Upsilon_i = \Theta_i R^*$. Since $\Lambda_i = a\Upsilon_i + b\Gamma_i$ and $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ is a g-orthonormal basis for \mathcal{H} , we have T = aK + bR and so, by Proposition 1.1, T is an invertible operator. If $\sum_{i \in J} \Lambda_i^* g_i = 0$ then $T \sum_{i \in J} \Theta_i^* g_i = 0$, and so $\sum_{i \in J} \Theta_i^* g_i = 0$. Therefore, by Proposition 2.2, $g_i = 0$ which implies that the family $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ is a g-Riesz basis. \Box

Proposition 2.4 If K is a co-isometry on \mathcal{H} , and if $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ is a g-orthonormal basis for \mathcal{H} , then $\{\Theta_i K^* : i \in J\}$ is a normalized tight g-frame for \mathcal{H} .

Proof. Since K is a co-isometry, K^* is an isometry. Hence, for all $f \in \mathcal{H}$,

$$\sum_{i \in J} \|\Theta_i K^* f\|^2 = \|K^* f\|^2 = \|f\|^2.$$

Every operator K on a Hilbert space can be written in the form $K = VP = \frac{||T||}{2}V(W + W^*)$, where W is unitary and V is a maximal partial isometry. It follows that VW and VW^{*} are maximal partial isometries. That is, each of these operators is either an isometry or a co-isometry. However, if K has dense range, V must be a co-isometry (see [2]).

By using the above facts we have the following propositions.

Proposition 2.5 If $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ is a g-orthonormal basis for \mathcal{H} then every g-frame is the sum of two normalized tight g-frames for \mathcal{H} .

Proof. By Proposition 1.6, there is a bounded and onto operator $K: \mathcal{H} \longrightarrow \mathcal{H}$ such that $\Lambda_i = \Theta_i K^*$, and by the above explanation, we have $K = \frac{\|T\|}{2}V(W + W^*)$, where W is unitary and V must be a co-isometry. So VW and VW^{*} are co-isometry. Then

$$\Lambda_i = \Theta_i K^\star = \Theta_i(\frac{\|T\|}{2}((VW)^\star + (VW^\star)^\star)),$$

and, by Proposition 2.4, $\Theta_i(VW)^*$ and $\Theta_i(VW^*)^*$ are normalized tight g-frames.

Proposition 2.6 If $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ is a g-orthonormal basis for \mathcal{H} , then every g-frame for a Hilbert space \mathcal{H} is the sum of a g-orthonormal basis for \mathcal{H} and a g-Riesz basis for \mathcal{H} .

Proof. If $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ is a g-frame for a Hilbert space \mathcal{H} then, by Proposition 1.6, there is a bounded and onto operator $K: \mathcal{H} \longrightarrow \mathcal{H}$ such that $\Lambda_i = \Theta_i K^*$. For any $0 < \epsilon < 1$ define an operator L by

$$L = \frac{3}{4}I + \frac{1}{4}(1-\epsilon)\frac{K^{\star}}{\|K^{\star}\|}.$$

699

Then we have ||I - L|| < 1 and $||L|| \le 1$. So L is an invertible operator and, as in the proof of proposition 1.1, (see [2]) we can write

$$L = \frac{1}{2}(W + W^{\star}),$$

where W is a unitary operator. We also have the relation

$$\begin{split} K^{\star} &= \frac{4\|K^{\star}\|}{(1-\epsilon)} [\frac{1}{2}(W+W^{\star}) - \frac{3}{4}I] \\ &= \frac{2\|K^{\star}\|}{(1-\epsilon)} [W+R], \end{split}$$

where $R = W^* - \frac{3}{2}I$. Since W is unitary, $\{\Theta_i W : i \in J\}$ is a g-orthonormal basis, and W^* is unitary which implies that R is an isomorphism (possibly into). But, it is easily checked that R is onto, since

$$||I - \frac{-1}{2}R|| = ||\frac{1}{4}I + \frac{1}{2}W^*|| < 1.$$

Thus, $\frac{-1}{2}R$ is an invertible operator and hence R is an invertible operator. We also have

$$\sum_{i \in J} (\Theta_i R)^* g_i = \sum_{i \in J} R^* \Theta_i^* g_i = R^* (\sum_{i \in J} \Theta_i^* g_i).$$

Since R is an invertible operator, if $\sum_{i \in J} (\Theta_i R)^* g_i = 0$ then $\sum_{i \in J} \Theta_i^* g_i = 0$ and since $\{\Theta_i : i \in J\}$ is a g-orthonormal basis we conclude $g_i = 0$ for all $i \in J$. Therefore, by Proposition 2.2, $\Theta_i R$ is a g-Riesz basis for \mathcal{H} .

3. Sums of g-bessel sequences

In this section we give necessary and sufficient conditions on g-Bessel sequences $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ and $\{\Gamma_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ and operators L_1 , L_2 on \mathcal{H} so that $\{\Lambda_i L_1 + \Gamma_i L_2 : i \in J\}$ is a g-frame for \mathcal{H} , and we show that a g-frame can be added to any of its canonical dual g-frame to yield a new g-frame.

Proposition 3.1 Let $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ and $\{\Gamma_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ be g-Bessel sequences in \mathcal{H} with analysis operators T_1 , T_2 and g-frame operators S_1 , S_2 , respectively. For the given operators L_1 , L_2 : $\mathcal{H} \longrightarrow \mathcal{H}$ the following are equivalent:

- i) $\{\Lambda_i L_1 + \Gamma_i L_2 : i \in J\}$ is a g-frame for \mathcal{H} .
- ii) $T_1L_1 + T_2L_2$ is a bounded and one-to-one operator on \mathcal{H} .
- iii) The operator $S = L_1^* T_1^* T_1 L_1 + L_1^* T_1^* T_2 L_2 + L_2^* T_2^* T_1 L_1 + L_2^* T_2^* T_2 L_2$ is a well-defined and bounded mapping from \mathcal{H} onto \mathcal{H} . Moreover, in this case, S is the g-frame operator for $\{\Lambda_i L_1 + \Gamma_i L_2 : i \in J\}$.

Proof. The family $\{\Lambda_i L_1 + \Gamma_i L_2 : i \in J\}$ is a g-frame if and only if its analysis operator T which is defined by

$$T(f) = \{ (\Lambda_i L_1 + \Gamma_i L_2)(f) \}_{i \in J} = \{ \Lambda_i L_1(f) \}_{i \in J} + \{ \Gamma_i L_2(f) \}_{i \in J}$$

= $(T_1 L_1 + T_2 L_2)(f),$

is a bounded and one-to-one operator on \mathcal{H} , and this happens if and only if the g-frame operator for our family

$$S = (T_1L_1 + T_2L_2)^*(T_1L_1 + T_2L_2)$$

= $L_1^*T_1^*T_1L_1 + L_1^*T_1^*T_2L_2 + L_2^*T_2^*T_1L_1 + L_2^*T_2^*T_2L_2$

is well defined and bounded.

The following theorem enables one to get a g-frame from a combination of a known g-frame and a g-Bessel sequence.

Theorem 3.2 Let $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ be a g-frame for a Hilbert space \mathcal{H} with g-frame operator S_1 and let $\{\Gamma_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ be a g-Bessel sequence in \mathcal{H} with g-frame operator S_2 . Let T_1 , T_2 be the analysis operators for $\{\Lambda_i : i \in J\}$, $\{\Gamma_i : i \in J\}$, respectively, so that $rangeT_2 \subseteq rangeT_1$. If the operator $R = T_1^*T_2$ is a positive operator, then $\{\Lambda_i + \Gamma_i : i \in J\}$ is a g-frame for \mathcal{H} with g-frame operator $S_1 + R + R^* + S_2$.

Proof. Let T_1 , T_2 be the analysis operators for $\{\Lambda_i : i \in J\}$, $\{\Gamma_i : i \in J\}$, respectively. By letting $L_1 = I = L_2$ in Proposition 3.1, we see that the g-frame operator for $\{\Lambda_i + \Gamma_i : i \in J\}$ is

$$S = T_1^* T_1 + T_1^* T_2 + T_2^* T_1 + T_2^* T_2 = S_1 + R + R^* + S_2.$$

Corollary 3.3 If $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ is a g-frame with g-frame operator S and $\{\Gamma_i :\in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ is a g-Bessel sequence in \mathcal{H} , such that $f = \sum_{i \in J} \Lambda_i^* \Gamma_i f$, for all $f \in \mathcal{H}$, then $\{\Lambda_i S^a + \Gamma_i S^b : i \in J\}$ is a g-frame, for all real numbers a and b.

Proof. If T_1 and T_2 are the analysis operators for $\{\Lambda_i S^a : i \in J\}$, $\{\Gamma_i S^b : i \in J\}$, respectively, then for $R = T_1^{\star}T_2$ we have

$$\begin{split} R(f) &= T_1^{\star} T_2(f) \\ &= T_1^{\star} (\{\Gamma_i S^b f\}) \\ &= \sum_{i \in J} (\Lambda_i S^a)^{\star} \Gamma_i S^b f \\ &= \sum_{i \in J} S^a \Lambda_i^{\star} \Gamma_i S^b f \\ &= S^{a+b} f. \end{split}$$

Since S is invertible, $\{\Lambda_i S^a + \Gamma_i S^b : i \in J\}$ is a g-frame, by Theorem 3.2.

Corollary 3.4 If $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ is a g-frame with g-frame operator S and $\{\widetilde{\Lambda_i} \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ is a canonical dual g-frame then $\{\Lambda_i S^a + \widetilde{\Lambda_i} S^b : i \in J\}$ is a g-frame for all real numbers a, b.

Proposition 3.5 Let $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ be a g-frame for a Hilbert space \mathcal{H} with g-frame operator S and g-frame bounds A and B. Let $\{I_1, I_2\}$ be a partition of J and let S_j be the g-frame operator for the g-Bessel sequences $\{\Lambda_i : i \in I_j\}$, j = 1, 2. Then $\{\Lambda_i + \Lambda_i S_1^a : i \in I_1\} \bigcup \{\Lambda_i + \Lambda_i S_2^b : i \in I_2\}$, is a g-frame for any real numbers a, b that the operator $S_1(I + S_1^a)^2 + S_2(I + S_2^b)^2$ is onto.

Proof. Note that, for each $f \in \mathcal{H}$

$$\begin{split} (\sum_{i \in I_1} \|\Lambda_i f + \Lambda_i S_1^a f\|^2)^{\frac{1}{2}} &\leq (\sum_{i \in I_1} \|\Lambda_i f\|^2)^{\frac{1}{2}} + (\sum_{i \in I_1} \|\Lambda_i S_1^a f\|^2)^{\frac{1}{2}} \\ &\leq \sqrt{B} \|f\| + \sqrt{B} \|S_1^a f\| \\ &\leq \sqrt{B} (1 + \|S_1^a\|) \|f\|. \end{split}$$

Similarly, we have

$$\left(\sum_{i\in I_2} \|\Lambda_i f + \Lambda_i S_2^b f\|^2\right)^{\frac{1}{2}} \le \sqrt{B} (1 + \|S_2^b\|) \|f\|,$$

Thus

$$\{\Lambda_i + \Lambda_i S_1^a : i \in I_1\} \bigcup \{\Lambda_i + \Lambda_i S_2^b : i \in I_2\},\$$

is a g-Bessel sequence. On the other hand, the frame operator for $\{\Lambda_i + \Lambda_i S_1^a : i \in I_1\}$ is

$$\sum_{i \in I_1} (\Lambda_i + \Lambda_i S_1^a)^* (\Lambda_i + \Lambda_i S_1^a) = \sum_{i \in I_1} \Lambda_i^* \Lambda_i + S_1^a \sum_{i \in I_1} \Lambda_i^* \Lambda_i A_i$$
$$+ \sum_{i \in I_1} \Lambda_i^* \Lambda_i S_1^a + S_1^a \sum_{i \in I_1} \Lambda_i^* \Lambda_i S_1^a$$
$$= S_1 + S_1^a S_1 + S_1 S_1^a + S_1^a S_1 S_1^a$$
$$= S_1 + 2S_1^{a+1} + S_1^{2a+1}$$
$$= S_1 (I + S_1^a)^2,$$

Similarly for $\{\Lambda_i + \Lambda_i S_2^b : i \in I_2\}$ the frame operator is $S_2(I + S_2^a)^2$. Hence, the g-frame operator S_0 for our family is an onto and bounded operator and hence, by Proposition 1.5, $\{\Lambda_i + \Lambda_i S_1^a : i \in I_1\} \bigcup \{\Lambda_i + \Lambda_i S_2^b : i \in I_2\}$ is a g-frame.

4. Subsequence of g-frames

A g-frame for Hilbert space \mathcal{H} has been decomposed into two infinite subsequences, if one of the subsequence is a g-frame for \mathcal{H} a necessary and sufficient condition under which the other subsequence is a g-frame for \mathcal{H} has been given.

Theorem 4.1 Let $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in \mathbb{N}\}$ be a g-frame for a Hilbert space \mathcal{H} and let $\{m_k\}$ and $\{n_k\}$ be two infinite increasing sequences with $\{m_k\} \bigcup \{n_k\} = \mathbb{N}$. Also let $\{\Lambda_{m_k} : k \in \mathbb{N}\}$ be a g-frame for \mathcal{H} . Then $\{\Lambda_{n_k} : k \in \mathbb{N}\}$ is a g-frame for \mathcal{H} if and only if there exists a bounded linear operator $U : (\sum_{k \in \mathbb{N}} \bigoplus \mathcal{H}_{n_k})_{l_2} \longrightarrow$ $(\sum_{k \in \mathbb{N}} \bigoplus \mathcal{H}_{m_k})_{l_2}$ such that $U(\{\Lambda_{n_k}f\}_{k \in \mathbb{N}}) = \{\Lambda_{m_k}f\}_{k \in \mathbb{N}}, f \in \mathcal{H}.$

Proof. Let A be a lower bound of the g-frame $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in \mathbb{N}\}$. Since

$$\sum_{k \in \mathbb{N}} \|\Lambda_{m_k} f\|^2 = \|U(\{\Lambda_{n_k} f\}_{k \in \mathbb{N}})\| \le \|U\| \|\{\Lambda_{n_k} f\}_{k \in \mathbb{N}}\|$$
$$= \|U\| \sum_{k \in \mathbb{N}} \|\Lambda_{n_k} f\|^2,$$

we have

$$\sum_{k \in \mathbb{N}} \|\Lambda_{n_k} f\|^2 \ge \frac{\sum_{k \in \mathbb{N}} \|\Lambda_{m_k} f\|^2}{\|U\|} \ge \frac{A}{\|U\|} \|f\|^2,$$

which implies that $\{\Lambda_{n_k} : k \in \mathbb{N}\}$ is a g-frame. Conversely, let $\{\Lambda_{n_k} : k \in \mathbb{N}\}$ be a g-frame. Let T_1, T_2 be the analysis operators for $\{\Lambda_{n_k} : k \in \mathbb{N}\}$ and $\{\Lambda_{m_k} : k \in \mathbb{N}\}$, respectively. Put $U = T_2 S_1^{-1} T_1^*$. Then U is a bounded linear operator with the desired properties.

In the following Theorem, we give a sufficient condition for a g-frame of nonzero elements in terms of g-frame sequences for its exactness.

Theorem 4.2 Let $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in \mathbb{N}\}$ be a g-frame for a Hilbert space \mathcal{H} with optimal bounds A and B such that $\Lambda_i \neq 0$, for all $i \in \mathbb{N}$. If for every infinite increasing sequence $\{n_k\}$ in \mathbb{N} , $\{\Lambda_{n_k}f\}_{k\in\mathbb{N}}$ is a g-frame sequence with optimal bounds A and B, then $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in \mathbb{N}\}$ is an exact g-frame.

Proof. Suppose $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in \mathbb{N}\}$ is not exact. Then there exists a positive integer $m \in \mathbb{N}$ such that $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \neq m, i \in \mathbb{N}\}$ is a g-frame. Let $\{n_k\}$ be an increasing sequence given by $n_k = k, k = 1, 2, ..., m - 1$ and $n_k = k + 1, k = m, m + 1, ...$ Since $\{\Lambda_{n_k}f\}_{k \in \mathbb{N}}$ is a g-frame sequence with optimal bounds A and B, we have

$$A||f||^2 \le \sum_{i \ne m} ||\Lambda_i f||^2 \le B||f||^2.$$

Therefore, by g-frame inequality for the frame $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in \mathbb{N}\}$, for all $f \in \mathcal{H}$ we have

$$\|\Lambda_m f\|^2 = 0$$

This given $\Lambda_m = 0$, which is a contradiction.

Acknowledgment

The authors would like to thank the referee for useful and helpful comments and suggestions.

References

- Asgari, M.S. and Khosravi, A.: Frames and bases of subspaces in Hilbert spaces, J. Math. Anal. Appl., 308, 541-553 (2005).
- [2] Casazza, P.G.: Every frame is a sum of three (but not two) orthonormal bases and other frame representations, J. Fourier Anal. Appl. 4 (1998), no. 6, 727-732.
- [3] Casazza, P.G. and Kutynoik, G.: Frames of subspaces, Wavelets, frames and operator theory, Contemp. Math., Amer. Math. Soc., Providence, R. I., 345, 87-113 (2004).
- [4] Daubechies, I., Grossmann, A. and Meyer, Y.: Painless nonorthogonal expansions, J. Math. Phys., 27, 1271-1283 (1986).
- [5] Duffin, R.J. and Schaeffer, A.C.: A class of non-harmonic Fourier series, Trans. Amer. Math. Soc., 72, 341-366 (1952).
- [6] Fornasier, M.: Decompositions of Hilbert space: local construction of global frames, Proc. Int. Conf. Constrictive Function Theory, Varna 2002, B. Bojanov Ed., DARBA, Sofia, 275-281 (2003).
- [7] Kaushik, S.K.: A Note on Frame Sequences in Hilbert Spaces, Int. J. Contemp. Math. Sciences, 3, 791 799 (2008).
- [8] Najati, A. and Rahimi, A.: Generalized Frames in Hilbert Spaces, Bulletin of the Iranian Mathematical Society 35, 97-109 (2009).
- [9] Najati, A., Faroughi, M.H. and Rahimi, A.: G-frames and stability of g-frames in Hilbert space, Methods of Functional Analysis and Topology, 14, 271-286 (2008).
- [10] Obeidat, S., Samarah, S., Casazza, P.G. and Tremain, J.C.: Sums of Hilbert Space Frames, J. Math. Anal. Appl., 351, 579-585 (2009).
- [11] Sun, W.: G-frames and g-Riesz bases, J. Math. Anal. Appl. 322, 437-452 (2006).
- [12] Zhu, Y.C.: Characterizations of g-Frames and g-Riesz Bases in Hilbert Spaces, Acta Mathematica Sinica, 24, 1727-1736 (2008).

Received: 17.04.2010

Abdolaziz ABDOLLAHI, Elham RAHIMI Department of Mathematics, College of Sciences, Shiraz University, Shiraz 71454, IRAN e-mail: abdolahi@shirazu.ac.ir, rahimie@shirazu.ac.ir