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Banach limit and some new spaces of double sequences
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Abstract

In this paper, we define and study the Banach limit for double sequences and introduce some new spaces

related to the concept of almost and strong almost convergence for double sequences. We characterize these

spaces through some sublinear functionals and we also establish some inclusion relations.
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1. Introduction

A double sequence x = (xjk) is said to be Pringsheim’s convergent (or P -convergent) if for given ε > 0

there exists an integer N such that |xjk − �| < ε whenever j, k > N . We shall write this as

lim
j,k→∞

xjk = �,

where j and k tending to infinity independent of each other (cf [9]). We denote by c2 , the space of P -convergent
sequences.

A double sequence x is bounded if

‖ x ‖= sup
j,k≥0

|xjk| < ∞.

We denote by �∞2 the space of bounded double sequences. Note that, in contrast to the case for single
sequences, a convergent double sequence need not be bounded. By c∞2 , we denote the space of double sequences
which are boundedly convergent.

In this paper, we first define the concept of Banach limit for double sequences.

Definition 1.1 Let �∞2 be the set of all real or complex double sequences x = (xjk) with the norm ‖x‖ =

sup
j,k

|xjk| < ∞ . A linear functional L on �∞2 is said to be Banach limit if it has the following properties:

(i) L(x) ≥ 0 if x ≥ 0 (i.e., xjk ≥ 0 for all j, k ),
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(ii) L(E) = 1 , where E = (ejk) with ejk = 1 for all j, k , and

(iii) L(S11x) = L(x) = L(S10x) = L(S01x) ,

where the shift operators S01 , S10 and S11 are defined by

S01x = (xj,k+1), S10x = (xj+1,k), S11x = (xj+1,k+1).

Let B2 be the set of all Banach limits on �∞2 . A double sequence x = (xjk) is said to be almost convergent to

a number � if L(x) = � for all L ∈ B2 .

The idea of almost convergence for single sequences was introduced by Lorentz [3] and for double sequences

by Moricz-Rhoades [5] and further studied in [6]–[8].

The space f2 of almost convergent double sequences was defined by Moricz and Rhoades [5] as

f2 = {x = (xjk) lim
p,q→∞

|τpqst(x) − �| = 0, uniformly in s, t},

where

τpqst(x) =
1

(p + 1)(q + 1)

p∑
j=0

q∑
k=0

xj+s,k+t.

Note that a convergent double sequence need not be almost convergent. However, every bounded convergent
double sequence is almost convergent and every almost convergent double sequence is also bounded, i.e. c∞2 ⊂
f2 ⊂ �∞2 and each inclusion is proper.

The idea of strong almost convergence for single sequences is due to Maddox [4] and for double sequences

by Başarir [1].

A double sequence x = (xjk) is said to be strongly almost convergent to a number � if

lim
p,q→∞

1
(p + 1)(q + 1)

p∑
j=0

q∑
k=0

|xj+s,k+t − �| = 0,

uniformly in s, t . By [f2] , we denote the space of all strongly almost convergent double sequences. Note that

[f2] ⊂ f2 ⊂ �∞2 and each inclusion is proper.

2. Some new spaces of double sequences

In this section, we introduce the following sequence spaces, while such spaces for single sequences were
studied by Das and Sahoo [2].

w2 =
{

x = (xjk) :
1

(m + 1)(n + 1)

m∑
p=0

n∑
q=0

τpqst(x − �E) −→ 0 as m, n −→ ∞,

uniformly in s, t, for some �

}
,
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[w2] =
{

x = (xjk) :
1

(m + 1)(n + 1)

m∑
p=0

n∑
q=0

|τpqst(x − �E)| −→ 0 as m, n −→ ∞,

uniformly in s, t, for some �

}

[w]2 =
{

x = (xjk) :
1

(m + 1)(n + 1)

m∑
p=0

n∑
q=0

τpqst(|x − �E|) −→ 0 as m, n −→ ∞,

uniformly in s, t, for some �

}

By (C2, 2), we denote the space of Cesàro summable double sequences of order 2 defined by

(C2, 2) =
{

x = (xjk) :
1

(m + 1)(n + 1)

m∑
p=0

n∑
q=0

τp,q,0,0(x) −→ � as m, n −→ ∞
}

and by [C2, 2] , we denote the space of strongly Cesàro summable double sequences of order 2 defined by

[C2, 2] =
{

x = (xjk) :
1

(m + 1)(n + 1)

m∑
p=0

n∑
q=0

|τp,q,0,0(x) − �| −→ 0 as m, n −→ ∞
}

.

Remark 2.1 If [w2]- limx = � , that is

1
(m + 1)(n + 1)

m∑
p=0

n∑
q=0

|τpqst − �| −→ 0

as m, n −→ ∞ , uniformly in s, t ; then

1
(m + 1)(n + 1)

m∑
p=0

n∑
q=0

∣∣∣∣ 1
p + 1

p∑
j=0

τjqst − �

∣∣∣∣−→ 0

and

1
(m + 1)(n + 1)

m∑
p=0

n∑
q=0

∣∣∣∣ 1
q + 1

q∑
k=0

τpkst − �

∣∣∣∣−→ 0.

3. Some sublinear functionals

Let G be any sublinear functional on �∞2 . We write {�∞2 , G} to denote the set of all linear functionals

F on �∞2 such that F ≤ G , i.e., F (x) ≤ G(x) for all x = (xjk) ∈ �∞2 .

Now we define the following functionals on the space �∞2 of real bounded double sequences:

φ(x) = lim sup
m,n

sup
s,t

1
(m + 1)(n + 1)

m∑
p=0

n∑
q=0

τpqst(x),
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ψ(x) = lim sup
m,n

sup
s,t

1
(m + 1)(n + 1)

m∑
p=0

n∑
q=0

|τpqst(x)|,

θ(x) = lim sup
m,n

sup
s,t

1
(m + 1)(n + 1)

m∑
p=0

n∑
q=0

τpqst(|x|),

ξ(x) = lim sup
p,q

sup
s,t

τpqst(x),

η(x) = lim sup
p,q

sup
s,t

τpqst(|x|),

where |x| = (|xjk|)∞j,k=1.

It can be easily verified that each of the above functionals are finite, well defined and sublinear on �∞2 .

A sublinear functional G is said to generate Banach limits if F ∈ {�∞2 , G} is a Banach limit and it is

said to dominate Banach limits if F ∈ B2 implies F ∈ {�∞2 , G} .

In the following theorem we characterize the space �∞2 ∩ w2 in terms of the sublinear functional φ .

Theorem 3.1 We have the following:

(i) The sublinear functional φ both dominates and generates Banach limits, i.e. φ(x) = ξ(x) , for all

x = (xjk) ∈ �∞2 .

(ii) �∞2 ∩ w2 = {x = (xjk) ∈ �∞2 : φ(x) = −φ(−x)} = f2 .

Proof. (i) From definition of ξ , for given ε > 0 there exist p0, q0 such that

τpqst(x) < ξ(x) + ε

for p > p0, q > q0 and for all s, t . This implies that

φ(x) ≤ ξ(x) + ε

for all x = (xjk) ∈ �∞2 . Since ε is arbitrary, so that φ(x) ≤ ξ(x), for all x = (xjk) ∈ �∞2 and hence

{�∞2 , φ} ⊂ {�∞2 , ξ} = B2, (3.1.1)

i.e., φ generates Banach limits.

Conversely, suppose that L ∈ B2 . As L is the shift invariant i.e., L(S11x) = L(x) = L(S10x) = L(S01x),
we have

L(x) = L

(
1

(p + 1)(q + 1)

p∑
j=0

q∑
k=0

xj+s,k+t

)

= L

(
τpqst(x)

)

= L

(
1

(m + 1)(n + 1)

m∑
p=0

n∑
q=0

τpqst(x)
)

. (3.1.2)
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But it follows from the definition of φ , that for given ε > 0 there exist m0, n0, such that

1
(m + 1)(n + 1)

m∑
p=0

n∑
q=0

τpqst(x) < φ(x) + ε (3.1.3)

for m > m0, n > n0 and for all s, t . Hence, by (3.1.3) and properties (i) and (ii) of Banach limits, we have

L

(
1

(m + 1)(n + 1)

m∑
p=0

n∑
q=0

τpqst(x)
)

< L

(
(φ(x) + ε)E

)
= φ(x) + ε, (3.1.4)

for m > m0, n > n0 and for all s, t , where E is defined in the beginning of Section 2. Since ε was arbitrary, it
follows from (3.1.2) and (3.1.4) that

L(x) ≤ φ(x), for all x = (xjk) ∈ �∞2 .

Hence
B2 ⊂ {�∞2 , φ}. (3.1.5)

That is, φ dominates Banach limits.

Combining (3.1.1) and (3.1.5), we get

{�∞2 , ξ} = {�∞2 , φ},

this implies that φ dominates and generates Banach limits and φ(x) = ξ(x) for all x ∈ �∞2 .

(ii) As a consequence of Hahn-Banach theorem, {�∞2 , φ} is nonempty and a linear functional F ∈ {�∞2 , φ}
is not necessarily uniquely defined at any particular value of x . This is evident in the manner the linear
functionals are constructed. But in order that all the functionals {�∞2 , φ} coincide at x = (xjk) it is necessary

and sufficient that
φ(x) = −φ(−x); (3.1.6)

we have

lim sup
m,n

sup
s,t

1
(m + 1)(n + 1)

m∑
p=0

n∑
q=0

τpqst(x) = lim inf
m,n

sup
s,t

1
(m + 1)(n + 1)

m∑
p=0

n∑
q=0

τpqst(x). (3.1.7)

But (3.1.7) holds if and only if

1
(m + 1)(n + 1)

m∑
p=0

n∑
q=0

τpqst(x) −→ � (say) as m, n −→ ∞,

uniformly in s, t . Hence, x = (xjk) ∈ w2 ∩ �∞2 . But (3.1.6) is equivalent to

ξ(x) = −ξ(−x),

this holds if and only if x = (xjk) ∈ f2

This completes the proof of the theorem. �

In the following theorem we characterize the spaces [w2] ∩ �∞2 and [w]2 ∩ �∞2 in terms of the sublinear
functionals.
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Theorem 3.2 We have the following:

(i) [w2] ∩ �∞2 = {x = (xjk) : ψ(x − �E) = 0, for some �} = {x = (xjk) : F (x − �E) = 0, for all F ∈
{�∞2 , ψ}, for some �} .

(ii) [w]2 ∩ �∞2 = {x = (xjk) : θ(x − �E) = 0, for some �} = {x = (xjk) : F (x − �E) = 0, for all F ∈
{�∞2 , θ}, for some �} .

Proof. (i) It can be easily verified that x = (xjk) ∈ [w2] ∩ �∞2 if and only if

ψ(x − �E) = −ψ(�E − x). (3.2.1)

since ψ(x) = ψ(−x) then (3.2.1) reduces to

ψ(x − �E) = 0. (3.2.2)

Now, if F ∈ {�∞2 , ψ} then from (3.2.2) and linearity of F , we have

F (x− �E) = 0.

Conversely, suppose that F (x− �E) = 0 for all F ∈ {�∞2 , ψ} and hence by Hahn-Banach theorem, there

exists F0 ∈ {�∞2 , ψ} such that F0(x) = ψ(x). Hence

0 = F0(x − �E) = ψ(x − �E).

(ii) The proof is similar as above. �

4. Inclusion relations

We establish here some inclusion relations between the spaces defined in Section 2.

Theorem 4.1 We have the following proper inclusions and the limit is preserved in each case:

[f2] ⊂ [w]2 ⊂ [w2] ⊂ w2 ⊂ (C2, 2).

Proof. Let x ∈ [f2] with [f2]- limx = � , say. Then

τpqst(|x− �E|) −→ 0 as p, q −→ ∞, uniformly in s, t.

This implies that

1
(m + 1)(n + 1)

m∑
p=0

n∑
q=0

τpqst(|x− �E|) −→ 0 as p, q −→ ∞, uniformly in s, t.

This proves that x ∈ [w]2 and [f2]- limx = [w]2- limx = � .

Since

1
(m + 1)(n + 1)

∣∣∣∣
m∑

p=0

n∑
q=0

τpqst(x − �E)
∣∣∣∣≤ 1

(m + 1)(n + 1)

m∑
p=0

n∑
q=0

|τpqst(x − �E)|
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≤ 1
(m + 1)(n + 1)

m∑
p=0

n∑
q=0

τpqst(|x − �E|)

this implies that [w]2 ⊂ [w2] ⊂ w2 and

[w]2- limx = [w2]- limx = w2- limx = �.

Since

1
(m + 1)(n + 1)

m∑
p=0

n∑
q=0

τpqst(x − �E)

converges uniformly in s, t as m, n −→ ∞ implies the convergence for s = 0 = t . It follows that w2 ⊂ (C2, 2)

and w2- limx = (C2, 2)- limx = � .

This completes the proof of the theorem. �

Theorem 4.2 We have the following proper inclusions

[f2] ⊂ [w]2 ∩ �∞2 ⊂ [w2] ∩ �∞2 ⊂ f2.

Proof. If x = (xjk) then

φ(x) ≤ ψ(x) ≤ θ(x) ≤ η(x).

By sublinearity properties of these functionals, for x = (xjk) ∈ �∞2 , we have

−η(−x) ≤ −θ(−x) ≤ −ψ(−x) ≤ −φ(−x) ≤ φ(x) ≤ ψ(x) ≤ θ(x) ≤ η(x).

Hence
η(x) = −η(−x)

=⇒ θ(x) = −θ(−x)

=⇒ ψ(x) = −ψ(−x)

=⇒ φ(x) = −φ(−x). (4.2.1)

It is easy to see that
{x = (xjk) ∈ �∞2 : η(x) = −η(−x)} = [f2].

we have already proved in Theorem 3.2 that

{x = (xjk) ∈ �∞2 : θ(x) = −θ(−x)} = {x = (xjk) : θ(x − �E) = 0} = [w]2 ∩ �∞2

{x = (xjk) ∈ �∞2 : ψ(x) = −ψ(−x)} = {x = (xjk) : ψ(x − �E) = 0} = [w2] ∩ �∞2 .

Also from Theorem 3.1 we have

{x = (xjk) ∈ �∞2 : φ(x) = −φ(−x)} = w2 ∩ �∞2 = f2.

Hence the result follows from (3.2.1). �
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Example 4.3 [w]2 ∩ l∞ � [w2] ∩ l∞ (or [w]2 � [w2]).

Let x = (xjk) be defined by

xjk = (−1)k for all j,

that is ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 −1 1 · · ·

−1 1 −1 1 · · ·

−1 1 −1 1 · · ·

· · · · · · ·

· · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

|τpqst(x − o)| =

∣∣∣∣∣∣
1

(p + 1)(q + 1)

p∑
j=0

q∑
k=0

xj+s,k+t

∣∣∣∣∣∣

≤ q + 1
(p + 1)(q + 1)

=
1

p + 1
uniformly for s, t

Hence

1
(m + 1)(n + 1)

m∑
p=0

n∑
q=0

|τpqst(x − o)| ≤ 1
(m + 1)(n + 1)

m∑
p=0

n∑
q=0

1
p + 1

=
1

(n + 1)(m + 1)

m∑
p=0

n + 1
p + 1

=
1

(m + 1)

m∑
p=0

1
p + 1

→ 0 as m → ∞,

i.e. x = (xjk) ∈ [w2] ∩ l∞ and hence by Theorem 4.2, x ∈ f2. But x /∈ [w]2 ∩ l∞ and hence x /∈ [f2] .

Theorem 4.4 [w2]- limx = � if and only if

(i) w2- limx = �;

(ii) 1
uv

u∑
m=1

v∑
n=1

|T1(m, n, s, t)− �| −→ 0 (u, v −→ ∞) uniformly in s, t ;

(iii) 1
uv

u∑
m=1

v∑
n=1

|T2(m, n, s, t)− �| −→ 0 (u, v −→ ∞) uniformly in s, t ;

(iv) 1
uv

u∑
m=1

v∑
n=1

|τmnst + dmnst − T1(m, n, s, t) − T2(m, n, s, t)| −→ 0 (u, v −→ ∞) uniformly in s, t ;
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where

dm,n,s,t = dm,n,s,t(x) =
1

(m + 1)(n + 1)

m∑
p=0

n∑
q=0

τpqst(x),

d0,0,s,t(x) = τ0,0,s,t = xs,t, d−1,0,s,t(x) = τ−1,0,s,t(x) = xs−1,t,

d0,−1,s,t(x) = τ0,−1,s,t(x) = xs,t−1, d−1,−1,s,t(x) = τ−1,−1,s,t(x) = xs−1,t−1,

T1(m, n, s, t) =
1

(m + 1)

m∑
p=0

τpnst and T2(m, n, s, t) =
1

(n + 1)

n∑
q=0

τmqst.

Proof. Let [w2]- limx = � . Then obviously w2- limx = � . From Remark 2.1, (ii) and (iii) follow immediately.
Now

1
uv

u∑
m=1

v∑
n=1

|τmnst + dmnst − T1(m, n, s, t)− T2(m, n, s, t)|

=
1
uv

u∑
m=1

v∑
n=1

|τmnst − � + dmnst − � − T1(m, n, s, t) + � − T2(m, n, s, t) + �|

≤ 1
uv

u∑
m=1

v∑
n=1

(|τmnst − �| + |dmnst − �| + |T1(m, n, s, t) − �| + |T2(m, n, s, t)− �|)

−→ 0 as u, v −→ ∞ , uniformly in s, t ; since

(a) [w2]- limx = � implies that the first sum tends to zero;

(b) (ii) and (iii) imply that third and fourth sums tend to zero;

(c) (i) implies that dmnst −→ � (m, n −→ ∞) uniformly in s, t ; and so the second sum tends to zero.

Conversely, suppose that the conditions hold. Now

1
uv

u∑
m=1

v∑
n=1

|τmnst − �|

≤ 1
uv

u∑
m=1

v∑
n=1

|τmnst + dmnst − T1(m, n, s, t) − T2(m, n, s, t)|+ 1
uv

u∑
m=1

v∑
n=1

|dmnst − �|

+
1
uv

u∑
m=1

v∑
n=1

|T1(m, n, s, t) − �| + 1
uv

u∑
m=1

v∑
n=1

|T2(m, n, s, t)− �|

−→ 0 as u, v −→ ∞ , uniformly in s, t .

This completes the proof of the theorem. �
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