Some results on g-frames in Hilbert spaces

Abdolaziz Abdollahi, Elham Rahimi

Abstract

In this paper we show that every g -frame for a Hilbert space \mathcal{H} can be represented as a linear combination of two g -orthonormal bases if and only if it is a g -Riesz basis. We also show that every g -frame can be written as a sum of two tight g -frames with g -frame bounds one or a sum of a g -orthonormal basis and a g -Riesz basis for \mathcal{H}. We further give necessary and sufficient conditions on g -Bessel sequences $\left\{\Lambda_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ and $\left\{\Gamma_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ and operators L_{1}, L_{2} on \mathcal{H} so that $\left\{\Lambda_{i} L_{1}+\Gamma_{i} L_{2}: i \in J\right\}$ is a g -frame for \mathcal{H}. We next show that a g -frame can be added to any of its canonical dual g -frame to yield a new g -frame.

Key Words: Frame, g -frame, g -orthonormal basis, tight g -frame, g -Bessel sequence

1. Introduction

Frames were first introduced in 1952 by Duffin and Schaeffer ([5]), reintroduced in 1986 by Daubechies, Grossman, and Meyer ([4]), and popularized from then on. In [11], a generalization of the frame concept was introduced. Sun introduced a g-frame and a g-Riesz basis in a complex Hilbert space and discussed some properties of them. A frame of subspaces ([1], [3]) and a system of bounded quasi-projectors ([6]) are a g -frame in a complex Hilbert space. From a g-frame, we may construct a frame for a complex Hilbert space ([11]). A natural question which immediately comes to mind is, "Which properties of the frame may be extended to the g -frame for a complex Hilbert space?". G-frames and g -Riesz bases in complex Hilbert spaces have some properties similar to those of frames, Riesz bases, but not all the properties are similar (see [11]). In this paper we generalize some results in [2], [7], [10] from frame theory to g -frames.

Throughout this paper, \mathcal{H} and \mathcal{K} are separable Hilbert spaces and $\left\{\mathcal{H}_{i}\right\}_{i \in J} \subseteq \mathcal{K}$ is a sequence of separable Hilbert spaces, where J is a subset of $\mathbb{Z}, \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right)$ is the collection of all bounded linear operators from \mathcal{H} to \mathcal{H}_{i}. For each sequence $\left\{\mathcal{H}_{i}\right\}_{i \in J}$, we define the space $\left(\sum_{i \in J} \oplus \mathcal{H}_{i}\right)_{l_{2}}$ by

$$
\left(\sum_{i \in J} \bigoplus \mathcal{H}_{i}\right)_{l_{2}}=\left\{\left\{f_{i}\right\}_{i \in J}: f_{i} \in \mathcal{H}_{i}, i \in J \text { and } \sum_{i \in J}\left\|f_{i}\right\|^{2}<\infty\right\} .
$$

With the inner product defined by

$$
\left\langle\left\{f_{i}\right\},\left\{g_{i}\right\}\right\rangle=\sum_{i \in J}\left\langle f_{i}, g_{i}\right\rangle,
$$

2000 AMS Mathematics Subject Classification: Primary 41A58; Secondary 42C15.

ABDOLLAHI, RAHIMI

it is clear that $\left(\sum_{i \in J} \oplus \mathcal{H}_{i}\right)_{l_{2}}$ is a Hilbert space.
A frame for a complex Hilbert space \mathcal{H} is a family of vectors $\left\{f_{i}\right\}_{i \in J}$ so that there are two positive constants A and B satisfying

$$
A\|f\|^{2} \leq \sum_{i \in J}\left|\left\langle f, f_{i}\right\rangle\right|^{2} \leq B\|f\|^{2}, f \in \mathcal{H} .
$$

The constants A and B are called lower and upper frame bounds.
A sequence $\left\{\Lambda_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ is called a generalized frame, or simply a g -frame, for \mathcal{H} with respect to $\left\{\mathcal{H}_{i}\right\}_{i \in J}$ if there exist two positive constants A and B such that, for all $f \in \mathcal{H}$,

$$
A\|f\|^{2} \leq \sum_{i \in J}\left\|\Lambda_{i} f\right\|^{2} \leq B\|f\|^{2} .
$$

The constants A and B are called the lower and upper g -frame bounds, respectively. The supremum of all such A and the infimum of all such B are called the optimal bounds. If $A=B$ we call this g -frame a tight g -frame and if $A=B=1$, it is called a normalized tight g -frame. A g -frame is exact if it is ceases to be a g -frame whenever any single element is removed from $\left\{\Lambda_{i}\right\}_{i \in J}$. We say simply a g -frame for \mathcal{H} whenever the space sequence \mathcal{H}_{i} is clear. We say $\left\{\Lambda_{i}\right\}_{i \in J}$ is a g -frame sequence, if it is a g -frame for $\overline{\operatorname{span}}\left\{\Lambda_{i}^{\star}\left(\mathcal{H}_{i}\right)\right\}_{i \in J}$. If we only have the upper bound, we call $\left\{\Lambda_{i}\right\}_{i \in J}$ a g -Bessel sequence with bound B . We say that $\left\{\Lambda_{i}\right\}_{i \in J}$ is g -complete, if $\left\{f: \Lambda_{i} f=0, \forall i \in J\right\}=\{0\}$; and is called g-orthonormal basis for \mathcal{H}, if

$$
\left\langle\Lambda_{i}^{\star} g_{i}, \Lambda_{j}^{\star} g_{j}\right\rangle=\delta_{i, j}\left\langle g_{i}, g_{j}\right\rangle, i, j \in J, g_{i} \in \mathcal{H}_{i}, g_{j} \in \mathcal{H}_{j}
$$

and

$$
\sum_{i \in J}\left\|\Lambda_{i} f\right\|^{2}=\|f\|^{2} .
$$

We say that $\left\{\Lambda_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ is a g - Riesz basis for \mathcal{H}, if it is g -complete and there exist constants $0<A \leq B<\infty$, such that for any finite subset $I \subseteq J$ and $g_{i} \in \mathcal{H}_{i}, i \in I$,

$$
A \sum_{i \in I}\left\|g_{i}\right\|^{2} \leq\left\|\sum_{i \in I} \Lambda_{i}^{\star} g_{i}\right\|^{2} \leq B \sum_{i \in I}\left\|g_{i}\right\|^{2}
$$

Recall that a unitary operator $K: \mathcal{H} \longrightarrow \mathcal{H}$ is an onto isometry, a partial isometry is an operator that is an isometry on the orthogonal complement of its kernel, a co-isometry is an operator whose adjoint is an into isometry, and a maximal partial isometry is either an isometry or a co-isometry.

In order to present the main results of this paper, we need the following Theorems and Propositions which can be found in [11], [2] and [9]

Proposition 1.1 ([2]) Let $K: \mathcal{H} \longrightarrow \mathcal{H}$ be a bounded linear operator. Then the following hold:
i) $K=a\left(U_{1}+U_{2}+U_{3}\right)$, where each $U_{j}, j=1,2,3$, is a unitary operator and a is a constant.
ii) If K is onto, then it can be written as a linear combination of two unitary operators if and only if K is invertible.

ABDOLLAHI, RAHIMI

Theorem 1.2 ([11])Let $\left\{\Lambda_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ be a g-frame for \mathcal{H} with respect to $\left\{\mathcal{H}_{i}\right\}_{i \in J}$. The operator

$$
S: \mathcal{H} \rightarrow \mathcal{H}, S f=\sum_{i \in J} \Lambda_{i}^{\star} \Lambda_{i} f
$$

is a positive invertible operator and every $f \in \mathcal{H}$ has an expansion

$$
f=\sum_{i \in J} S^{-1} \Lambda_{i}^{\star} \Lambda_{i} f=\sum_{i \in J} \Lambda_{i}^{\star} \Lambda_{i} S^{-1} f
$$

So $\left\{\widetilde{\Lambda_{i}}=\Lambda_{i} S^{-1} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ is a g-frame for \mathcal{H} with respect to $\left\{\mathcal{H}_{i}\right\}_{i \in J}$ and is called canonical dual g-frame of $\left\{\Lambda_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$. The operator S is called the g-frame operator of $\left\{\Lambda_{i}\right\}_{i \in J}$.

Definition 1.3 Let $\left\{\Lambda_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ be a g-frame for \mathcal{H}. Then the synthesis operator for $\left\{\Lambda_{i} \in\right.$ $\left.\mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ is the operator

$$
T:\left(\sum_{i \in J} \bigoplus \mathcal{H}_{i}\right)_{l_{2}} \longrightarrow \mathcal{H}
$$

defined by

$$
T\left(\left\{f_{i}\right\}_{i \in J}\right)=\sum_{i \in J} \Lambda_{i}^{\star}\left(f_{i}\right)
$$

We call the adjoint T^{\star} of the synthesis operator the analysis operator.

Proposition 1.4 ([9])Let $\left\{\Lambda_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ be a g-frame for \mathcal{H}. Then the analysis operator for $\left\{\Lambda_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ is the operator

$$
T^{\star}: \mathcal{H} \longrightarrow\left(\sum_{i \in J} \bigoplus \mathcal{H}_{i}\right)_{l_{2}}
$$

defined by

$$
T^{\star}(f)=\left\{\Lambda_{i}(f)\right\}_{i \in J}
$$

Proposition 1.5 ([9]) Let $\left\{\Lambda_{i}\right\}_{i \in J}$ be a sequence in $\mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right)$. Then the following are equivalent:
i) $\left\{\Lambda_{i}\right\}_{i \in J}$ is a g-frame for \mathcal{H};
ii) The operator $T:\left(\left\{f_{i}\right\}_{i \in J}\right) \mapsto \sum_{i \in J} \Lambda_{i}^{\star}\left(f_{i}\right)$ is well-defined and bounded from $\left(\sum_{i \in J} \bigoplus \mathcal{H}_{i}\right)_{l_{2}}$ onto \mathcal{H};
iii) The operator $S: f \mapsto \sum_{i \in J} \Lambda_{i}^{\star} \Lambda_{i} f$ is well-defined and bounded from \mathcal{H} onto \mathcal{H}.

Proposition 1.6 ([9]) Let $\left\{\Theta_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ be a g-orthonormal basis for \mathcal{H} with respect to $\left\{\mathcal{H}_{i}\right\}_{i \in J}$ and $\left\{\Lambda_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ be a g-frame for \mathcal{H} with respect to $\left\{\mathcal{H}_{i}\right\}_{i \in J}$. Then there is a bounded and onto operator $K: \mathcal{H} \longrightarrow \mathcal{H}$ such that $\Lambda_{i}=\Theta_{i} K^{\star}$ for all $i \in J$. Furthermore, K is invertible if $\left\{\Lambda_{i}\right\}_{i \in J}$ is a g-Riesz basis for \mathcal{H} and K is unitary if $\left\{\Lambda_{i}\right\}_{i \in J}$ is a g-orthonormal basis for \mathcal{H}.

ABDOLLAHI, RAHIMI

2. Some g-frame representations

In this section we show that every g-frame for a Hilbert space \mathcal{H} can be written as a sum of three g-orthonormal bases for \mathcal{H}. We next show that a g-frame can be represented as a linear combination of two g-orthonormal bases if and only if it is a g-Riesz basis. We further show that every g-frame can be written as a sum of two tight g-frames with g-frame bounds one or a sum of a g-orthonormal basis and a g-Riesz basis for \mathcal{H}.

Proposition 2.1 If $\left\{\Lambda_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ is a g-frame for a Hilbert space \mathcal{H}, and $\left\{\Theta_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ is a g-orthonormal basis for \mathcal{H}, there are g-orthonormal bases $\left\{\Upsilon_{i}\right\},\left\{\Gamma_{i}\right\},\left\{\Psi_{i}\right\}$ for \mathcal{H} and a constant a so that $\Lambda_{i}=a\left(\Upsilon_{i}+\Gamma_{i}+\Psi_{i}\right)$ for all $i \in J$.

Proof. By Proposition 1.6 there is a bounded and onto operator $K: \mathcal{H} \longrightarrow \mathcal{H}$ such that $\Lambda_{i}=\Theta_{i} K^{\star}$ and by Proposition 1.1 we have $K^{\star}=a\left(U_{1}+U_{2}+U_{3}\right)$, where each U_{j} is a unitary operator and a is a constant. So $\Lambda_{i}=\Theta_{i} K^{\star}=a\left(\Theta_{i} U_{1}+\Theta_{i} U_{2}+\Theta_{i} U_{3}\right)$. Since $\left\{\Theta_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ is a g-orthonormal basis and for each $r=1,2,3, U_{r}$ is a unitary operator, we have

$$
\left\langle\left(\Theta_{i} U_{r}\right)^{\star} g_{i},\left(\Theta_{j} U_{r}\right)^{\star} g_{j}\right\rangle=\left\langle\Theta_{i}^{\star} g_{i}, \Theta_{j}^{\star} g_{j}\right\rangle=\delta_{i, j}\left\langle g_{i}, g_{j}\right\rangle
$$

and

$$
\sum_{i \in J}\left\|\Theta_{i} U_{r} f\right\|^{2}=\left\|U_{r} f\right\|^{2}=\|f\|^{2}
$$

So $\left\{\Theta_{i} U_{r}\right\}_{i}$ is a g-orthonormal basis and the proof is complete by putting $\Upsilon_{i}=\Theta_{i} U_{1}, \Gamma_{i}=\Theta_{i} U_{2}$ and $\Psi_{i}=\Theta_{i} U_{3}$.

Proposition 2.2 ([12]) For the family $\left\{\Lambda_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ the following two statements are equivalent:
i) The sequence $\left\{\Lambda_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ is a g-Riesz basis for \mathcal{H}.
ii) The sequence $\left\{\Lambda_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ is a g-frame for \mathcal{H}, and if $\sum_{i \in J} \Lambda_{i}^{\star} g_{i}=0$ then $g_{i}=0$ for all $i \in J$.

Proposition 2.3 If $\left\{\Theta_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ is a g-orthonormal basis for \mathcal{H} then we have a g-frame $\left\{\Lambda_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ which can be written as a linear combination of two g-orthonormal bases for \mathcal{H} if and only if $\left\{\Lambda_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ is a g-Riesz basis for \mathcal{H}.
Proof. If $\left\{\Lambda_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ is a g-Riesz basis, by Proposition 1.6, there is an invertible operator K : $\mathcal{H} \longrightarrow \mathcal{H}$ such that $\Lambda_{i}=\Theta_{i} K^{\star}$ and by Proposition 1.1 we have $K^{\star}=a U_{1}+b U_{2}$ for some constants a, b, and unitary operators U_{1} and U_{2}. So $\Lambda_{i}=\Theta_{i} K^{\star}=a \Theta_{i} U_{1}+b \Theta_{i} U_{2}$. Since $\left\{\Theta_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ is a g-orthonormal basis and U_{1} and U_{2} are unitary operators, for $g_{i} \in \mathcal{H}_{i}, g_{j} \in \mathcal{H}_{j}$ and $f \in \mathcal{H}$, we have

$$
\left\langle\left(\Theta_{i} U_{r}\right)^{\star} g_{i},\left(\Theta_{j} U_{r}\right)^{\star} g_{j}\right\rangle=\left\langle\Theta_{i}^{\star} g_{i}, \Theta_{j}^{\star} g_{j}\right\rangle=\delta_{i, j}\left\langle g_{i}, g_{j}\right\rangle
$$

and

$$
\sum_{i \in J}\left\|\Theta_{i} U_{r} f\right\|^{2}=\left\|U_{r} f\right\|^{2}=\|f\|^{2}
$$

ABDOLLAHI, RAHIMI

So $\left\{\Theta_{i} U_{r}\right\}_{i}$ is a g-orthonormal basis.
Now suppose that there are g-orthonormal bases $\left\{\Upsilon_{i}\right\},\left\{\Gamma_{i}\right\}$ for \mathcal{H} and constants a, b such that $\Lambda_{i}=a \Upsilon_{i}+b \Gamma_{i}$ for all $i \in J$. By Proposition 1.6, there are an onto operator T, and unitary operators K and R such that $\Lambda_{i}=\Theta_{i} T^{\star}, \Gamma_{i}=\Theta_{i} K^{\star}, \Upsilon_{i}=\Theta_{i} R^{\star}$. Since $\Lambda_{i}=a \Upsilon_{i}+b \Gamma_{i}$ and $\left.\left\{\Theta_{i} \in \mathcal{L}(\mathcal{H}, \mathcal{H})_{i}\right): i \in J\right\}$ is a g-orthonormal basis for \mathcal{H}, we have $T=a K+b R$ and so, by Proposition 1.1, T is an invertible operator. If $\sum_{i \in J} \Lambda_{i}^{\star} g_{i}=0$ then $T \sum_{i \in J} \Theta_{i}^{\star} g_{i}=0$, and so $\sum_{i \in J} \Theta_{i}^{\star} g_{i}=0$. Therefore, by Proposition $2.2, g_{i}=0$ which implies that the family $\left\{\Lambda_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ is a g-Riesz basis.

Proposition 2.4 If K is a co-isometry on \mathcal{H}, and if $\left\{\Theta_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ is a g-orthonormal basis for \mathcal{H}, then $\left\{\Theta_{i} K^{\star}: i \in J\right\}$ is a normalized tight g-frame for \mathcal{H}.

Proof. Since K is a co-isometry, K^{\star} is an isometry. Hence, for all $f \in \mathcal{H}$,

$$
\sum_{i \in J}\left\|\Theta_{i} K^{\star} f\right\|^{2}=\left\|K^{\star} f\right\|^{2}=\|f\|^{2}
$$

Every operator K on a Hilbert space can be written in the form $K=V P=\frac{\|T\|}{2} V\left(W+W^{\star}\right)$, where W is unitary and V is a maximal partial isometry. It follows that $V W$ and $V W^{\star}$ are maximal partial isometries. That is, each of these operators is either an isometry or a co-isometry. However, if K has dense range, V must be a co-isometry (see [2]).

By using the above facts we have the following propositions.

Proposition 2.5 If $\left\{\Theta_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ is a g-orthonormal basis for \mathcal{H} then every g-frame is the sum of two normalized tight g-frames for \mathcal{H}.
Proof. By Proposition 1.6, there is a bounded and onto operator $K: \mathcal{H} \longrightarrow \mathcal{H}$ such that $\Lambda_{i}=\Theta_{i} K^{\star}$, and by the above explanation, we have $K=\frac{\|T\|}{2} V\left(W+W^{\star}\right)$, where W is unitary and V must be a co-isometry. So $V W$ and $V W^{\star}$ are co-isometry. Then

$$
\Lambda_{i}=\Theta_{i} K^{\star}=\Theta_{i}\left(\frac{\|T\|}{2}\left((V W)^{\star}+\left(V W^{\star}\right)^{\star}\right)\right)
$$

and, by Proposition 2.4, $\Theta_{i}(V W)^{\star}$ and $\Theta_{i}\left(V W^{\star}\right)^{\star}$ are normalized tight g-frames.

Proposition 2.6 If $\left\{\Theta_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ is a g-orthonormal basis for \mathcal{H}, then every g-frame for a Hilbert space \mathcal{H} is the sum of a g-orthonormal basis for \mathcal{H} and a g-Riesz basis for \mathcal{H}.
Proof. If $\left\{\Lambda_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ is a g-frame for a Hilbert space \mathcal{H} then, by Proposition 1.6, there is a bounded and onto operator $K: \mathcal{H} \longrightarrow \mathcal{H}$ such that $\Lambda_{i}=\Theta_{i} K^{\star}$. For any $0<\epsilon<1$ define an operator L by

$$
L=\frac{3}{4} I+\frac{1}{4}(1-\epsilon) \frac{K^{\star}}{\left\|K^{\star}\right\|}
$$

ABDOLLAHI, RAHIMI

Then we have $\|I-L\|<1$ and $\|L\| \leq 1$. So L is an invertible operator and, as in the proof of proposition 1.1, (see [2]) we can write

$$
L=\frac{1}{2}\left(W+W^{\star}\right)
$$

where W is a unitary operator. We also have the relation

$$
\begin{aligned}
K^{\star} & =\frac{4\left\|K^{\star}\right\|}{(1-\epsilon)}\left[\frac{1}{2}\left(W+W^{\star}\right)-\frac{3}{4} I\right] \\
& =\frac{2\left\|K^{\star}\right\|}{(1-\epsilon)}[W+R]
\end{aligned}
$$

where $R=W^{\star}-\frac{3}{2} I$. Since W is unitary, $\left\{\Theta_{i} W: i \in J\right\}$ is a g-orthonormal basis, and W^{\star} is unitary which implies that R is an isomorphism (possibly into). But, it is easily checked that R is onto, since

$$
\left\|I-\frac{-1}{2} R\right\|=\left\|\frac{1}{4} I+\frac{1}{2} W^{\star}\right\|<1
$$

Thus, $\frac{-1}{2} R$ is an invertible operator and hence R is an invertible operator. We also have

$$
\sum_{i \in J}\left(\Theta_{i} R\right)^{\star} g_{i}=\sum_{i \in J} R^{\star} \Theta_{i}^{\star} g_{i}=R^{\star}\left(\sum_{i \in J} \Theta_{i}^{\star} g_{i}\right)
$$

Since R is an invertible operator, if $\sum_{i \in J}\left(\Theta_{i} R\right)^{\star} g_{i}=0$ then $\sum_{i \in J} \Theta_{i}^{\star} g_{i}=0$ and since $\left\{\Theta_{i}: i \in J\right\}$ is a g-orthonormal basis we conclude $g_{i}=0$ for all $i \in J$. Therefore, by Proposition 2.2, $\Theta_{i} R$ is a g-Riesz basis for \mathcal{H}.

3. Sums of g-bessel sequences

In this section we give necessary and sufficient conditions on g-Bessel sequences $\left\{\Lambda_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ and $\left\{\Gamma_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ and operators L_{1}, L_{2} on \mathcal{H} so that $\left\{\Lambda_{i} L_{1}+\Gamma_{i} L_{2}: i \in J\right\}$ is a g-frame for \mathcal{H}, and we show that a g-frame can be added to any of its canonical dual g-frame to yield a new g-frame.

Proposition 3.1 Let $\left\{\Lambda_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ and $\left\{\Gamma_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ be g-Bessel sequences in \mathcal{H} with analysis operators T_{1}, T_{2} and g-frame operators S_{1}, S_{2}, respectively. For the given operators L_{1}, L_{2} : $\mathcal{H} \longrightarrow \mathcal{H}$ the following are equivalent:
i) $\left\{\Lambda_{i} L_{1}+\Gamma_{i} L_{2}: i \in J\right\}$ is a g-frame for \mathcal{H}.
ii) $T_{1} L_{1}+T_{2} L_{2}$ is a bounded and one-to-one operator on \mathcal{H}.
iii) The operator $S=L_{1}^{\star} T_{1}^{\star} T_{1} L_{1}+L_{1}^{\star} T_{1}^{\star} T_{2} L_{2}+L_{2}^{\star} T_{2}^{\star} T_{1} L_{1}+L_{2}^{\star} T_{2}^{\star} T_{2} L_{2}$ is a well-defined and bounded mapping from \mathcal{H} onto \mathcal{H}. Moreover, in this case, S is the g-frame operator for $\left\{\Lambda_{i} L_{1}+\Gamma_{i} L_{2}: i \in J\right\}$.

ABDOLLAHI, RAHIMI

Proof. The family $\left\{\Lambda_{i} L_{1}+\Gamma_{i} L_{2}: i \in J\right\}$ is a g-frame if and only if its analysis operator T which is defined by

$$
\begin{aligned}
T(f)=\left\{\left(\Lambda_{i} L_{1}+\Gamma_{i} L_{2}\right)(f)\right\}_{i \in J} & =\left\{\Lambda_{i} L_{1}(f)\right\}_{i \in J}+\left\{\Gamma_{i} L_{2}(f)\right\}_{i \in J} \\
& =\left(T_{1} L_{1}+T_{2} L_{2}\right)(f)
\end{aligned}
$$

is a bounded and one-to-one operator on \mathcal{H}, and this happens if and only if the g-frame operator for our family

$$
\begin{aligned}
S & =\left(T_{1} L_{1}+T_{2} L_{2}\right)^{\star}\left(T_{1} L_{1}+T_{2} L_{2}\right) \\
& =L_{1}^{\star} T_{1}^{\star} T_{1} L_{1}+L_{1}^{\star} T_{1}^{\star} T_{2} L_{2}+L_{2}^{\star} T_{2}^{\star} T_{1} L_{1}+L_{2}^{\star} T_{2}^{\star} T_{2} L_{2}
\end{aligned}
$$

is well defined and bounded.

The following theorem enables one to get a g-frame from a combination of a known g-frame and a g-Bessel sequence.

Theorem 3.2 Let $\left\{\Lambda_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ be a g-frame for a Hilbert space \mathcal{H} with g-frame operator S_{1} and let $\left\{\Gamma_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ be a g-Bessel sequence in \mathcal{H} with g-frame operator S_{2}. Let T_{1}, T_{2} be the analysis operators for $\left\{\Lambda_{i}: i \in J\right\},\left\{\Gamma_{i}: i \in J\right\}$, respectively, so that range $T_{2} \subseteq$ range T_{1}. If the operator $R=T_{1}^{\star} T_{2}$ is a positive operator, then $\left\{\Lambda_{i}+\Gamma_{i}: i \in J\right\}$ is a g-frame for \mathcal{H} with g-frame operator $S_{1}+R+R^{\star}+S_{2}$.
Proof. Let T_{1}, T_{2} be the analysis operators for $\left\{\Lambda_{i}: i \in J\right\},\left\{\Gamma_{i}: i \in J\right\}$, respectively. By letting $L_{1}=I=L_{2}$ in Proposition 3.1, we see that the g-frame operator for $\left\{\Lambda_{i}+\Gamma_{i}: i \in J\right\}$ is

$$
S=T_{1}^{\star} T_{1}+T_{1}^{\star} T_{2}+T_{2}^{\star} T_{1}+T_{2}^{\star} T_{2}=S_{1}+R+R^{\star}+S_{2}
$$

Corollary 3.3 If $\left\{\Lambda_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ is a g-frame with g-frame operator S and $\left\{\Gamma_{i}: \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ is a g-Bessel sequence in \mathcal{H}, such that $f=\sum_{i \in J} \Lambda_{i}^{\star} \Gamma_{i} f$, for all $f \in \mathcal{H}$, then $\left\{\Lambda_{i} S^{a}+\Gamma_{i} S^{b}: i \in J\right\}$ is a g-frame, for all real numbers a and b.
Proof. If T_{1} and T_{2} are the analysis operators for $\left\{\Lambda_{i} S^{a}: i \in J\right\},\left\{\Gamma_{i} S^{b}: i \in J\right\}$, respectively, then for $R=T_{1}^{\star} T_{2}$ we have

$$
\begin{aligned}
R(f) & =T_{1}^{\star} T_{2}(f) \\
& =T_{1}^{\star}\left(\left\{\Gamma_{i} S^{b} f\right\}\right) \\
& =\sum_{i \in J}\left(\Lambda_{i} S^{a}\right)^{\star} \Gamma_{i} S^{b} f \\
& =\sum_{i \in J} S^{a} \Lambda_{i}^{\star} \Gamma_{i} S^{b} f \\
& =S^{a+b} f
\end{aligned}
$$

Since S is invertible, $\left\{\Lambda_{i} S^{a}+\Gamma_{i} S^{b}: i \in J\right\}$ is a g-frame, by Theorem 3.2.

ABDOLLAHI, RAHIMI

Corollary 3.4 If $\left\{\Lambda_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ is a g-frame with g-frame operator S and $\left\{\widetilde{\Lambda_{i}} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ is a canonical dual g-frame then $\left\{\Lambda_{i} S^{a}+\widetilde{\Lambda_{i}} S^{b}: i \in J\right\}$ is a g-frame for all real numbers a, b.

Proposition 3.5 Let $\left\{\Lambda_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ be a g-frame for a Hilbert space \mathcal{H} with g-frame operator S and g-frame bounds A and B. Let $\left\{I_{1}, I_{2}\right\}$ be a partition of J and let S_{j} be the g-frame operator for the g-Bessel sequences $\left\{\Lambda_{i}: i \in I_{j}\right\}, j=1,2$. Then $\left\{\Lambda_{i}+\Lambda_{i} S_{1}^{a}: i \in I_{1}\right\} \bigcup\left\{\Lambda_{i}+\Lambda_{i} S_{2}^{b}: i \in I_{2}\right\}$, is a g-frame for any real numbers a, b that the operator $S_{1}\left(I+S_{1}^{a}\right)^{2}+S_{2}\left(I+S_{2}^{b}\right)^{2}$ is onto.
Proof. Note that, for each $f \in \mathcal{H}$

$$
\begin{aligned}
\left(\sum_{i \in I_{1}}\left\|\Lambda_{i} f+\Lambda_{i} S_{1}^{a} f\right\|^{2}\right)^{\frac{1}{2}} & \leq\left(\sum_{i \in I_{1}}\left\|\Lambda_{i} f\right\|^{2}\right)^{\frac{1}{2}}+\left(\sum_{i \in I_{1}}\left\|\Lambda_{i} S_{1}^{a} f\right\|^{2}\right)^{\frac{1}{2}} \\
& \leq \sqrt{B}\|f\|+\sqrt{B}\left\|S_{1}^{a} f\right\| \\
& \leq \sqrt{B}\left(1+\left\|S_{1}^{a}\right\|\right)\|f\| .
\end{aligned}
$$

Similarly, we have

$$
\left(\sum_{i \in I_{2}}\left\|\Lambda_{i} f+\Lambda_{i} S_{2}^{b} f\right\|^{2}\right)^{\frac{1}{2}} \leq \sqrt{B}\left(1+\left\|S_{2}^{b}\right\|\right)\|f\|
$$

Thus

$$
\left\{\Lambda_{i}+\Lambda_{i} S_{1}^{a}: i \in I_{1}\right\} \bigcup\left\{\Lambda_{i}+\Lambda_{i} S_{2}^{b}: i \in I_{2}\right\}
$$

is a g-Bessel sequence. On the other hand, the frame operator for $\left\{\Lambda_{i}+\Lambda_{i} S_{1}^{a}: i \in I_{1}\right\}$ is

$$
\begin{aligned}
\sum_{i \in I_{1}}\left(\Lambda_{i}+\Lambda_{i} S_{1}^{a}\right)^{\star}\left(\Lambda_{i}+\Lambda_{i} S_{1}^{a}\right) & =\sum_{i \in I_{1}} \Lambda_{i}^{\star} \Lambda_{i}+S_{1}^{a} \sum_{i \in I_{1}} \Lambda_{i}^{\star} \Lambda_{i} \\
& +\sum_{i \in I_{1}} \Lambda_{i}^{\star} \Lambda_{i} S_{1}^{a}+S_{1}^{a} \sum_{i \in I_{1}} \Lambda_{i}^{\star} \Lambda_{i} S_{1}^{a} \\
& =S_{1}+S_{1}^{a} S_{1}+S_{1} S_{1}^{a}+S_{1}^{a} S_{1} S_{1}^{a} \\
& =S_{1}+2 S_{1}^{a+1}+S_{1}^{2 a+1} \\
& =S_{1}\left(I+S_{1}^{a}\right)^{2}
\end{aligned}
$$

Similarly for $\left\{\Lambda_{i}+\Lambda_{i} S_{2}^{b}: i \in I_{2}\right\}$ the frame operator is $S_{2}\left(I+S_{2}^{a}\right)^{2}$. Hence, the g-frame operator S_{0} for our family is an onto and bounded operator and hence, by Proposition 1.5, $\left\{\Lambda_{i}+\Lambda_{i} S_{1}^{a}: i \in I_{1}\right\} \bigcup\left\{\Lambda_{i}+\Lambda_{i} S_{2}^{b}: i \in I_{2}\right\}$ is a g-frame.

4. Subsequence of g-frames

A g-frame for Hilbert space \mathcal{H} has been decomposed into two infinite subsequences, if one of the subsequence is a g-frame for \mathcal{H} a necessary and sufficient condition under which the other subsequence is a g-frame for \mathcal{H} has been given.

ABDOLLAHI, RAHIMI

Theorem 4.1 Let $\left\{\Lambda_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in \mathbb{N}\right\}$ be a g-frame for a Hilbert space \mathcal{H} and let $\left\{m_{k}\right\}$ and $\left\{n_{k}\right\}$ be two infinite increasing sequences with $\left\{m_{k}\right\} \bigcup\left\{n_{k}\right\}=\mathbb{N}$. Also let $\left\{\Lambda_{m_{k}}: k \in \mathbb{N}\right\}$ be a g-frame for \mathcal{H}. Then $\left\{\Lambda_{n_{k}}: k \in \mathbb{N}\right\}$ is a g-frame for \mathcal{H} if and only if there exists a bounded linear operator $U:\left(\sum_{k \in \mathbb{N}} \bigoplus \mathcal{H}_{n_{k}}\right)_{l_{2}} \longrightarrow$ $\left(\sum_{k \in \mathbb{N}} \bigoplus \mathcal{H}_{m_{k}}\right)_{l_{2}}$ such that $U\left(\left\{\Lambda_{n_{k}} f\right\}_{k \in \mathbb{N}}\right)=\left\{\Lambda_{m_{k}} f\right\}_{k \in \mathbb{N}}, f \in \mathcal{H}$.
Proof. Let A be a lower bound of the g-frame $\left\{\Lambda_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in \mathbb{N}\right\}$. Since

$$
\begin{aligned}
\sum_{k \in \mathbb{N}}\left\|\Lambda_{m_{k}} f\right\|^{2} & =\left\|U\left(\left\{\Lambda_{n_{k}} f\right\}_{k \in \mathbb{N}}\right)\right\| \leq\|U\|\left\|\left\{\Lambda_{n_{k}} f\right\}_{k \in \mathbb{N}}\right\| \\
& =\|U\| \sum_{k \in \mathbb{N}}\left\|\Lambda_{n_{k}} f\right\|^{2}
\end{aligned}
$$

we have

$$
\sum_{k \in \mathbb{N}}\left\|\Lambda_{n_{k}} f\right\|^{2} \geq \frac{\sum_{k \in \mathbb{N}}\left\|\Lambda_{m_{k}} f\right\|^{2}}{\|U\|} \geq \frac{A}{\|U\|}\|f\|^{2}
$$

which implies that $\left\{\Lambda_{n_{k}}: k \in \mathbb{N}\right\}$ is a g-frame. Conversely, let $\left\{\Lambda_{n_{k}}: k \in \mathbb{N}\right\}$ be a g-frame. Let T_{1}, T_{2} be the analysis operators for $\left\{\Lambda_{n_{k}}: k \in \mathbb{N}\right\}$ and $\left\{\Lambda_{m_{k}}: k \in \mathbb{N}\right\}$, respectively. Put $U=T_{2} S_{1}^{-1} T_{1}^{\star}$. Then U is a bounded linear operator with the desired properties.

In the following Theorem, we give a sufficient condition for a g-frame of nonzero elements in terms of g-frame sequences for its exactness.

Theorem 4.2 Let $\left\{\Lambda_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in \mathbb{N}\right\}$ be a g-frame for a Hilbert space \mathcal{H} with optimal bounds A and B such that $\Lambda_{i} \neq 0$, for all $i \in \mathbb{N}$. If for every infinite increasing sequence $\left\{n_{k}\right\}$ in $\mathbb{N},\left\{\Lambda_{n_{k}} f\right\}_{k \in \mathbb{N}}$ is a g-frame sequence with optimal bounds A and B, then $\left\{\Lambda_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in \mathbb{N}\right\}$ is an exact g-frame.

Proof. Suppose $\left\{\Lambda_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in \mathbb{N}\right\}$ is not exact. Then there exists a positive integer $m \in \mathbb{N}$ such that $\left\{\Lambda_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \neq m, i \in \mathbb{N}\right\}$ is a g-frame. Let $\left\{n_{k}\right\}$ be an increasing sequence given by $n_{k}=k, k=1,2, \ldots, m-1$ and $n_{k}=k+1, k=m, m+1, \ldots$. Since $\left\{\Lambda_{n_{k}} f\right\}_{k \in \mathbb{N}}$ is a g-frame sequence with optimal bounds A and B, we have

$$
A\|f\|^{2} \leq \sum_{i \neq m}\left\|\Lambda_{i} f\right\|^{2} \leq B\|f\|^{2}
$$

Therefore, by g-frame inequality for the frame $\left\{\Lambda_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in \mathbb{N}\right\}$, for all $f \in \mathcal{H}$ we have

$$
\left\|\Lambda_{m} f\right\|^{2}=0
$$

This given $\Lambda_{m}=0$, which is a contradiction.

Acknowledgment

The authors would like to thank the referee for useful and helpful comments and suggestions.

ABDOLLAHI, RAHIMI

References

[1] Asgari, M.S. and Khosravi, A.: Frames and bases of subspaces in Hilbert spaces, J. Math. Anal. Appl., 308, 541-553 (2005).
[2] Casazza, P.G.: Every frame is a sum of three (but not two) orthonormal bases and other frame representations, J. Fourier Anal. Appl. 4 (1998), no. 6, 727-732.
[3] Casazza, P.G. and Kutynoik, G.: Frames of subspaces, Wavelets, frames and operator theory, Contemp. Math., Amer. Math. Soc., Providence, R. I., 345, 87-113 (2004).
[4] Daubechies, I., Grossmann, A. and Meyer, Y.: Painless nonorthogonal expansions, J. Math. Phys., 27, 1271-1283 (1986).
[5] Duffin, R.J. and Schaeffer, A.C.: A class of non-harmonic Fourier series, Trans. Amer. Math. Soc., 72, 341-366 (1952).
[6] Fornasier, M.: Decompositions of Hilbert space: local construction of global frames, Proc. Int. Conf. Constrictive Function Theory, Varna 2002, B. Bojanov Ed., DARBA, Sofia, 275-281 (2003).
[7] Kaushik, S.K.: A Note on Frame Sequences in Hilbert Spaces, Int. J. Contemp. Math. Sciences, 3, 791-799 (2008).
[8] Najati, A. and Rahimi, A.: Generalized Frames in Hilbert Spaces, Bulletin of the Iranian Mathematical Society 35, 97-109 (2009).
[9] Najati, A., Faroughi, M.H. and Rahimi, A.: G-frames and stability of g-frames in Hilbert space, Methods of Functional Analysis and Topology, 14, 271-286 (2008).
[10] Obeidat, S., Samarah, S., Casazza, P.G. and Tremain, J.C.: Sums of Hilbert Space Frames, J. Math. Anal. Appl., 351, 579-585 (2009).
[11] Sun, W.: G-frames and g-Riesz bases, J. Math. Anal. Appl. 322, 437-452 (2006).
[12] Zhu, Y.C.: Characterizations of g-Frames and g-Riesz Bases in Hilbert Spaces, Acta Mathematica Sinica, 24, 1727-1736 (2008).

Abdolaziz ABDOLLAHI, Elham RAHIMI
Received: 17.04.2010
Department of Mathematics,
College of Sciences, Shiraz University, Shiraz 71454, IRAN
e-mail: abdolahi@shirazu.ac.ir, rahimie@shirazu.ac.ir

