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Secrecy logic: S -secrecy structures

George Voutsadakis

Abstract

Let S = 〈L, �S〉 be a deductive system. An S -secrecy logic is a quadruple K = 〈FmL(V ), K,B, S〉 ,
where FmL(V ) is the algebra of L-formulas, K, B are S -theories, with B ⊆ K and S ⊆ K such that

S ∩ B = ∅ . K corresponds to information deducible from a knowledge base, B to information deducible

from the publicly accessible (or browsable) part of the knowledge base and S is a secret set, a set of sensitive

or private information that the knowledge base aims at concealing from its users. To provide models for

this context, the notion of an S -secrecy structure is introduced. It is a quadruple A = 〈A, KA, BA, SA〉 ,
consisting of an L-algebra A , two S -filters KA, BA on A , with BA ⊆ KA , and a subset SA ⊆ KA ,

such that SA ∩ BA = ∅ . Several model theoretic/universal algebraic and categorical properties of the class

of S -secrecy structures, endowed with secrecy homomorphisms, are studied relating to various universal

algebraic and categorical constructs.

Key Words: Secrecy-preserving reasoning, abstract algebraic logic, logical matrices, protoalgebraic logics,

first-order structures, homomorphism theorems, regular categories, subdirect products, subdirectly irre-

ducible structures

1. Introduction

The work presented in this paper falls in the intersection of several areas of study. Intuitions from the
theory of abstract algebraic logic are used to provide categorical and model theoretic results pertaining to the
class of models of the logical theory of secrecy-preserving reasoning [1, 26]. In the remainder of this introduction,
we motivate this theory and provide a few pointers to the material and the results that inspired those proven
in this paper. In the next section, we will give a more detailed presentation of the setting of secrecy-preserving
reasoning, as introduced in [26]. In particular, it will be shown how this framework gives rise to our categorical
and model-theoretic studies.

The advance of the internet and the widespread use of databases and information systems offer un-
precedented opportunities for productive interaction and collaboration among individuals as well as across
organizations in many areas of human endeavor. These capabilities for sharing information often have to be
balanced against the need to protect sensitive or confidential information from unintended disclosure.

In [26], inspired by [1], the theoretical foundations of secrecy-preserving reasoning, that is, the process
of answering queries against knowledge bases that include secret knowledge, based on inference that may use
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secret knowledge without disclosing it, are developed. A very closely related approach to secrecy-preserving
reasoning, that has a very similar goal and comparable scope, is that of data privacy setting, which has been
presented in a series of papers (see, e.g., [21, 22, 20]). Yet another, more general, approach that is able to handle
secrecy-preserving reasoning under a set of parameters fixing various characteristics of the context in which the
reasoning process occurs (such as confidentiality policies, user awareness and enforcement policies) is termed

controlled query evaluation. This approach was pioneered in [18] for the specific case of the enforcement policy

of refusal (the alternative being lying) for both known and unknown (the two types of user awareness) secrecies

(secrecies and potential secrets being the types of available confidentiality policies). In a series of subsequent

publications (see, e.g., [7, 4, 5, 6]) controlled query evaluation was extended to various other combinations of
the parameters and careful comparisons were presented of the different characteristics of the types of reasoning
arising from varying the parameters. The readers are encouraged to consult the literature on controlled query
evaluation for more details.

At the heart of the approach in [26] lies a logical system S , for which a sound and complete proof system
is available. A knowledge base K over the logical system consists of

• a (finite) set K of sentences, representing the knowledge stored in the knowledge base, together with

• a designated subset B ⊆ K , representing the part of the knowledge that is publicly available, as well as

• a subset S of the deductive closure K+ of K , that represents the sensitive or secret knowledge and is,

for obvious reasons, disjoint from the set B+ , representing information deducible from publicly available
knowledge.

A querying agent may ask queries against this knowledge base, which are sentences of the logical language. The
knowledge base has the task of combining both public and secret information to answer these queries, while at
the same time ensuring that its responses do not jeopardize the safety status of the secret information. A more
detailed presentation of the framework will be provided in Section 2. We outline, next, the connections with
the other areas from which we borrow ideas in this paper.

One particular kind of a logical system that can be used as the foundation for this framework is an ordinary
deductive system (or sentential logic) S in the sense of abstract algebraic logic, see, e.g., [11, 12]. Under this

assumption, a knowledge base would consist of a (finitely based) S -theory K of S , together with a subtheory B

of K , representing the publicly available knowledge, and a subset S of the theory K , which represents the secret
knowledge and is disjoint from B . Furthermore, according to the model theory of first-order logic [10, 13, 15],

the form of the structures that are appropriate as models of this theory is A = 〈A, KA, BA, SA〉 , where A

is a universal algebra over the same signature as the deductive system S ; KA and BA are S -filters on A
in the usual sense of abstract algebraic logic, such that BA ⊆ KA ; and SA is a subset of the filter KA ,
such that SA ∩ BA = ∅ . These structures are termed S -secrecy structures. The particularly simple form
of secrecy structures allows us to study their class with respect to both several ordinary universal algebraic
(model-theoretic) properties [9, 16] and several categorical properties. In particular, we will take advantage

of many common features that the category of S -secrecy structures has with concrete regular categories (see,

e.g., [17]) in order to prove an analog of the well-known Birkhoff’s Subdirect Representation Theorem and to
characterize its subdirectly irreducible members.

The paper is organized as follows. In Section 2, we elaborate on the setting introduced in [26] for
performing secrecy-preserving reasoning with knowledge bases containing secret or sensitive information. This
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review section is necessary for the reader to develop a sense of the context in which our categorical and model
theoretic results that follow are intended to be used. In Section 3 the main features of the central category under
study are introduced. More precisely, the notion of an S -secrecy structure, that of a secrecy homomorphism,
and those of a secrecy congruence, of a subobject and of an equalizer are used to provide the first basic results
pertaining to the category of S -secrecy structures. In Section 4, products in the same category are introduced
and studied. The notion of direct indecomposability is characterized in a theorem extending a well-known
theorem of universal algebra and an example is given pointing out some of the differences between the two
frameworks. In Section 5, the homomorphism and isomorphism theorems of universal algebra are extended
to cover the case of secrecy structures. Of course, secrecy homomorphisms assume the place of algebraic
homomorphisms and, also, all congruences considered are secrecy congruences. This feature reveals a close
connection with the theory of the Leibniz operator in abstract algebraic logic. In Section 6, the study of several
properties of the category of secrecy structures is undertaken. In fact, it is shown that the category of S -secrecy
structures shares many properties that characterize concrete regular categories [17]. In Section 7, subdirect
products and strict subdirect products of secrecy structures are defined, based on the notions of direct products
and subobjects of secrecy structures. Furthermore, the notion of a subdirectly irreducible and strictly subdirectly
irreducible secrecy structure is also introduced. An analog of Birkhoff’s Theorem for secrecy structures asserts
that every secrecy structure is a strict subdirect product of strictly subdirectly irreducible secrecy structures.
For finite secrecy structures the non-strict analog is also shown to hold. Subdirectly irreducible structures are
characterized in Section 8, which is the last section of the paper.

2. Secrecy-preserving reasoning

Consider an algebraic (or logical, depending on the point of view) language type L and let FmL(V ) be

the set of all L -terms (or L -formulas) with variables in a fixed denumerable set V, and let FmL(V ) be the

corresponding term or formula algebra. Let S = 〈L,�S〉 be an L -deductive system, i.e., a pair consisting of a

fixed language type L and a finitary and structural consequence relation �L ⊆ P(FmL(V ))×FmL(V ), that is,

a relation satisfying the following properties, for every Γ ∪ Δ ∪ {φ, ψ} ⊆ FmL(V ):

1. Γ �S φ , if φ ∈ Γ,

2. Γ �S φ implies Δ �S φ , if Γ ⊆ Δ,

3. Γ �S φ and Δ �S ψ , for all ψ ∈ Γ, imply Δ �S φ ,

4. Γ �S φ implies Γ′ �S φ , for some finite Γ′ ⊆ Γ,

5. Γ �S φ implies σ(Γ) �S σ(φ), for every endomorphism σ of FmL(V ).

We also assume that a presentation of this deductive system in terms of a set RS of axioms and rules
of inference is available, which makes it possible to write S -proofs in the ordinary way. Sometimes, instead of

writing Γ �S φ , we use the equivalent notation φ ∈ CS(Γ) or φ ∈ Γ+ . Since only one deductive system will be
under consideration in a specific context, using the last notational convention, that hides the deductive system,
is unlikely to cause any confusion.
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Given a deductive system S = 〈L,�S〉 , the Frege relation Λ(S) of S is the equivalence relation on

FmL(V ), defined, for all φ, ψ ∈ FmL(V ), by

〈φ, ψ〉 ∈ Λ(S) iff CS(φ) = CS(ψ).

This relation is used to define the Fregean hierarchy in abstract algebraic logic. In the context of secrecy, it
is used to provide natural closure conditions with respect to entailment that knowledge bases and reasoners
should satisfy.

Let S = 〈L,�S〉 be a deductive system. An S -knowledge base K = 〈K, B, S〉 consists of

1. A finite set K ⊆ FmL(V ), called the knowledge set;

2. A subset B ⊆ K , called the browsable part;

3. A subset S ⊆ K+\B+ , called the secret part.

A K-reasoner R : FmL(V ) → {Y, U} is a function that satisfies the following axioms:

1. Inferential Closure: R−1(Y )+ = R−1(Y );

2. Yes-Axiom: B+ ⊆ R−1(Y ) ⊆ K+ ; and

3. Secrecy Axiom: (K+\R−1(U))+ ∩ S = ∅ .

Note that the definition of a knowledge base together with these three axioms imply the following

conditions: First, for all φ, ψ ∈ FmL(V ), if 〈φ, ψ〉 ∈ Λ(S), then R(φ) = R(ψ). Second, S ⊆ R−1(U) ⊆ K+\B+ .

Finally, because of Conditions 1 and 2, Condition 3 may be rewritten in the simpler form R−1(Y ) ∩ S = ∅ .

Given a deductive system S = 〈L,�S〉 and an S -knowledge base K = 〈K, B, S〉 , note that a reasoner,
whose goal is to answer queries as truthfully as possible without revealing secret information, might need to
hide more information than contained in the secret part, due to the fact that some formulas in the secret part
may be deducible from formulas not belonging to the secret part. This idea is formalized in the notion of a
security or secrecy envelope [19]. A K-secrecy envelope or security envelope E is a subset E ⊆ FmL(V )
satisfying

1. Inferential Closure: (K+\E)+ ⊆ K+\E ;

2. Envelope Axiom: S ⊆ E ⊆ K+\B+ ; and

3. Secrecy Axiom: (K+\E)+ ∩ S = ∅ .

If S = 〈L,�S〉 is a deductive system, K = 〈K, B, S〉 an S -knowledge base and R : X → {Y, U} a

K-reasoner, we define ER ⊆ X by ER = R−1(U) ∩ K+ . Conversely, if E is a K-secrecy envelope, we define

RE : X → {Y, U} by setting, for all x ∈ X ,

RE(x) =
{

Y, if x ∈ K+\E
U, otherwise

It is not very difficult to see that these two mappings from reasoners to security envelopes and vice-versa establish

a correspondence between K-security envelopes and sets of the form R−1(U), where R is a K-reasoner. The
proof of Proposition 1 will be omitted.
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Proposition 1 Let S = 〈L,�S〉 be a deductive system and K = 〈K, B, S〉 be an S -knowledge base. For
every K-reasoner R , the set ER is a K-secrecy envelope. Conversely, for every K-secrecy envelope E , the
function RE is a K-reasoner. Moreover, for every K-reasoner R and for every K-secrecy envelope E , we
have RER = R and ERE = E .

The secrecy-preserving setting that was presented in this section, motivates the introduction of S -secrecy
structures (defined in Definition 2) as the models of a secrecy-preserving framework based on the notion of a

knowledge base. A structure similar to a knowledge base, but in which the knowledge set is replaced by K+ , i.e.,

is an S -theory, with K not necessarily finite, and the browsable part is replaced by B+ is called an S -secrecy
logic. Thus, an S -secrecy logic S = 〈FmL(V ), K, B, S〉 consists of S -theories K, B , such that B ⊆ K and

a subset S ⊆ K , such that S ∩ B = ∅ . An S -secrecy logic may be interpreted in a structure A consisting of
an L -algebra A accompanied by two S -filters KA, BA ∈ FiSA , such that BA ⊆ KA and an arbitrary subset
SA ⊆ KA , such that SA and BA are disjoint. S -secrecy structures will be the main objects of study in the
remainder of the paper. The logical aspects of the theory as well as a study of this framework from an abstract
algebraic logic point of view are presented in [25].

3. Category of S -secrecy structures

In the sequel, we will always be referring to a fixed but arbitrary (finitary and structural) deductive

system (a.k.a. sentential logic or, simply, logic) S = 〈L,�S〉 , where L is a fixed algebraic type. Recall that,

given an L -algebra A = 〈A,LA〉 , an S -filter on A , is a subset F ⊆ A , such that, for every Γ∪{φ} ⊆ FmL(V ),

such that Γ �S φ , and every homomorphism h : FmL(V ) → A , if h(Γ) ⊆ F , then h(φ) ∈ F . By FiSA is
denoted the collection of all S -filters on A .

Definition 2 An S -secrecy structure A = 〈A, KA, BA, SA〉 is a quadruple consisting of

1. an L-algebra A = 〈A,LA〉 ;

2. two S -filters KA, BA on A , such that BA ⊆ KA ; and

3. a subset SA ⊆ KA , such that SA ∩BA = ∅ .

The filters KA and BA will be referred to as the knowledge filter and browsable filter of A ,
respectively, and the set SA as the secrecy set of A . Definition 2 is illustrated in Figure 1.

Figure 1. A secrecy structure.
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Definition 3 Let S = 〈L,�S〉 be a deductive system and A = 〈A, KA, BA, SA〉 , B = 〈B, KB, BB, SB〉 two S -
secrecy structures. A secrecy homomorphism h : A → B from A to B is an L-homomorphism h : A → B ,
such that

h(KA) ⊆ KB, h(BA) ⊆ BB, h(SA) ⊆ SB.

h is said to be a strict secrecy homomorphism if

KA = h−1(KB), BA = h−1(BB), SA = h−1(SB).

Obviously, S -secrecy structures with secrecy homomorphisms between them form a category, which will
be denoted by S -Str. On the other hand, we will use the notation L -Alg to denote the category of all
L -algebras with L -algebra homomorphisms between them.

The appropriate congruences to consider in the setting of S -secrecy structures are those congruences on
the algebra reduct of a secrecy structure that are compatible with each of the filters and the secrecy set of the
secrecy structure. Recall that, given an L -algebra A and a set F ⊆ A , a congruence θ on A is said to be
compatible with F if

〈a, b〉 ∈ θ and a ∈ F imply b ∈ F, for all a, b ∈ A.

This condition is equivalent to saying that F is a union of θ -equivalence classes.

Definition 4 Let S = 〈L,�S〉 be a deductive system and A = 〈A, KA, BA, SA〉 an S -secrecy structure. A
congruence θ on A is said to be a secrecy congruence on A if it is compatible with each of KA, BA, SA .
SCon(A) denotes the collection of all secrecy congruences on A .

Once secrecy congruences are defined, they may be used to define quotient secrecy structures. The
construction is the familiar one from universal algebra on the algebra reducts and the familiar one from abstract
algebraic logic on the knowledge and browsable filters and on the secrecy set of the secrecy structures.

Proposition 5 Let S = 〈L,�S〉 be a deductive system, A = 〈A, KA, BA, SA〉 an S -secrecy structure and

θ ∈ SCon(A) . Then the quadruple A/θ = 〈A/θ, KA/θ, BA/θ, SA/θ〉 is an S -secrecy structure, termed the
quotient secrecy structure of A by the secrecy congruence θ .

Recall that given algebras A = 〈A,LA〉 and B = 〈B,LB〉 and an algebra homomorphism h : A → B ,

we denote by Ker(h) the kernel of h , defined by

Ker(h) = {(a1, a2) ∈ A2 : h(a1) = h(a2)}.

This notion extends in a straightforward way to the kernel Ker(h) of a secrecy homomorphism h : A → B
from an S -secrecy structure A to an S -secrecy structure B . The following theorem asserts that strict secrecy
homomorphisms and kernels are related exactly as strict matrix homomorphisms and kernels are related in the
theory of logical matrices.

Theorem 6 1. Let S = 〈L,�S〉 be a deductive system, A = 〈A, KA, BA, SA〉,B = 〈B, KB, BB, SB〉 S -

secrecy structures and h : A → B a strict secrecy homomorphism. Then, the kernel Ker(h) is a secrecy
congruence on A .
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2. Let S = 〈L,�S〉 be a deductive system, A = 〈A, KA, BA, SA〉 an S -secrecy structure and θ ∈ SCon(A) .

Then, the projection homomorphism πθ : A → A/θ is a strict secrecy homomorphism πθ : A → A/θ .

Next, we characterize subobjects in the category S -Str. Sometimes, when convenient, we will also be con-
sidering the forgetful functor U from S -Str to Set mapping a given S -secrecy structure A = 〈A, KA, BA, SA〉
to the universe A of its L -algebra reduct A . The pair (S-Str, U) forms what is known as a concrete cate-
gory. We specialize the general definition of subobject in an arbitrary concrete category to the concrete category
(S-Str, U). A subobject in (S-Str, U) is a monomorphism m : A → B , such that, for every f : C → A in
Set, for which there is an h : C → B , with h = m ◦ f in Set, it also holds that f : C → A is a secrecy
homomorphism. The following illustrates the mappings:

A B�m

C

�
f h

�
�

�
��

A B�m

C

�
f h

�
�

�
��

It is shown, next, that subobjects in S -Str are essentially subalgebras with filters and secrecy sets that are
restrictions of the corresponding filters and secrecy sets of the original structures.

Proposition 7 Let S = 〈L,�S〉 be a deductive system and A = 〈A, KA, BA, SA〉,B = 〈B, KB, BB, SB〉 S -
secrecy structures. A secrecy monomorphism m : A → B is a subobject in S -Str iff m : A → B is a subobject
in L-Alg and it is strict.

Proof. Suppose that m : A → B is a subobject in L -Alg, KA = m−1(KB), BA = m−1(BB) and

SA = m−1(SB). Let f : C → A be such that, there exists h : C → B , with h = m ◦ f . Since h : C → B

is an L -Alg-morphism and m : A → B is a subobject in L -Alg, f : C → A is an algebra homomorphism.
We must show that f : C → A is an S-Str-morphism. It suffices to show that f(KC) ⊆ KA , f(BC ) ⊆ BA

and f(SC ) ⊆ SA . We only show the first inclusion. The remaining two are proven similarly. We have

f(KC ) ⊆ m−1(m(f(KC ))) ⊆ m−1(h(KC)) ⊆ m−1(KB) = KA .

Suppose, conversely, that m : A → B is a subobject in S-Str. Let f : C → A be such that, there

exists h : C → B , with h = m ◦ f . Consider the secrecy algebra C′ = 〈C, h−1(KB), h−1(BB), h−1(SB)〉 . Then

h : C′ → B is in S-Str, such that h = m ◦ f , whence, since m : A → B is a subobject in S-Str, we get that
f : C′ → A is a secrecy homomorphism. But, then, f : C → A is in L -Alg and this proves that m : A → B is
a subobject in L -Alg.

To see that KA = m−1(KB), notice that the left-to-right inclusion is trivial. For the right-to-left inclu-

sion, consider the set map iA : A → A and the S-Str morphism m : 〈A, m−1(KB), m−1(BB), m−1(SB)〉 → B .
It is such that m ◦ iA = m in Set. Thus, since m : A → B is a subobject in S-Str, we get that

iA : 〈A, m−1(KB), m−1(BB), m−1(SB)〉 → A is also an S-Str morphism. This means that m−1(KB) ⊆ KA .
The other two equalities may be proven similarly. �

Finally, we end this section with a proof that the category S -Str of S -secrecy structures has equalizers.
Recall that in the category L -Alg the equalizer of g, h : A → B is the subalgebra E of A with universe
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E = {a ∈ A : g(a) = h(a)} together with the inclusion homomorphism e : E ↪→ A :

E A�e B.
�g
�

h

Theorem 8 The category S -Str has equalizers.

Proof. Let g, h : A → B be two parallel arrows in S -Str. Define E = 〈E, KE , BE , SE 〉 and e : E → A
by setting (E, e) to be the equalizer of g, h : A → B in L -Alg and KE = e−1(KA), BE = e−1(BA) and

SE = e−1(SA). It is easy to see, using Proposition 7, that e : E → A is a subobject in S -Str. Given f : C → A
in S -Str, such that g ◦ f = h ◦ f ,

E A�e

C

f
�

���

B,
�g
�

h

we obtain the diagram

E A�e

C

f̄
�

�
��

f
�

�
��

B
�g
�

h

in L -Alg and, since (E, e) is an equalizer of g and f in L -Alg, there exists unique f̄ : C → E , such that

f = e ◦ f̄ . But we also have e(f̄(KC)) = f(KC) ⊆ KA , whence f̄(KC) ⊆ e−1(KA) = KE and, similarly,

f̄(BC) ⊆ BE and f̄(SC) ⊆ SE . Thus, f̄ : C → E is the unique secrecy homomorphism, such that f = e ◦ f̄ ,

showing that (E , e) is the equalizer of g and h in S -Str. �

Summarizing, the notion of an S -secrecy structure was defined and secrecy homomorphisms between
secrecy structures were introduced giving rise to the category S -Str. Secrecy congruences of S -secrecy
structures were described and they helped define the notion of a quotient secrecy structure. It was shown
that strict secrecy homomorphisms and secrecy congruences are very closely related. Subobjects in the category
of S -secrecy structures were defined following the usual definition of subobjects in concrete categories and a
characterization was provided in terms of subalgebras and restrictions of filters and secrecy sets. Finally, it
was proven that S -Str has equalizers by extending the well-known construction of equalizers in categories of
algebras.

4. Products of secrecy structures

Let S = 〈L,�S〉 be a deductive system and A = 〈A, KA, BA, SA〉,B = 〈B, KB, BB, SB〉 two S -secrecy
structures. Define the quadruple

A× B = 〈A× B, KA × KB, BA × BB, SA × SB〉.

Then A × B is an S -secrecy structure, called the direct product secrecy structure of A and B . This is
easy to see once we recall from abstract algebraic logic that, given a sentential logic S , two algebras A and B
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and S -filters F and G on A and B , respectively, then the set F ×G is also an S -filter on the product algebra
A ×B .

The following theorem lists a few properties satisfied by the direct product of two secrecy structures.
The most important ones are inherited from the fact that the underlying L -algebra of the product is the direct
product of the underlying algebras of the factors in the sense of universal algebra.

Theorem 9 Let S = 〈L,�S〉 be a deductive system and Ai = 〈Ai, KAi , BAi , SAi 〉 , i = 1, 2 , be two S -secrecy
structures. Then, for i = 1, 2 , πi : A1 ×A2 → Ai is a surjective secrecy homomorphism from A = A1 ×A2

onto Ai . Moreover, in Con(A) , we have Ker(π1)∩Ker(π2) = ΔA, Ker(π1)∨Ker(π2) = ∇A and Ker(π1) and

Ker(π2) permute. Finally, we also have π−1
1 (KA1) ∩ π−1

2 (KA2 ) = KA1×A2 , π−1
1 (BA1) ∩ π−1

2 (BA2 ) = BA1×A2

and π−1
1 (SA1) ∩ π−1

2 (SA2 ) = SA1×A2 .

All parts of Theorem 9 follow very easily from the definitions and the corresponding universal algebraic
statements (see, e.g., Theorem II.7.3 of [9]).

In the next proposition, it is shown that, given two S -secrecy structures A and B , the direct product
A × B , as defined above, is their product in the category S -Str. Note, here, that this construction may be
extended to arbitrary products

∏
i∈I Ai of arbitrary collections Ai, i ∈ I , of S -secrecy structures, as long as

the index set I is not empty. For empty I , the product at the level of L -algebras yields the trivial one-element
algebra 1 . It is impossible, however, to extend this definition to S -secrecy structures: The reason is that, in
that case, the condition S1 ∩ B1 = ∅ would force S1 or B1 to be the empty set. This condition would, then,
prevent the existence of a secrecy homomorphism from any other secrecy algebra A , with nonempty secrecy
set SA or nonempty browsable filter BA , respectively, to 1 .

Proposition 10 Let S = 〈L,�S〉 be a deductive system and Ai = 〈Ai, KAi, BAi , SAi〉, i = 1, 2 , be two S -
secrecy structures. Then the S -secrecy structure A1 ×A2 , together with the projection secrecy homomorphisms
πi : A1 ×A2 → Ai , i = 1, 2 , constitutes a product of A1 and A2 in the category S -Str.

Product congruences are defined next. The goal is to generalize the well-known theorem of universal
algebra characterizing direct products of algebras in terms of factor congruences. It will be shown in Theorem
12 that, given two product congruences on a secrecy structure, the structure can be decomposed into the direct
product of two secrecy structures. Recall that, given an L -algebra A , a congruence θ ∈ Con(A) is a factor

congruence if there exists a congruence θ∗ ∈ Con(A), such that θ ∩ θ∗ = ΔA , θ ∨ θ∗ = ∇A and θ and θ∗

permute. In that case, θ, θ∗ are referred to as a pair of factor congruences on A .

Definition 11 Let S = 〈L,�S〉 be a deductive system and A = 〈A, KA, BA, SA〉 an S -secrecy structure. A

congruence θ ∈ Con(A) is a product congruence if

• there exists a congruence θ∗ ∈ Con(A) , such that θ and θ∗ is a pair of factor congruences;

• KA/θ and KA/θ∗ are S -filters on A/θ and A/θ∗ , respectively, and KA = π−1(KA/θ) ∩ π∗−1
(KA/θ∗) ,

where π, π∗ are the natural projections;

• Similarly for the browsable filters and the secrecy sets.
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Given a pair of product congruences θ′, θ′′ on A , set

KA′ = {a/θ′ : a ∈ KA}, BA′ = {a/θ′ : a ∈ BA} and SA′ = {a/θ′ : a ∈ SA},

and, similarly,

KA′′ = {a/θ′′ : a ∈ KA}, BA′′ = {a/θ′′ : a ∈ BA} and SA′′ = {a/θ′′ : a ∈ SA}.

Then, define the S -secrecy structures A′ and A′′ as follows:

A′ = 〈A/θ′, KA′, BA′ , SA′〉, A′′ = 〈A/θ′′, KA′′ , BA′′ , SA′′〉.

Theorem 12 Let S = 〈L,�S〉 be a deductive system and A = 〈A, KA, BA, SA〉 an S -secrecy structure. If

θ′, θ′′ is a pair of product congruences on A , then A ∼= A′ × A′′ under the secrecy isomorphism h(a) =

〈a/θ′, a/θ′′〉 , for every a ∈ A .

Proof. We know (Theorem II.7.5 of [9]) that h : A ∼= A/θ′ × A/θ′′ . It is easy to see, by the definition of

product congruences, that h(KA) = KA/θ′ × KA/θ′′ and, similarly, for BA and SA . �

Definition 13 An S -secrecy structure A = 〈A, KA, BA, SA〉 is called trivial if its underlying L-algebra A is

trivial. A is (directly) indecomposable if A is not isomorphic to a direct product of two nontrivial secrecy
structures.

It is not difficult to see that there exist either one or four trivial S -secrecy structures depending on whether or
not the deductive system S has theorems. If S does not have theorems then the following are trivial S -secrecy
structures:

T0 = 〈1, {0}, {0}, ∅〉,
T1 = 〈1, {0}, ∅, ∅〉,
T2 = 〈1, {0}, ∅, {0}〉,
T3 = 〈1, ∅, ∅, ∅〉.

On the other hand, if S does have theorems, then all its S -filters are non-empty, whence only T0 is a valid
S -secrecy structure.

Theorems 9 and 12 yield immediately a characterization of direct indecomposability of S -secrecy struc-
tures in terms of the non-existence of non-trivial product congruences.

Corollary 14 Let S be a deductive system. An S -secrecy structure A is directly indecomposable iff the only
product congruences on A are ΔA and ∇A .

Finally, Theorem 15, an analog of Theorem II.7.10 of [9] for S -secrecy structures, asserts that every finite
S -secrecy structure can be decomposed into a direct product of directly indecomposable S -secrecy structures.

Theorem 15 Let S be a deductive system. Every finite S -secrecy structure is isomorphic to a direct product
of directly indecomposable S -secrecy structures.

Proof. Let A = 〈A, KA, BA, SA〉 be a finite S -secrecy structure. We proceed by induction on the cardinality

of A. If A = 1 is trivial, with universe {0} , then A can be either of T0, . . . , T3 . In all cases except the second,

10
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A is obviously directly indecomposable. In the second case, 〈1, {0}, ∅, ∅〉 ∼= 〈1, {0}, {0}, ∅〉 × 〈1, {0}, ∅, {0}〉
and the two structures on the right are directly indecomposable S -secrecy structures. (Since they are also

trivial structures, T2 is also directly indecomposable.) Suppose, next, that A is a nontrivial finite S -secrecy

structure, such that, for every S -secrecy structure B , with |B| < |A| , B is isomorphic to a direct product of
directly indecomposable S -secrecy structures. If A is directly indecomposable, then there is nothing to prove.
If not, then, there exist nontrivial S -secrecy structures B, C , such that A ∼= B×C . But, then, by the induction
hypothesis, B ∼= B1 × · · · × Bn and C ∼= C1 × · · · × Cm , with Bi, 1 ≤ i ≤ n and Cj , 1 ≤ j ≤ m , directly

indecomposable. Therefore
A ∼= B × C ∼= B1 × · · · × Bn × C1 × · · · × Cm,

showing that A is also a direct product of directly indecomposable S -secrecy structures. �

Note that a direct product decomposition A ∼=
∏n

i=1 Ai of an S -secrecy structure A into (not necessarily

directly indecomposable) S -secrecy structures Ai, i = 1, . . . , n , implies that there exists a direct product
decomposition of the L -algebra A into factors Ai . The converse, however, does not hold. A direct product
decomposition of A into (not necessarily directly indecomposable) factors Ai, i = 1, . . . , n , does not necessarily
yield a direct decomposition of A into a direct product of S -secrecy structures Ai , i = 1, . . . , n , with underlying

algebraic reducts Ai, i = 1, . . . , n , respectively. Moreover, it may be that, whereas A ∼=
∏n

i=1 Ai is a

decomposition into directly indecomposable S -secrecy structures, the corresponding direct decomposition of
A is not into directly indecomposable L -algebras. To illustrate these points consider the S -secrecy structure
F = 〈F, {0, a, b, 1}, {1}, {a, b}〉 , with underlying L -algebra the finite distributive lattice F over the language

L = 〈{∧,∨}, {∧,∨ �→ 2}〉 , depicted on the left-hand side in Figure 2. Whereas it is clear that F has a direct

Figure 2. A finite distributive lattice.

product decomposition into the direct product of two copies of the 2-element chain, depicted on the right-hand
side in Figure 2, the S -secrecy structure F is directly indecomposable.

We present, next, a definition and a lemma from [9] (see Definition II.7.13 and Lemma II.7.14, respec-

tively), that will help us to identify in Theorem 18 necessary and sufficient conditions for an S -secrecy structure
to be a subobject in S -Str of a given direct product of a collection of S -secrecy structures. We start with
defining separation of points.

Definition 16 Let A and B be sets and h : A → B a function. If a1, a2 ∈ A , h is said to separate a1 and
a2 if h(a1) �= h(a2) . The maps hi : A → Ai, i ∈ I , separate points if for each a1, a2 ∈ A , with a1 �= a2 ,

there is an i ∈ I , such that hi(a1) �= hi(a2) .

11
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The following lemma uses the terminology of Definition 16 to characterize those families of functions
hi : A → Ai, i ∈ I , from a set A to a collection of sets Ai , whose product h : A →

∏
i∈I Ai is injective.

Lemma 17 (Lemma II.7.14 of [9]) For an indexed family of maps hi : A → Ai , i ∈ I , the following are
equivalent:

(a) The maps hi separate points.

(b) h : A →
∏

i∈I Ai , defined, for every a ∈ A , by h(a) = 〈hi(a) : i ∈ I〉 , is injective.

(c)
⋂

i∈I Ker(hi) = ΔA .

Theorem 18 undertakes the task of providing necessary and sufficient conditions for a given S -secrecy
structure to be a substructure of a direct product of S -secrecy structures. Having such conditions is very useful
for the study of subdirect products. But this will be postponed until the last two sections of the paper. For the
universal algebraic analog of this result, see Theorem II.7.15 of [9].

Theorem 18 Let S be a deductive system and A = 〈A, KA, BA, SA〉 , Ai = 〈Ai, KAi , BAi , SAi〉 , i ∈ I , be
S -secrecy structures. Let hi : A → Ai, i ∈ I , be an indexed family of secrecy homomorphisms, such that

⋂
i∈I

h−1
i (KAi ) = KA,

⋂
i∈I

h−1
i (BAi ) = BA and

⋂
i∈I

h−1
i (SAi ) = SA. (1)

Then, the natural homomorphism h : A →
∏

i∈I Ai , defined by h(a) = 〈hi(a) : i ∈ I〉 , for all a ∈ A , is a

subobject in S -Str iff
⋂

i∈I Ker(hi) = ΔA iff the maps hi separate points.

Proof. Proposition 7 and Lemma 17 (given Conditions (1)) yield the result. �

Summarizing, we have defined the notion of a direct product of S -secrecy structures and shown that
direct products are in fact categorical products in S -Str. A characterization was given in terms of product
congruences, which are factor congruences of universal algebras, satisfying some additional conditions that
help streamline the S -filters and secrecy sets of the product with those of its generated factors. The trivial
S -secrecy structures, i.e., those having a trivial algebraic reduct, were listed. Based on these, a criterion for
the direct indecomposability of S -secrecy structures was established and, moreover, it was shown that every
finite S -secrecy structure can be decomposed into a direct product of directly indecomposable factors. Finally,
borrowing the notion of separation of points from universal algebra, we were able to provide necessary and
sufficient conditions for an S -secrecy structure to be a substructure of a direct product of S -secrecy structures.

5. Secrecy homomorphism theorems

In this section, we extend the four universal algebraic homomorphism theorems to cover the case of
S -secrecy structures. We start with the classical homomorphism theorem (see, e.g., Theorem II.6.12 of [9]).

Recall that, by Theorem 6, given S -secrecy structures A = 〈A, KA, BA, SA〉,B = 〈B, KB, BB, SB〉 and a strict

secrecy homomorphism h : A → B , the kernel Ker(h) is a secrecy congruence on A and, conversely, given an

S -secrecy structure A = 〈A, KA, BA, SA〉 and θ ∈ SCon(A), the projection homomorphism πθ : A → A/θ is

a strict secrecy homomorphism πθ : A → A/θ .

12
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Theorem 19 (Secrecy Homomorphism Theorem) Let S be a deductive system, A = 〈A, KA, BA, SA〉,B =

〈B, KB, BB, SB〉 be S -secrecy structures and f : A � B a strict surjective secrecy homomorphism. Then, there

exists a secrecy isomorphism h : A/Ker(f) → B , such that f = h ◦ π , where π : A → A/Ker(f) is the natural
projection secrecy homomorphism. The following diagram illustrates:

A A/Ker(f)�π

B.

f
�

�
�
��

h
�

�
�

�	

Proof. It is not difficult to see that the mapping h : A/Ker(f) → B defined, as usual, by h(a/Ker(f)) = f(a),
for all a ∈ A , is a secrecy isomorphism. �

We proceed with an analog of the Second Isomorphism Theorem of universal algebra (see, e.g., Theorem

II.6.15 of [9]) for S -secrecy structures.

Theorem 20 (Second Secrecy Isomorphism Theorem) Let S be a deductive system, A = 〈A, KA, BA, SA〉
an S -secrecy structure and θ, η ∈ SCon(A) , such that θ ⊆ η . Then, the mapping h : (A/θ)/(η/θ) → A/η de-
fined by

h((a/θ)/(η/θ)) = a/η, for all a ∈ A,

is a secrecy isomorphism from (A/θ)/(η/θ) to A/η .

Proof. First, notice that η/θ is a secrecy congruence on A/θ . To show compatibility of η/θ with

KA/θ = KA/θ , assume that 〈a/θ, b/θ〉 ∈ η/θ and a/θ ∈ KA/θ . Then 〈a, b〉 ∈ η and a ∈ KA , by the compat-

ibility of θ with KA . Therefore b ∈ KA , by the compatibility of η with KA . Thus, b/θ ∈ KA/θ = KA/θ .

Similarly, it may be shown that η/θ is also compatible with BA/θ and SA/θ . It is known from universal algebra

that h : (A/θ)/(η/θ) → A/η , defined by h((a/θ)/(η/θ)) = a/η , for all a ∈ A , is an algebra isomorphism and
it is not difficult to see that it preserves the S -filters and the secrecy sets. �

Let A = 〈A, KA, BA, SA〉 be an S -secrecy structure. An S -secrecy structure B = 〈B, KB, BB, SB〉 is
called a secrecy substructure of A , written B ≤ A , if B is an L -subalgebra of A and KB = KA ∩ B ,
BB = BA ∩ B and SB = SA ∩B , i.e., if the inclusion morphism i : B ↪→ A is a subobject in S -Str, according
to the definition in Section 3 and the characterization in Proposition 7.

Next, we adapt Definition II.6.16 of [9] to accommodate S -secrecy structures. This definition will supply
the needed notions and notation to enable the formulation of an analog of the Third Isomorphism Theorem for
S -secrecy structures.

Definition 21 Let S be a deductive system and A = 〈A, KA, BA, SA〉 be an S -secrecy structure. Suppose B

is a subset of A and θ ∈ SCon(A) . Let Bθ = {a ∈ A : B ∩ a/θ �= ∅} . Let Bθ be the subalgebra of A generated

by Bθ and

KBθ = KA ∩ Bθ, BBθ = BA ∩ Bθ, SBθ = SA ∩ Bθ.

Also define θ�B = θ ∩ B2 , the restriction of θ to B.

13



VOUTSADAKIS

It is well-known from universal algebra that, if B = 〈B,LB〉 is a subalgebra of A , the universe of Bθ

is Bθ and that the restriction of θ to B is a congruence on B . Moreover, the Third Isomorphism Theorem

asserts that B/θ�B
∼= Bθ/θ�Bθ (see, e.g., Lemma II.6.17 and Theorem II.6.18 of [9]). We proceed, next, to

extend these results to the framework of S -secrecy structures and secrecy congruences.

Lemma 22 Let S be a deductive system and A = 〈A, KA, BA, SA〉 , B = 〈B, KB, BB, SB〉 be S -secrecy

structures, such that B ≤ A , and θ ∈ SCon(A) .

1. Bθ = 〈Bθ, KBθ , BBθ , SBθ〉 is a secrecy substructure of A , whose underlying algebraic reduct has universe

Bθ .

2. θ�B is a secrecy congruence on B .

Proof. The first statement is easy, given the corresponding universal algebraic results, and for the second,
note that θ�B is a congruence on B that is compatible with the S -filters and the secrecy set of B . �

Having Lemma 22 at hand, it now makes sense to formulate the generalization of the Third Isomorphism
Theorem of universal algebra (Theorem II.6.18 of [9]) for S -secrecy structures.

Theorem 23 (Third Secrecy Isomorphism Theorem) Let S be a deductive system and A = 〈A, KA, BA, SA〉
B = 〈B, KB, BB, SB〉 be S -secrecy structures, such that B ≤ A , and θ ∈ SCon(A) . Then B/θ�B

∼= Bθ/θ�Bθ .

Proof. All quotients involved make sense due to Lemma 22. Furthermore, since, by Theorem II.6.18 of [9],

B/θ�θ
∼= Bθ/θ�Bθ via the algebra isomorphism

h(b/θ�B ) = b/θ�Bθ , for all b ∈ B,

it suffices to show that h(KB/θ�B
) = KBθ/θ�Bθ

and, similarly, h(BB/θ�B
) = BBθ/θ�Bθ

and h(SB/θ�B
) = SBθ/θ�Bθ

.

But all these relations are straightforward based on the corresponding definitions. �

To prove a version of the Correspondence Theorem of universal algebra (Theorem II.6.20 of [9]) for
secrecy structures, we define, as in the theory of logical matrices, the largest secrecy congruence on an S -
secrecy structure A . This is the largest congruence on the underlying algebra A , that is compatible with both
the knowledge and the browsable filters and with the secrecy set of A . It turns out that such a congruence
always exists.

Theorem 24 Let S be a deductive system and A = 〈A, KA, BA, SA〉 be an S -secrecy structure. Then, there

exists a largest congruence Ω(A) on A compatible with each of KA, BA, SA . Thus, SCon(A) has the structure

of a complete lattice and SCon(A) ∼= [ΔA, Ω(A)] , where the latter is viewed as an interval in Con(A) .

The secrecy congruence Ω(A), whose existence is asserted in Theorem 24, will be called the Leibniz

secrecy congruence of A . The Secrecy Correspondence Theorem states that, given a secrecy congruence θ on
a secrecy structure A , the lattice of all secrecy congruences of the quotient secrecy structure A/θ is isomorphic

to the interval [θ, Ω(A)] in the lattice of secrecy congruences of A .
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Theorem 25 (Secrecy Correspondence Theorem) Let S be a deductive system, A = 〈A, KA, BA, SA〉 be

an S -secrecy structure and θ ∈ SCon(A) . Then, the function h with domain [θ, Ω(A)] , defined by h(η) = η/θ ,

for all η ∈ [θ, Ω(A)] , is a lattice isomorphism from [θ, Ω(A)] to SCon(A/θ) , where [θ, Ω(A)] is viewed as a

sublattice of SCon(A) .

Proof. The mapping h is injective because it is injective on the set of all congruences of A including θ . To

see that it is surjective, suppose that η′ ∈ SCon(A/θ). Let η = {〈a, b〉 ∈ A2 : 〈a/θ, b/θ〉 ∈ η′} . We have

• η ∈ Con(A): Follows directly from the fact that η′ ∈ Con(A/θ).

• η ∈ SCon(A): Let us show in detail that η is compatible with KA . Suppose, to this end, that 〈a, b〉 ∈ η

and a ∈ KA . Then 〈a/θ, b/θ〉 ∈ η′ and a/θ ∈ KA/θ = KA/θ . Thus, since η′ ∈ SCon(A/θ), we get that

b/θ ∈ KA/θ . Since θ ∈ SCon(A), we must have b ∈ KA . Therefore, η is in fact compatible with KA .
Compatibility with each of BA and SA may be proven similarly.

• θ ≤ η : 〈a, b〉 ∈ θ implies 〈a/θ, b/θ〉 ∈ ΔA/θ ⊆ η′ , whence 〈a, b〉 ∈ η .

• η′ = η/θ = h(η).

Thus, h is also surjective. Finally, the fact that 〈a/θ, b/θ〉 ∈ η/θ iff 〈a, b〉 ∈ η implies that η1 ≤ η2 iff

η1/θ ≤ η2/θ , i.e., that h is a lattice isomorphism. �

Summarizing, in this section analogs of the well-known Homomorphism Theorem and Isomorphism
Theorems of universal algebra were provided for S -secrecy structures. Theorem 19 provided an analog of
the Homomorphism Theorem, Theorem 20 an analog of the Second Isomorphism Theorem and Theorem 23 an
analog of the Third Isomorphism Theorem. Finally, to prove Theorem 25, an analog of the Correspondence
Theorem, the notion of the Leibniz secrecy congruence of an S -secrecy structure was introduced, which is the
largest secrecy congruence on the structure, and it was asserted that it exists for every S -secrecy structure, in a
way similar to the existence of the Leibniz congruence of an S -matrix in the theory of abstract algebraic logic.

6. Properties related to regularity

In this section, we show that the category S -Str shares many of the properties that define a regular
concrete category. For general categorical definitions and notation, the reader is referred to the standard
references [2, 8, 14]. Specifically, for material pertaining to the existence and characterization of subdirect

products in regular concrete categories, we refer to the works by Pultr and Vinárek [17, 23, 24]. We start by
proving that the forgetful functor U : S-Str → Set from the category of S -secrecy structures to the category
of small sets, that forgets both the algebraic structure and the filters and secrecy set of an S -secrecy structure
preserves all small limits.

Proposition 26 Let S be a deductive system. Then, the forgetfull functor U : S-Str → Set , with A =

〈A, KA, BA, SA〉
U�→ A , preserves all small limits.

Proof. It is well-known that the forgetful functor U ′ : L-Alg → Set preserves all small limits. Thus, it
suffices to show (see the diagram below) that the forgetful functor U ′′ : S-Str → L-Alg preserves all small
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limits.

S-Str L-Alg�U ′′

Set

U
�

�
�
��

U ′
�

�
�

�	

Suppose to this end that (L, l) is a limit of the small diagram D : I → S-Str in the category S-Str. Consider

the corresponding diagram U ′′ ◦ D : I → L-Alg . We must show that (U ′′(L), U ′′(l)) is a limit of U ′′ ◦ D in

L -Alg. Let (A, f) be a cone in L -Alg over U ′′ ◦ D .

U ′′(D(i)) U ′′(D(j))�
U ′′(D(h))

A

fi

�
�

�
�	

fj

�
�

�
��

Construct the quadruple A = 〈A, KA, BA, SA〉 , where KA =
⋂

i∈|I| f
−1
i (KD(i)) and, similarly, BA =⋂

i∈|I| f
−1
i (BD(i)) and SA =

⋂
i∈|I| f

−1
i (SD(i)). It is not difficult to see that A is an S -secrecy structure and

that f ′
i : A → D(i), with U ′′(f ′

i ) = fi , is a secrecy homomorphism. Thus, since (L, l) is a limit of D in S -Str,

there exists a unique secrecy homomorphism m : A → L , such that li ◦m = f ′
i , for all i ∈ |I| . The algebra ho-

momorphism U ′′(m) may now be shown to be the unique morphism in L -Alg such that U ′′(li)◦U ′′(m) = fi . �

The following result asserts that, given a bijection between two sets and an S -secrecy structure on its
codomain, one may endow the domain with an S -secrecy structure so that the given bijection becomes a secrecy
isomorphism.

Proposition 27 Given a deductive system S , if A is a set, B = 〈B, KB, BB, SB〉 an S -secrecy structure and

f : A → B a bijection, then, there exists an S -secrecy structure A = 〈A, KA, BA, SA〉 , such that f : A → B is
a secrecy isomorphism.

By the definition of the forgetful functor U : S-Str → Set, we obtain the following proposition.

Proposition 28 Let S be a deductive system and A an S -secrecy structure. If h : A → A is a secrecy
isomorphism and U(h) = iA , then h = iA .

Motivated by Definition 1.3 of [17], we define, for a set X , the preordered class S -StrX = ({A : U(A) =

X},≺) by setting A ≺ B iff the identity iX : X → X is a secrecy homomorphism iX : A → B . A meet of

Ai, i ∈ I, in S -StrX , if it exists, will be denoted by
∧

i∈I Ai .

Proposition 29 Let S be a deductive system. For every set X , the collection S -StrX is a set and it is finite
for finite X , provided that L is finite.

Moreover, it can be easily seen that, S-StrX is a partially ordered set and, also, that, as partially ordered
sets, S-StrX and S-StrY are isomorphic, whenever there is a bijection between the underlying universes X

and Y .
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Corollary 30 For every set X , the pre-ordered set S-StrX is a partially ordered set and every bijection
f : X → Y induces an isomorphism S-StrX

∼= S-StrY .

Finally, in Proposition 31, one of the key results of this section that will be used in Section 8 to provide
characterizations of subdirectly irreducible structures, it is asserted that, similarly with the case of arbitrary
concrete categories (see Section 1 of [17]), every secrecy homomorphism admits a subobject decomposition into
an onto set mapping followed by a subobject in S -Str.

Proposition 31 Let S be a deductive system and A = 〈A, KA, BA, SA〉,B = 〈B, KB, BB, SB〉 two S -secrecy
structures. For every secrecy homomorphism h : A → B , there is an S -secrecy structure C and a decomposition
h = h1 ◦ h2 ,

A B�h

C

h2

�
�

�
��

h1

�
�

�
��

called a subobject decomposition, with h1 : C → B a subobject in S -Str and h2 : A → C onto.

Proof. Let h : A → B be a secrecy homomorphism. Since it is an algebra homomorphism h : A → B , there
exists, by the Homomorphism Theorem of universal algebra, a surjective algebra homomorphism h2 : A →
A/Ker(h), with h2(a) = a/Ker(h), for all a ∈ A , and an algebra monomorphism h1 : A/Ker(h) → B , with

h1(a/Ker(h)) = h(a), for all a ∈ A . Define on A/Ker(h) the sets

KC = h−1
1 (KB), BC = h−1

1 (BB), SC = h−1
1 (SB).

Let C = 〈A/Ker(h), KC, BC , SC〉 . Obviously, h2 : A → A/Ker(h) is an onto set function and h1 : C → B ,
is a well-defined secrecy homomorphism that is also a subobject in S -Str. Indeed, if a ∈ A , we have

a/Ker(h) ∈ KC iff a/Ker(h) ∈ h−1
1 (KB) iff h1(a/Ker(h)) ∈ KB . One may show similarly that h−1

1 (BB) = BC

and h−1
1 (SB) = SC . By Proposition 7, this shows that h1 is a subobject in S -Str. �

In the following corollary, it is asserted that, if one insists that the onto mapping h2 : A → C in the
subobject decomposition of an injective secrecy morphism h : A → B be such that h2 = iA : A ≺ C , then the
subobject decomposition is unique. This is the analog of Proposition 1.6 of [17] for S -secrecy structures.

Corollary 32 Let S be a deductive system and A = 〈A, KA, BA, SA〉,B = 〈B, KB, BB, SB〉 two S -secrecy
structures. For every injective secrecy homomorphism h : A → B , there exists exactly one subobject decomposi-
tion h = h1 ◦ h2 , such that h2 = iA : A ≺ C :

A B�h

C.

h2 = iA
�

�
�
��

h1 = h

�
�

�
��

Lemma 34 shows that the existence of a subobject m : A → B between two finite S -secrecy structures,
such that A ≺ B forces the two structures to be identical. For its proof, we will employ Proposition 33.
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Proposition 33 Let S be a deductive system and m′ : A → B , e : A → C and m : C → B secrecy
homomorphisms, such that

A B�m′

C

e
�

�
�
��

m

�
�

�
��

m′ = m ◦ e is a subobject in S-Str and e is onto. Then e is a secrecy isomorphism.

Proof. Let e′ : C → A be such that e ◦ e′ = iC . Then m′ ◦ e′ ◦ e = m ◦ e ◦ e′ ◦ e = m ◦ e , whence, since e

is onto, we get that m′ ◦ e′ = m . Thus, since m′ is a subobject and m : C → B is a secrecy homomorphism,
e′ : C → A must also be a secrecy homomorphism. But e ◦ e′ = iC and, because m′ ◦ e′ ◦ e = m ◦ e = m′ , it is
also the case that e′ ◦ e = iA , showing that e is a secrecy isomorphism. �

Lemma 34 Let S be a deductive system. If X is a finite set, A,B ∈ S-StrX , with A ≺ B , and there exists a
subobject m : A → B then A = B .

Proof. Denote by i : A ≺ B the secrecy homomorphism, that is identical with iX on X . By Proposition

33, m is a secrecy isomorphism. Set h = m−1 ◦ i : A → A . This is a monomorphism. Taking into account the
fact that X is finite, we conclude that hn = iA , for some n > 0. Thus, h is an isomorphism, showing that i

is an isomorphism by Proposition 28. �

Proposition 35, an analog of Proposition 1.8 of [17] for S -secrecy structures, relates subobjects of direct
products of secrecy structures built on the diagonal with meets in the partially ordered class S-StrX , for a
given set X .

Proposition 35 Let S be a deductive system.

1. If A =
∧

i∈I Ai is a meet in S-StrX , then m : A →
∏

i∈I Ai defined by m(a) = 〈a : i ∈ I〉 , for all

a ∈ X , is a subobject in S-Str.

2. If Ai, i ∈ I , are in S-StrX and the diagonal mapping d : X → XI carries a subobject m : A →
∏

i∈I Ai

in S-Str, then A =
∧

i∈I Ai .

Finally, we conclude this section by showing that, every subobject n : A →
∏

i∈I Bi may be decomposed

into a subobject of a product having surjective components (i.e., a subdirect product, as defined in Definition

37) followed by a product of subobjects.

Proposition 36 Let S be a deductive system and n : A →
∏

i∈I Bi be a subobject in S -Str. Then, there exists

subobjects ni : Ai → Bi and m : A →
∏

i∈I Ai in S -Str, such that n =
∏

i∈I ni ◦ m and πi ◦ m is onto.
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Proof. Let π′
i :

∏
i∈I Bi → Bi , i ∈ I , be the projection secrecy homomorphisms and π′

i◦n = ni◦hi subobject

decompositions, for all i ∈ I . (See diagram below:)

Bi

π′
i

�
�

�
�

�
��

ni

�
�

�
�

�
��

A

n

�
�

�
�

���

∏
i∈I Bi

∏
i∈I Ai


∏
i∈I ni Ai�πi

�

m hi

�
�

�
�

���

We get

π′
i ◦

∏
i∈I ni ◦ m = ni ◦ πi ◦ m

= ni ◦ hi

= π′
i ◦ n,

whence
∏

i∈I ni ◦m = n , showing that m is a subobject, since n is, by hypothesis, a subobject (see Proposition

1.2 (2) of [17]). �

Summarizing, in this section, we have studied properties related to regular concrete categories as applied
to the category S-Str of S -secrecy structures. In Proposition 26 it was shown that the forgetful functor from
the category of S -secrecy structures to the category of small sets preserves all small limits. Given a set X , the
pre-ordered class S-StrX of all S -secrecy structures with universe X was defined and in Proposition 29 it was
asserted that this class is finite, whenever X and L are finite. Moreover, in Corollary 30 it was shown that it
is actually a partially ordered class. The existence of the key notion of subobject decomposition of a secrecy
homomorphism was the content of Proposition 31 and Corollary 32 showed that, in case the homomorphism
is injective, the decomposition has a unique canonical representative. Proposition 35 established some useful
connections between subobjects of direct products of S -secrecy structures with universe X , supported by the
diagonal mapping, and meets in the partially ordered set S-StrX . Finally, in Proposition 36 the decomposition
of an arbitrary subobject of a direct product structure into a subdirect product and a product of subobjects was
obtained. All the properties studied in this section are known to hold for arbitrary regular concrete categories
(see, e.g., [17]).

7. Subdirect products and irreducibility

In the remainder of the paper, we study subdirect products, subdirect representations and subdirect
irreducibility for S -secrecy structures. We draw from relevant results in universal algebra as well as from
results that hold for arbitrary regular concrete categories. We start by defining subdirect products for S -
secrecy structures.

Definition 37 Let S be a deductive system. An S -secrecy structure A = 〈A, KA, BA, SA〉 is a (strict)

subdirect product of an indexed family {Ai}i∈I of S -secrecy structures if
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1. A ≤
∏

i∈I Ai , i.e., A is a secrecy substructure of the product
∏

i∈I Ai ;

2. πi : A → Ai is a (strict) surjective secrecy homomorphism, for all i ∈ I , where πi :
∏

i∈I Ai → A is the

projection secrecy homomorphism.

A secrecy embedding h : A →
∏

i∈I Ai is a (strict) subdirect embedding if h(A) is an S -secrecy

structure and a (strict) subdirect product of the secrecy structures Ai . It is shown, next, inspired by Lemma

II.8.2 of [9], that given a collection of secrecy congruences on an S -secrecy structure A , whose intersection is the
identity, one may define a strict subdirect embedding of A into the product of the quotient secrecy structures.

Lemma 38 Let S be a deductive system, A an S -secrecy structure and θi , i ∈ I , secrecy congruences on
A , such that

⋂
i∈I θi = ΔA . Then e : A →

∏
i∈I Ai , defined by e(a) = 〈a/θi : i ∈ I〉 , is a strict subdirect

embedding of secrecy structures.

An S -secrecy structure A = 〈A, KA, BA, SA〉 is (finitely) subdirectly irreducible, denoted by (FSI)

SI, if, for every subdirect embedding n : A →
∏

i∈I Ai , (I finite), at least one of πi ◦ n : A → Ai is a secrecy

isomorphism. Moreover, A = 〈A, KA, BA, SA〉 is strictly (finitely) subdirectly irreducible, denoted by

(SFSI) SSI, if, for every strict subdirect embedding n : A →
∏

i∈I Ai , (I finite), at least one of πi ◦n : A → Ai

is a secrecy isomorphism.

The following theorem characterizes strictly subdirectly irreducible S -secrecy structures A by means of
the existence of a monolith in the lattice of all secrecy congruences SCon(A). This result generalizes Theorem

II.8.4 of [9], an analog characterizing subdirectly irreducible universal algebras.

Theorem 39 Let S be a deductive system. An S -secrecy structure A is strictly subdirectly irreducible iff
A is trivial or there exists a minimum secrecy congruence θ in SCon(A)\{ΔA} . This minimum element⋂

(SCon(A)\{ΔA}) is a principal secrecy congruence of A , which is a monolith in the lattice of all secrecy
congruences of A .

Proof. If A is not trivial and SCon(A)\{ΔA} has no minimum element, then the natural map e : A →∏
i∈I A/θi , defined in Lemma 38, is a subdirect embedding. Since A → A/θ is not injective for any θ ∈ I , it

follows that A is not strictly subdirectly irreducible.

If A is trivial and e : A →
∏

i∈I Ai is a strict subdirect embedding then, it can be easily checked that

at least one of the factors has to be an isomorphic trivial S -secrecy algebra to the original, which shows that
A is strictly subdirectly irreducible. So suppose that A is not trivial and let e : A →

∏
i∈I Ai be a strict

subdirect embedding. Consider θ =
⋂

(SCon(A)\{ΔA}) �= ΔA . Choose 〈a, b〉 ∈ θ , with a �= b . For some

i ∈ I , e(a)i �= e(b)i . Hence 〈a, b〉 �∈ Ker(πi ◦ e). Thus θ �⊆ Ker(πi ◦ e). Since Ker(πi ◦ e) ∈ SCon(A), this

implies Ker(πi ◦ e) = ΔA and, therefore, πi ◦ e : A → Ai is a secrecy isomorphism. Consequently A is strictly
subdirectly irreducible.

Now, if SCon(A)\{ΔA} has a minimum element θ , then, for any 〈a, b〉 ∈ θ , with a �= b , we have that

the secrecy congruence ΘA(a, b) generated by 〈a, b〉 satisfies ΘA(a, b) ⊆ θ and, hence, θ = ΘA(a, b). �

We define, next, the notion of weak subdirect irreducibility. Informally speaking, an S -secrecy structure
A is weakly subdirectly irreducible if the class of all structures that do not admit A as a subobject is closed
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under non-empty products. Note here, the addition of the condition that products be nonempty, that was not
needed in the case of arbitrary regular concrete categories (see, e.g., Section 2 of [17], modulo a slightly modified

notation). It will then be shown that, for finite S -secrecy structures, subdirect irreducibility is equivalent to

weak subdirect irreducibility, an analog for S -secrecy structures of Lemma 2.3 of [17].

Let A be an S -secrecy structure. Denote by S-Str¬A the full subcategory of S -Str generated by all
objects B , such that there does not exist a subobject A → B . An S -secrecy structure A is weakly (finitely)

subdirectly irreducible (WSI (WFSI))) if S -Str¬A is closed under nonempty (finite) products.

Lemma 40 Let S be a deductive system. A finite S -secrecy structure A = 〈A, KA, BA, SA〉 is SI (FSI) iff it

is WSI (WFSI).

Proof. Suppose, first, that A is subdirectly irreducible. Let Bi, i ∈ I �= ∅ , be a collection of S -
secrecy structures in S-Str¬A . Assume that

∏
i∈I Bi is not in S-Str¬A . Thus, there exists a subobject

n : A →
∏

i∈I Bi . Consider the secrecy morphism m : A →
∏

i∈I Ai , given in Proposition 36 (using the same

notation). Since A is subdirectly irreducible, there exists i0 ∈ I , such that πi0 ◦ m : A → Ai0 is a secrecy
isomorphism. But, then, ni0 ◦ πi0 ◦ m : A → Bi0 is a subobject, which contradicts the fact that Bi0 is in
S-Str¬A .

Suppose, conversely, that S-Str¬A is closed under nonempty products. Let m : A →
∏

i∈I Ai be a

subobject, such that πi ◦ m : A → Ai is onto, for every i ∈ I . Since
∏

i∈I Ai is not in S-Str¬A (due to the

fact that m is a subobject), there exists an i0 ∈ I , such that Ai0 is not in S-Str¬A either. Thus, there exists

a subobject n : A → Ai0 . Since πi0 ◦m : A → Ai0 is onto, |A| = |Ai0 | , and, this being finite, n is onto. Thus,

it is an isomorphism. Set f = n−1 ◦ πi0 ◦m : A → A and observe that this is injective and, for sufficiently large

k , fk = iA . Thus, f is an isomorphism and, hence, πi0 ◦ m = n ◦ f is also an isomorphism. �

In Lemma 41, it is asserted that, whenever a finite S -secrecy structure is embeddable into a direct
product of structures, then it is also embeddable into a product consisting only of finitely many of the factors.

Lemma 41 Let S be a deductive system, A = 〈A, KA, BA, SA〉 be a finite S -secrecy structure and assume that

m : A →
∏

i∈I Ai is a subobject in S -Str. Then, there exists a finite J ⊆ I and a subobject n : A →
∏

j∈J Aj .

Lemmas 40 and 41 establish the following corollary asserting the equivalence for finite S -secrecy structures
of being subdirectly irreducible, finitely subdirectly irreducible and weakly (finitely) subdirectly irreducible.

Corollary 42 Let S be a deductive system and A = 〈A, KA, BA, SA〉 a finite S -secrecy structure. Then, the
following statements are equivalent:

1. A is subdirectly irreducible;

2. A is finitely subdirectly irreducible;

3. A is weakly (finitely) subdirectly irreducible.

In general, the following diagram of implications holds between the four notions of subdirect irreducibility
(See Remark 2.4 of [24] for a similar diagram in the case of semiregular categories; be aware, however, of slight
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modifications in the definitions involved.):

FSI WFSI�

SI WSI�

� �

The two horizontal implications can be shown exactly as was the left-to-right implication in the proof of Lemma
40.

Finally, we conclude this section by providing a strict analog of Birkhoff’s Subdirect Representation
Theorem for S -secrecy structures. The original version [3] states that every algebra is isomorphic to a subdirect
product of subdirectly irreducible algebras. We also present in Proposition 45 an analog of Proposition 2.6 of
[17] for S -secrecy structures, which states that every finite S -secrecy structure is expressible as a subdirect
product of finitely many subdirectly irreducible structures.

Theorem 43 (Birkhoff’s Analog) Let S be a deductive system. Every S -secrecy structure A is isomorphic

to a strict subdirect product of strictly subdirectly irreducible S -secrecy structures (which are strict homomorphic

images of A).

Proof. We know that all trivial structures are subdirectly irreducible. So we only need to consider the
case of nontrivial A . For a, b ∈ A , with a �= b , we can find, using Zorn’s lemma, a secrecy congruence
θa,b of A , which is maximal with respect to the property 〈a, b〉 �∈ θa,b . As

⋂
a�=b θa,b = ΔA , we can ap-

ply Lemma 38 to show that A is strictly subdirectly embeddable in the product of the indexed family of
S -secrecy structures {A/θa,b}a�=b . It suffices now to show that each of these secrecy structures is strictly sub-

directly irreducible. If not, then there exists a minimum congruence θ/θa,b in SCon(A/θa,b)\{ΔA/θa,b
} , such

that θ/θa,b =
⋂

(SCon(A/θa,b)\{ΔA/θa,b
}). But, then, by Theorem 25, there exists a minimum congruence

θ ∈ SCon(A), such that θa,b � θ . By the maximality of θa,b with respect to 〈a, b〉 �∈ θa,b , this implies that

〈a, b〉 ∈ θ . Thus, since θ ∈ SCon(A), i.e., θ ⊆ Ω(A), we get that 〈a, b〉 ∈ Ω(A). But then ΘA(a, b) ∨A θa,b ,

the secrecy join of the secrecy congruence ΘA(a, b), generated by 〈a, b〉 , and of θa,b , is the smallest secrecy

congruence in [θa,b, Ω(A)]\{θa,b} , showing that A/θa,b is subdirectly irreducible. �

Combining with Lemma 41, we get immediately the following corollary.

Corollary 44 Let S be a deductive system. Every finite S -secrecy structure A is isomorphic to a strict
subdirect product of finitely many strictly subdirectly irreducible S -secrecy structures.

Indeed, using Lemma 41, any strict subdirect embedding of A into a direct product of strictly subdirectly
irreducible S -secrecy structures may be reduced to a subdirect embedding into the product of finitely many of
these structures while retaining the property of being strict.

Proposition 45 Let S be a deductive system. Every finite S -secrecy structure A is isomorphic to a subdirect
product of finitely many subdirectly irreducible S -secrecy structures.

Proof. This proof uses the technique used for the proof of Proposition 45 of [17], which addresses the finite
case in an arbitrary regular concrete category that is closed under finite products.
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Suppose that the set of all finite secrecy structures that are not representable as subdirect products of
finite subdirectly irreducible secrecy structures is nonempty. Then, consider a partial ordering of the finite
S -secrecy structures, such that 〈A, KA, BA, SA〉 ≤ 〈B, KB, BB, SB〉 iff |A| ≤ |B|, |KA| ≤ |KB|, |BA| ≤ |BB|
and |SA| ≤ |SB| . It is clear that there exists a ≤-minimal structure in the set of all finite structures that are
not representable as subdirect products of finite subdirectly irreducible S -secrecy structures that has minimum
cardinality, call it A = 〈A, KA, BA, SA〉 . Obviously, A cannot be itself subdirectly irreducible. Thus, there

exists a subobject m : A →
∏n

i=1 Bi , with πi ◦ m : A → Bi a surjective secrecy homomorphism that is not

a secrecy isomorphism, for all i = 1, . . . , n . Since A is ≤-minimal with respect to the property of being

subdirectly representable, there exist subdirect products mi : Bi →
∏ni

j=1 Aij , with Aij subdirectly irreducible

and πij ◦ mi onto, for every i = 1, . . . , n, j = 1, . . . , ni . Consider m′ =
∏n

i=1 mi ◦ m : A →
∏n

i=1

∏ni

j=1 Aij .

A
∏n

i=1 Bi
�m

m′

�
�

�
�
��∏n

i=1

∏ni

j=1 Aij

�

∏n
i=1 mi

We get that m′ is a subobject and πij ◦ π′
i ◦m′ = πij ◦mi ◦ πi ◦m is onto and A is subdirectly representable.

�

Summarizing, in this section we introduced and studied subdirect products of S -secrecy structures. In
Lemma 38, it was shown that a collection of secrecy congruences on an S -secrecy structure, whose meet is the
identity, induces a subdirect embedding of the structure into the product of the corresponding quotient secrecy
structures. After defining subdirectly irreducible and strictly subdirectly irreducible S -secrecy structures, a
characterization of the latter was provided in Theorem 39 in terms of the existence of a minimum secrecy
congruence different from the identity in the lattice of secrecy congruences. Furthermore, the notion of a weakly
subdirectly irreducible S -secrecy structure A was defined in terms of the closure under nonempty products of
the full subcategory of structures with objects those structures that do not admit A as a subobject. In Lemma
40, it was shown that subdirect irreducibility and weak subdirect irreducibility coincide for finite S -secrecy
structures. Finally, in Theorem 43 an strict analog of Birkhoff’s Subdirect Representation Theorem was proven
and in Proposition 45 a similar result, asserting that every finite S -secrecy structure may be expressed as a
subdirect product of finitely many subdirectly irreducible structures, was given.

8. Subdirectly irreducibles

In this section, our goal is to provide some alternative characterizations of subdirect irreducibility. We
start by first introducing the notions of a maximal and of a weakly maximal S -secrecy structures.

An S -secrecy structure A = 〈A, KA, BA, SA〉 in S -StrX is maximal if it is maximal in S -StrX . It is
weakly maximal if, for all B ∈ S-StrX , such that A ≺ B , there exists a subobject m : A → B .

Next, meet irreducible and weakly meet irreducible S -secrecy structures are defined. An S -secrecy
structure A in S-StrX is said to be (finitely) meet irreducible if A =

∧
i∈I Ai (I finite) implies that

A = Ai , for some i ∈ I . It is said to be weakly (finitely) meet irreducible if A =
∧

i∈I Ai (I finite) implies

that there exists an i ∈ I and a subobject m : A → Ai .
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Finally, the notion of a monomorphic system in S-Str is defined. Monomorphic systems will be used in
Theorem 46, an analog of the first part of Theorem 3.3 of [17], to characterize subdirectly irreducible maximal
S -secrecy structures. As the reader will notice, monomorphic systems are very closely related to the notion of
separation of points, as given in Definition 16.

A monomorphic system in S -Str is a system of secrecy homomorphisms {mi : A → Bi}i∈I , such

that, if mi(a) = mi(b), for all i ∈ I , then a = b .

Theorem 46 Let S be a deductive system. A maximal S -secrecy structure A = 〈A, KA, BA, SA〉 is (finitely)

subdirectly irreducible iff, for every (finite) monomorphic system {mi : A → Bi}i∈I , there exists i ∈ I , such
that mi is a monomorphism.

Proof. Suppose that A is maximal. We assume, first, that there exists a monomorphic system {mi :

A → Bi}i∈I , such that mi is not a monomorphism for any i ∈ I , and, using Lemma 40, prove that A
is not subdirectly irreducible. (Note that the direction used here does not require that A be finite.) If

{mi : A → Bi}i∈I is a monomorphic system, such that no mi is a monomorphism, we may assume, without

loss of generality, by Corollary 32, that every mi is onto. Define m : A →
∏n

i=1 Bi by m(a) = 〈mi(a) : i ∈ I〉 .
This is a monomorphism. Moreover, by Proposition 31, we get a subobject decomposition m = m′ ◦ m′′ , with
m′′ : A ≺ A′ . Therefore, by the maximality of A in S-StrX , m′′ = iA and m = m′ is a subobject. Since,
obviously, the Bi ’s are in S-Str¬A , we get, by Lemma 40, that A is not subdirectly irreducible.

If, on the other hand, A is not subdirectly irreducible, then, there exists a subdirect decomposition

m : A →
∏n

i=1 Bi , with πi ◦m not a secrecy isomorphism. Obviously, {πi ◦ m : A → Bi}i∈I is a monomorphic

system. If we assume that, for some k ∈ I , πk ◦ m : A → Bk is a monomorphism, then, we may take, without
loss of generality, by Proposition 27, that Bk = A and πk ◦ m = iA . Thus, A ≺ Bk and A �= Bk , which
contradicts the maximality of A . �

A similar theorem holds characterizing weakly subdirectly irreducible weakly maximal S -structures in
terms of monomorphic systems containing components that are themselves monomorphisms.

Theorem 47 Let S be a deductive system and A be a weakly maximal secrecy structure. Then A is weakly
(finitely) subdirectly irreducible iff for every (finite) monomorphic system {mi : A → Bi}i∈I , there exists i ∈ I ,
such that mi is a monomorphism.

In Proposition 48, we establish a sufficient condition under which a non-maximal meet irreducible S -
secrecy structure is subdirectly irreducible. A similar sufficient condition under which a weakly meet-irreducible
S -secrecy structure is weakly subdirectly irreducible is established in Proposition 49.

Proposition 48 Let S be a deductive system and A a non-maximal (finitely) meet irreducible S -secrecy
structure. Assume that, for all surjective h : A → B , that is not a secrecy isomorphism, there exist ι : A ≺ C ,

A �= C , and h̄ : C → B , such that h̄ ◦ ι = h .

A B�h

C

ι
�

���
h̄

�
�
��

Then A is (finitely) subdirectly irreducible.
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Proof. Suppose that A is not subdirectly irreducible. Thus, there exists a subdirect representation
m : A →

∏
i∈I Bi , with no πi ◦ m : A → Bi a secrecy isomorphism. Therefore, since πi ◦ m is surjective,

for all i ∈ I , there exist, by hypothesis, ιi : A ≺ Ci , A �= Ci , and πi ◦ m : Ci → Bi ,

A Bi
�πi ◦ m

Ci

ιi
�

���
πi ◦ m

�
�
��

such that πi ◦ m ◦ ιi = πi ◦ m . In that case, A =
∧

i∈I Ci and A �= Ci , for all i ∈ I , whence A is not meet

irreducible. �

Proposition 49 Let S be a deductive system and A a weakly (finitely) meet irreducible S -secrecy structure
and assume that, for all h : A → B , such that B ∈ S-Str¬A , there exist ι : A ≺ C , A �= C , with C ∈ S-Str¬A ,

and h̄ : C → B , such that h̄ ◦ ι = h :

A B�h

C

ι
�

�
��

h̄
�

���

Then A is weakly (finitely) subdirectly irreducible.

In Lemma 50 the converse of Proposition 48 is established. Namely, it is shown that a finitely subdirectly
irreducible non-maximal S -secrecy structure always satisfies the condition appearing in the hypothesis of
Proposition 48. The analogous converse to Proposition 49 will also be shown to hold in Lemma 51, that
follows.

Lemma 50 Let S be a deductive system and A be a non-maximal S -secrecy structure. If A is finitely
subdirectly irreducible, then, for every surjective secrecy homomorphism h : A → B , that is not a secrecy

isomorphism, there exists an ι : A ≺ C,A �= C and an h̄ : C → B , such that h̄ ◦ ι = h .

Proof. Since A is not maximal, there exists ι : A ≺ C , with A �= C . Suppose that a surjective
h : A → B , that is not an isomorphism, does not satisfy the property of the lemma. Define m : A → B × C
by m(a) = 〈h(a), ι(a)〉 , for every a ∈ A . Then, there exists a subobject decomposition m = m′ ◦ ι′ , with

ι′ : A ≺ A′ . By hypothesis, since h = (π1 ◦ m′) ◦ ι′ , we obtain that A = A′ , m = m′ and A is not finitely
subdirectly irreducible. �

Lemma 51 Let S be a deductive system and A a non-weakly maximal S -secrecy structure. If A is weakly
finitely subdirectly irreducible, then, for every secrecy homomorphism h : A → B , with B ∈ S-Str¬A , there

exists an ι : A ≺ C,A �= C , with C ∈ S-Str¬A , and a h̄ : C → B , such that h̄ ◦ ι = h .

Our work culminates in Theorems 52 and 53, which characterize subdirectly irreducible and weakly
subdirectly irreducible S -secrecy algebras, respectively. These two theorems are analogs of Theorems 3.6 and
3.7, respectively of [24], which hold for arbitrary semiregular concrete categories with products.

25



VOUTSADAKIS

Theorem 52 Let S be a deductive system. An S -secrecy structure A is (finitely) subdirectly irreducible iff

either A is maximal and, for any (finite) monomorphic system {mi : A → Bi}i∈I , there exists an i ∈ I , such

that mi is a monomorphism, or A is not maximal, it is (finitely) meet irreducible and, for every surjective

h : A → B , not a secrecy isomorphism, there exists an ι : A ≺ C,A �= C , and a h̄ : C → B , such that h̄ ◦ ι = h .

Proof. Follows from Proposition 35, Lemma 41, Theorem 46, Proposition 48 and Lemma 50. �

Theorem 53 Let S be a deductive system. An S -secrecy structure A is weakly (finitely) subdirectly irreducible

iff either A is weakly maximal and, for any (finite) monomorphic system {mi : A → Bi}i∈I , there exists an

i ∈ I and a subobject n : A → Bi , or A is not weakly maximal, it is weakly (finitely) meet irreducible and, for

every h : A → B , with B ∈ S-Str¬A , there exists an ι : A ≺ C,A �= C , with C ∈ S-Str¬A , and a h̄ : C → B ,

such that h̄ ◦ ι = h .

Proof. Follows from Proposition 35, Lemma 41, Theorem 47, Proposition 49 and Lemma 51. �

Summarizing, in this section the notions of a maximal, weakly maximal, meet irreducible and weakly
meet irreducible S -secrecy structures were defined. Moreover, monomorphic systems in the category S -Str
were introduced. In Theorem 46, subdirectly irreducible maximal secrecy structures were characterized in terms
of the existence of a monomorphic component for all suitable monomorphic systems. A similar characterization
was given in Theorem 47 for weakly subdirectly irreducible weakly maximal secrecy structures. Propositions
48 and 49 and Lemmas 50 and 51, on the other hand, deal with characterizations of subdirectly irreducible
non-maximal and weakly subdirectly irreducible non-weakly maximal S -secrecy structures. Theorems 52 and
53 put together all these results providing complete characterizations of subdirectly irreducible and weakly
subdirectly irreducible S -secrecy structures, respectively.
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[17] Pultr, A., Vinárek, J.: Productive classes and subdirect irreducibility, in particular for graphs. Discrete Mathemat-

ics, 20, 159–176 (1977).

[18] Sicherman, G.L., de Jonge, W., van de Riet, R.P.: Answering queries without revealing secrets. ACM Trans.

Database Syst., 8(1), 41–59 (1983).

[19] Slutzki, G., Voutsadakis, G., Honavar, V.: Secrecy preserving reasoning using secrecy envelopes. Technical report,

Ames, IA, Iowa State University, 2009.

[20] Stoffel, K., Studer, T.: Provable data privacy. In Kim Viborg Andersen, John K. Debenham, and Roland Wagner,

editors, DEXA, volume 3588 of Lecture Notes in Computer Science, 324–332 (2005).

[21] Stouppa, P., Studer, T.: A formal model of data privacy. In Irina Virbitskaite and Andrei Voronkov, editors, Ershov

Memorial Conference, volume 4378 of Lecture Notes in Computer Science, 400–408 (2006).

[22] Stouppa, P., Studer, T.: Data privacy for knowledge bases. In Sergei N. Artëmov and Anil Nerode, editors, LFCS,
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