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C∗-convexity and C∗ -faces in ∗-rings
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Abstract

Existence of rich algebraic, geometric and topological structures on self-adjoint operator algebras raises

the general question that, for a particular theorem which of these structures have made the result work. The

present paper is an effort toward the answer of this question, by investigating the role of algebraic structure

in the subject of C∗ -convexity.

In this paper, we extend the notions of C∗ -convexity, C∗ -extreme point and C∗ -face to ∗-rings and we

study some of their properties.

We introduce the notion of C∗ -convex map on C∗ -convex subsets of a ∗-ring. Moreover we identify

optimal points of some unital ∗-homomorphisms on some C∗ -convex sets.
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1. Introduction

The term non-commutative convexity refers to any one of the various forms of convexity in which
convex coefficients need not commute among themselves. Formal study of C∗ -convexity as a form of non-
commutative convexity, was initiated by Loebl and Paulsen in [12], where the notion of C∗ -extreme point, as
a non-commutative analog of extreme point was also studied. However it was not determined there whether
C∗ -extremeness is distinct from linear extremeness. This distinction was shown in [11] by Hopenwasser, Moore
and Paulsen. The later group also obtained geometrical and algebraic characterizations of these sets. Farenick
in [5] developed a Caratheodory-type theorem for C∗ -convex hulles of compact sets of matrices and applied

it to the theory of matricial ranges. It was conjectured in [12] that a variant of the Krein-Milman theorem

should hold for compact C∗ -convex sets. For subsets of Mn such a theorem was established by Morenz [16]

using some previous work of Farenick and Morenz (see [5], [6] and [8]). In [16] Morenz extended the notion
of face from linear convexity to C∗ -face on the C∗ -convex subsets of a C∗ -algebra. Farenick and Morenz
studied C∗ -extreme points of the generalised state spaces SH(A) of a C∗ -algebra A in [9]. In [10] Farenick

and Zhou continued this work by providing a precise description of C∗ -extreme points of SH(A) for a finite

dimensional Hilbert space H . In [13] Magajna extended the notion of C∗ -convexity to operator modules and

proved some separation theorems. For every element a in a von Neumann algebra [respectively a C∗ -algebra]

A , Magajna identified all normal elements in the w∗ -closure [respectively the norm closure] of the C∗ -convex
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hull of a in [14]. Also he proved the existence of C∗ -extreme points in the w∗ -compact C∗ -convex subsets of a
von Neumann algebra. But these extreme points were not sufficient to produce the original C∗ -convex set. So
he defined a special kind of C∗ -extreme points which he called R-extreme points for the unital C∗ -algebra R
([15]) and used them to prove a Krein-Milman type theorem for hyperfinite factors (and in particular for B(H)

where H is a separable Hilbert space) in [15].

Our main motivation for the present paper and [3] is the following general question. Operator algebras
are equipped with rich algebraic, geometric and topological structures such that one naturally asks: which
of these structures have made a particular theorem work. In the algebraic direction this question has led to
evolution of the algebraic theory of operator algebras. See [1] and [2] for fundamentals and history of this ever

growing subject. In [3] we studied matricial range from algebraic point of view. Here we investigate the role of
algebraic structure in the subject of C∗ -convexity. Indeed we define the notions of C∗ -convexity, C∗ -extreme
point, C∗ -face and C∗ -convex map in ∗ -rings and investigate some of their properties.

Remainder of this paper is organized as follows. In section 2 we define the notions of C∗ -convexity and
C∗ -extreme point in ∗ -rings. Some illustrative examples of C∗ -convex subsets of ∗ -rings are discussed. In
section 3 we extend the notion of C∗ -face to ∗ -rings and we study some of their properties. In section 4 we
introduce the notion of C∗ -convex map on C∗ -convex subsets of a ∗ -ring. Then we prove the correspondence
between C∗ -convex maps on a ∗ -ring R and diag-C∗ -convex subsets of R⊕R . Also, we identify some C∗ -
convex subsets of ∗ -rings by applying C∗ -convex maps. Moreover we identify optimal points of some unital
∗ -homomorphisms on some C∗ -convex sets.

2. C∗ -convexity in ∗-rings

Throughout R is a unital ∗ -ring, that is, a ring with an involution which has an identity element.

Definition 2.1 A subset K of R is called C∗ -convex, if

n∑
i=1

a∗
i xiai ∈ K,

whenever xi ∈ K , ai ∈ R for all i and
∑n

i=1 a∗
i ai = 1R .

The C∗ -convex hull of a subset N ⊆ R is the smallest C∗ -convex set containing N and is denoted by
C∗ -Co(N) . Indeed, C∗ -Co(N) is the intersection of all C∗ -convex subsets of R containing N .

An element x in R is called positive, written x ≥ 0 , if x = y∗1y1 + · · ·+ y∗nyn for some y1, · · · , yn ∈ R.
For a pair of self-adjoint elements x, y ∈ R we define x ≤ y if y − x ≥ 0 .

Example 2.2 The following sets are C∗ -convex.

1. R+ = {x ∈ R : x ≥ 0} .

2. P = {x ∈ R : 0 ≤ x ≤ 1R} .

3. Rsa = {x ∈ R : x∗ = x} .

4. {x} when x ∈ Z(R) , where Z(R) is the center of R.
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5. Every two-sided ideal in R.

Definition 2.3 For x, y ∈ R, the segment connecting x and y is defined to be the set

{
n∑

i=1

a∗
i xai +

m∑
j=1

b∗jybj |
n∑

i=1

a∗
i ai +

m∑
j=1

b∗jbj = 1R}.

For instance, the segment connecting 0 and 1R is equal to the set

P = {x ∈ R : 0 ≤ x ≤ 1R}.

We recall the following definition from [1].

Definition 2.4 An element x in R is called bounded whenever there exists a positive integer k such that
x∗x ≤ k1R . The set of all bounded elements of R is denoted by R0 .

Remark 2.5 Unlike linear convexity subspaces, subalgebras are not necessarily C∗ -convex. To see this, let R

be a unital ∗ -algebra over C and P =
(

1R 0
0 0

)
, then PRP =

{(
x 0
0 0

)
: x ∈ R

}
is a ∗ -subalgebra of

R which is not C∗ -convex. To see this let a and b be non zero distinct elements of R . Then the C∗ -convex
combination (

1/2 1/2
1/2 1/2

) (
a 0
0 0

) (
1/2 1/2
1/2 1/2

)

+
(

1/2 −1/2
−1/2 1/2

) (
b 0
0 0

)(
1/2 −1/2
−1/2 1/2

)

is not in PRP . However
(

a 0
0 0

)
,

(
b 0
0 0

)
∈ PRP .

The first part of the following proposition is an extension of [12, Lemma 12].

Proposition 2.6 (i) For x, y ∈ R, the segment connecting x and y is a C∗ -convex set that contains both of
x and y .

(ii) Suppose n1R is invertible in R for every positive integer n . Then R0 is a C∗ -convex ∗-subring of
R.
Proof. (i) Let x1, . . . , xn be elements of the segment connecting x and y . Then

xk =
mk∑
i=1

(ak
i )∗xak

i +
nk∑
j=1

(bk
j )∗ybk

j ,

where
mk∑
i=1

(ak
i )∗ak

i +
nk∑
j=1

(bk
j )∗bk

j = 1R.

If
∑n

k=1 t∗ktk = 1R , then
n∑

k=1

t∗kxktk =
n∑

k=1

t∗k[
mk∑
i=1

(ak
i )∗xak

i +
nk∑

j=1

(bk
j )∗ybk

j ]tk
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=
n∑

k=1

mk∑
i=1

t∗k(ak
i )∗xak

i tk +
n∑

k=1

nk∑
j=1

t∗k(bk
j )∗ybk

j tk.

By rearranging the coefficients, we have

n∑
k=1

mk∑
i=1

t∗k(ak
i )∗ak

i tk +
n∑

k=1

nk∑
j=1

t∗k(bk
j )∗bk

j tk =
n∑

k=1

t∗k[
mk∑
i=1

(ak
i )∗ak

i +
nk∑
j=1

(bk
j )∗bk

j ]tk

=
n∑

k=1

t∗k(1R)tk = 1R.

So the segment connecting x and y is C∗ -convex. Clearly x and y belong to this segment.

(ii) R0 is a ∗ -subring of R by [1, proposition 1, page 243]. So it is enough to show that R0 is closed
under C∗ -convex combinations. Suppose a ∈ R, a∗a ≤ 1R , and x ∈ R0 . Then a ∈ R0 , and hence a∗ ∈ R0 .
So aa∗ ≤ m1R for some m ∈ N . On the other hand the assumption x ∈ R0 implies that x∗x ≤ k1R for some
k ∈ N . Thus

(a∗xa)∗(a∗xa) = (a∗x∗a)(a∗xa) = a∗x∗(aa∗)xa

≤ a∗x∗(m1R)xa = ma∗(x∗x)a

≤ ma∗(k1R)a = mk(a∗a)

≤ mk1R.

Therefore a∗xa ∈ R0 , and hence R0 is C∗ -convex as it is a ring. �

Example 2.7 Every unital ∗-algebra on C or R or Q satisfies the conditions of the above proposition.

Definition 2.8 If K is a C∗ -convex subset of R, then x ∈ K is called a C∗ -extreme point for K if the
condition

x =
n∑

i=1

a∗
i xiai,

n∑
i=1

a∗
i ai = 1R, xi ∈ K, ai is invertible in R, n ∈ N (1)

implies that all xi are unitarily equivalent to x in R, that is, there exist unitaries ui ∈ R such that xi = u∗
i xui

for all i.

The set of all C∗ -extreme points of K is denoted by C∗ -ext(K) .

If condition (1) holds, then we say that x is a proper C∗ -convex combination of x1, . . . , xn .

Remark 2.9 (i) If x is a C∗ -extreme point of the C∗ -convex set K ⊆ R then −x and x∗ are C∗ -extreme
points of −K and K∗ , respectively.

(ii) Let K be a C∗ -convex subset of R . Then K is a C∗ -convex subset of R′
for every ∗ -subring R′

of R containing 1R such that K ⊆ R′
.

(iii) C∗ -Co(K∗) = (C∗ -Co(K))∗ . This is immediate from the identity

n∑
i=1

a∗
i x

∗
i ai = (

n∑
i=1

a∗
i xiai)∗.
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Definition 2.10 Let K be a C∗ -convex subset of R and x ∈ R. Then the set of all elements of K which are
unitarily equivalent to x is called the unitary orbit of x and is denoted by U(x) , that is, U(x) = {u∗xu : u∗u =

uu∗ = 1R} . Every C∗ -convex set contains the unitary orbits of its elements.

Example 2.11 The segment [0, a] = {x : 0 ≤ x ≤ a} is not, in general, C∗ -convex. For example, if we

consider the ∗-ring of all 2× 2 complex matrices with usual involution, and A =
(

1 0
0 0

)
, then [0, A] is not

C∗ -convex since B =
(

1/2 1/2
1/2 1/2

)
is unitarily equivalent to A , but B �≤ A .

In the next theorem we extend some basic facts of classical convexity to C∗ -convexity.

Theorem 2.12 Let K be a C∗ -convex subset of R.

(i) If x ∈ C∗ -ext(K) , then U(x) ⊆ C∗ -ext(K) .

(ii)K \U(x) is a C∗ -convex subset of R if and only if for every finite subset E = {x1, ..., xn} of K , the

identity x ∈ C∗ -Co(E) implies that x ∼ xi for some i (1 ≤ i ≤ n).

Proof. (i) Let y ∈ U(x). Then there exists a unitary u ∈ R such that y = u∗xu . If y =
∑n

i=1 a∗
i xiai is a

proper C∗ -convex combination of elements xi ∈ K , then

x = uyu∗ = u(
n∑

i=1

a∗
i xiai)u∗ =

n∑
i=1

(ua∗
i )xi(aiu

∗) =
n∑

i=1

(aiu
∗)∗xi(aiu

∗)

and
n∑

i=1

(aiu
∗)∗(aiu

∗) =
n∑

i=1

ua∗
i aiu

∗ = u(
n∑

i=1

a∗
i ai)u∗ = uu∗ = 1R.

But x ∈ C∗ -ext(K). So x ∼ xi for all i (1 ≤ i ≤ n), and since y ∼ x it follows that y ∼ xi for i = 1, . . . , n .

Therefore y ∈ C∗ -ext(K).

(ii) Let B = K \ U(x) be a C∗ -convex subset of R and x =
∑n

i=1 a∗
i xiai be a C∗ -convex combination

of elements xi ∈ K such that x � xi for all i . Then xi ∈ B for all i . Hence x ∈ B , since B is a C∗ -convex
set. Thus x /∈ U(x) which is a contradiction.

Conversely, suppose whenever x is written as a C∗ -convex combination of elements xi ∈ K , then

necessarily x ∼ xi for some i (1 ≤ i ≤ n). Let y =
∑n

i=1 a∗
i yiai be a C∗ -convex combination of elements

yi ∈ B . We must show that y ∈ B . since yi ∈ K for all i , and K is C∗ -convex, then y ∈ K . If y ∈ U(x)
then there exists a unitary u ∈ R such that y = u∗xu , and hence

x = uyu∗ = u(
n∑

i=1

a∗
i yiai)u∗ =

n∑
i=1

ua∗
i yiaiu

∗.

So x is a C∗ -convex combination of elements yi ∈ K , and by assumption x ∼ yi for some i which is a contra-
diction, as yi ∈ B . So y /∈ U(x) and hence y ∈ B . Therefore B is a C∗ -convex set. �
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Proposition 2.13 Assume that K1 and K2 are C∗ -convex subsets of ∗-rings R1 and R2 respectively. Then
K1 ⊕ K2 with pointwise operations is a C∗ -convex subset of R1 ⊕R2 and

C∗ − ext(K1) ⊕ C∗ − ext(K2) ⊆ C∗ − ext(K1 ⊕ K2).

If for every positive integer n , n1R1 and n1R2 have invertible positive square roots, then the reverse inclusion

holds too. (In particular, it holds when R1 and R2 are real or complex ∗-algebras.)

Proof. Suppose (xi, yi) ∈ K1 ⊕ K2 , (ai, bi) ∈ R1 ⊕ R2 , and
∑n

i=1(ai, bi)∗(ai, bi) = (1R1 , 1R2). We

must show that
∑n

i=1(ai, bi)∗(xi, yi)(ai, bi) ∈ K1 ⊕ K2 that is (
∑n

i=1 a∗
i xiai,

∑n
i=1 b∗i yibi) ∈ K1 ⊕ K2 . Since∑n

i=1(ai, bi)∗(ai, bi) = (1R1 , 1R2), then we have (
∑n

i=1 a∗
i ai,

∑n
i=1 b∗i bi) = (1R1 , 1R2). Hence

∑n
i=1 a∗

i ai = 1R1

and
∑n

i=1 b∗i bi = 1R2 . Since K1 and K2 are C∗ -convex sets in R1 and R2 , respectively, then
∑n

i=1 a∗
i xiai ∈ K1

and
∑n

i=1 b∗i yibi ∈ K2 .

To prove the last part we assume that x ∈ C∗ -ext(K1), y ∈ C∗ -ext(K2) and (x, y) =
∑n

i=1(ai, bi)∗(xi, yi)

(ai, bi) is a proper C∗ -convex combination of elements (xi, yi) ∈ K1 ⊕ K2 . So

x =
n∑

i=1

a∗
i xiai,

n∑
i=1

a∗
i ai = 1R1 , y =

n∑
i=1

b∗i yibi,

n∑
i=1

b∗i bi = 1R2

and ai and bi are invertible in R1 and R2 respectively. Thus x ∼ xi and y ∼ yi (i = 1, 2, . . . , n) and hence

(x, y) ∼ (xi, yi) (i = 1, 2, . . . , n). Therefore

(x, y) ∈ C∗ − ext(K1 ⊕ K2).

Conversely suppose (x, y) ∈ C∗ -ext(K1 ⊕ K2) and x =
∑n

i=1 a∗
i xiai is a C∗ -convex combination of elements

xi ∈ K1 . Then

(x, y) = (
n∑

i=1

a∗
i xiai,

n∑
i=1

((n1R2)
−1/2)∗y(n1R2 )

−1/2)

=
n∑

i=1

(ai, (n1R2)
−1/2)∗(xi, y)(ai, (n1R2)

−1/2)

and
n∑

i=1

(ai, (n1R2)
−1/2)∗(ai, (n1R2)

−1/2) = (
n∑

i=1

a∗
i ai,

n∑
i=1

(n1R2)
−1) = (1R1, 1R2).

Thus (x, y) ∼ (xi, y) and hence x ∼ xi for all i . Therefore x ∈ C∗ -ext(K1). Similarly, y ∈ C∗ -ext(K2). �

Recall that a Rickart ∗ -ring is a ∗ -ring R such that, for each x ∈ R there is a projection g which
generates the right annihilator ran({x}). (Note that such a projection is unique.)

Let R be a Rickart ∗ -ring and x ∈ R . Then there exists a unique projection e such that (1)xe = x

and (2)xy = 0 if and only if ey = 0. Similarly, there exists a unique projection f such that (3)fx = x and

(4)yx = 0 if and only if yf = 0. Explicitly, ran({x}) = (1R − e)R and lan({x}) = R(1R − f).
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Definition 2.14 Using the above notations, we write

e = RP (x), f = LP (x).

We call e and f the right projection and the left projection of x respectively.

Definition 2.15 R is said to satisfy the [unique] positive square root axiom briefly, the PSR-axiom [UPSR-

axiom] if, for every x ≥ 0 , there exists a [unique] element y such that y ≥ 0 and x = y2 .

The following theorem is a generalization of [12, Proposition 27] to Rickart ∗ -rings.

Theorem 2.16 Let R be a Rickart ∗-ring such that 2(1R) is invertible and has a positive square root. Then

T = {x ∈ R : −1R ≤ x ≤ 1R} is a C∗ -convex set, and the positive and negative C∗ -extreme points of T

belong to {2P − 1R : P ≥ 0 is a projection} .

Proof. It is easy to see that T is C∗ -convex. Let x ∈ T be positive (that is 0 ≤ x ≤ 1R ) and f = LP (x).
Then x = fx and since x = x∗ we have x = xf . So x = fxf . On the other hand, 0 ≤ f ≤ 1R , as f is a
projection. Suppose y = 2x − 2f + 1R . We show that y ∈ T . We have

0 ≤ x ≤ 1R ⇒ −1R ≤ x − 1R ≤ 0 ⇒ −f ≤ f(x − 1R)f ≤ 0 ⇒

1R − 2f ≤ 2f(x − 1R)f + 1R ≤ 1R ⇒ 1R − 2f ≤ y ≤ 1R.

Furthermore −1R ≤ 1R − 2f . Therefore y = 2x − 2f + 1R ∈ T . Now if t = (2(1R))−1/2 , then

x = tyt + t(2f − 1R)t. If x is C∗ -extreme in T , then x is unitarily equivalent to 2f − 1R . So x = 2P − 1R
where P ≥ 0 is a projection. In the case that −1R ≤ x ≤ 0, the proof is similar. �

Remark 2.17 Suppose K is a C∗ -convex subset of R , 0 ∈ K , and R satisfies the positive square root axiom.
Then for all x ∈ K and a ∈ R which a∗a ≤ 1R , we have a∗xa ∈ K .

3. C∗ -faces in ∗-rings

Morenz extended the notion of face from linear convexity to C∗ -face of C∗ -convex subsets of a C∗ -algebra
[16, pages 1015–1017]. In this section we extend this concept to C∗ -convex subsets of a ∗ -ring.

Definition 3.1 A C∗ -face F of a C∗ -convex set K ⊆ R is a nonempty subset F of K such that if x ∈ F
and x =

∑n
i=1 a∗

i xiai is a proper C∗ -convex combination of elements xi ∈ K , then necessarily xi ∈ F for all
i.

Example 3.2 (i) Let K be a C∗ -convex subset of R. Then K is a C∗ -face of K . Thus C∗ -faces exist.

(ii) The set of all C∗ -extreme points of K is a C∗ -face of K .

Proof. (ii) Suppose x ∈ C∗ -ext(K) and x =
∑n

i=1 a∗
i xiai is a proper C∗ -convex combination of elements

xi ∈ K . Then x ∼ xi for all i (1 ≤ i ≤ n) by definition of C∗ -extreme points. Also C∗ -ext(K) is closed

under unitary orbit of its elements. So xi ∈ C∗ -ext(K) for all i . Therefore C∗ -ext(K) is a C∗ -face of K . �
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In [16] Morenz introduced the notion of C∗ -summand of x in compact C∗ -convex subsets of Mn(C) to
prove the Krein-Milman theorem. We extend this concept for every element x of C∗ -convex subsets of R .

Definition 3.3 Suppose K is a C∗ -convex subset of R and x =
∑n

i=1 a∗
i xiai is a C∗ -convex combination

of elements xi ∈ K with ai �= 0 . Then each xi is called a C∗ -summand of x . We denote the set of all
C∗ -summands of x by C∗ -summ(x) .

Note that the restriction ai �= 0 in the definition of C∗ -summ(x) keeps the set of C∗ -summands proper.

Proposition 3.4 Let K be a C∗ -convex subset of R and x ∈ K . Then C∗ -summ(x) is a C∗ -face of K .

Proof. Let y1 ∈ C∗ -summ(x) and y1 =
∑m

i=1 b∗i zibi be a representation of y1 as a proper C∗ -convex

combination of elements zi ∈ K . Then there exist non-zero elements ai ∈ R and yi ∈ K (2 ≤ i ≤ n) such

that x =
∑n

i=1 a∗
i yiai and

∑n
i=1 a∗

i ai = 1R . So

x = a∗
1y1a1 +

n∑
i=2

a∗
i yiai = a∗

1(
m∑

i=1

b∗i zibi)a1 +
n∑

i=2

a∗
i yiai

and hence x =
∑m

i=1(bia1)∗zi(bia1) +
∑n

i=2 a∗
i yiai .

But bia1 �= 0 as a1 �= 0 and bi is invertible for all i (1 ≤ i ≤ m). On the other hand

m∑
i=1

(bia1)∗(bia1) +
n∑

i=2

a∗
i ai =

m∑
i=1

a∗
1b

∗
i bia1 +

n∑
i=2

a∗
i ai

= a∗
1(

m∑
i=1

b∗i bi)a1 +
n∑

i=2

a∗
i ai = a∗

11Ra1 +
n∑

i=2

a∗
i ai =

n∑
i=1

a∗
i ai = 1R.

Thus each zi is a C∗ -summand of x . Therefore C∗ -summ(x) is a C∗ -face of K . �

Since the definition of a C∗ -face requires the coefficients to be invertible, and the definition of C∗ -
summ(x) does not, C∗ -summ(x) need not be the minimal C∗ -face containing x .

Remark 3.5 (i) Unlike faces of ordinary convex sets in a ∗ -algebra, C∗ -faces are not usually C∗ -convex, or

even convex in a ∗ -algebra. For example suppose K is a C∗ -convex subset of R and x ∈ K , then C∗ -summ(x)

is a C∗ -face of K which is not convex in general (see [16, Remarks 3.2.2]).

(ii) If F is a C∗ -face and x ∈ F then U(x) ⊆ F .

(iii) The intersection of a family of C∗ -faces is a C∗ -face, provided that it is nonempty.

(iv) Let R be a topological ∗ -ring and K be a C∗ -convex subset of R . Then using Zorn’s lemma, one
can see that every compact C∗ -face of K contains a minimal compact C∗ -face of K .

(v) Unlike ordinary convexity, y ∈ C∗ -summ(x) and z ∈ C∗ -summ(y) does not imply z ∈ C∗ -

summ(x). For example, suppose that R is a ∗ -ring such that n1R is invertible for each n ∈ N , K =

{A ∈ M2(R) : 0 ≤ A ≤ I2} and

x =
(

1R 0
0 0

)
, y =

(
1R 0
0 (2(1R))−1

)
, z =

(
(2(1R))−1 0

0 (4(1R))−1

)
.
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Then y ∈ C∗ -summ(x) and z ∈ C∗ -summ(y), but z /∈ C∗ -summ(x).

Theorem 3.6 Let F be a C∗ -face of a C∗ -convex set K and x ∈ F . Then

x ∈ C∗ − ext(C∗ − Co(F)) ⇐⇒ x ∈ C∗ − ext(K) i.e.

F ∩ C∗ − ext(C∗ − Co(F)) = F ∩ C∗ − ext(K).

Proof. Let x ∈ F ∩ C∗ -ext(C∗ -Co(F)) and x =
∑n

i=1 a∗
i xiai be a representation of x as a proper C∗ -

convex combination of elements xi ∈ K . Then xi ∈ F for each i (1 ≤ i ≤ n) since F is a C∗ -face of K . So

xi ∈ C∗ -Co(F) for each i . But x ∈ C∗ -ext(C∗ -Co(F)) implies that x ∼ xi for each i (1 ≤ i ≤ n). Therefore

x ∈ C∗ -ext(K).

Conversely, suppose x ∈ F ∩ C∗ -ext(K) and x =
∑n

i=1 a∗
i xiai is a proper C∗ -convex combination of

elements xi ∈ C∗ -Co(F). Since C∗ -Co(F) ⊆ K and x ∈ C∗ -ext(K), then x ∼ xi for all i (1 ≤ i ≤ n).

Therefore x ∈ C∗ -ext(C∗ -Co(F)). �

Theorem 3.7 Suppose K1 and K2 are C∗ -convex subsets of R and F1 , F2 are C∗ -faces of K1 and K2

respectively. Then,

(i) F1 ∩ F2 is a C∗ -face of K1 ∩ K2 provided that F1 ∩ F2 �= ∅ .

(ii) If K1 ⊆ K2 then F2 ∩ K1 is a C∗ -face of K1 provided that it is nonempty.

(iii) If F ⊂ F1 and F is a C∗ -face of C∗ -Co(F1 ), then F is a C∗ -face of K1 .

(iv) If K1 ⊆ K2 then, K1 ∩ C∗ -ext(K2) ⊆ C∗ -ext(K1) .

Proof. (i) Suppose x ∈ F1 ∩ F2 and x =
∑n

i=1 a∗
i xiai is a proper C∗ -convex combination of elements

xi ∈ K1 ∩ K2 . Since x ∈ F1 , xi ∈ K1 (i = 1, · · · , n) and F1 is a C∗ -face of K1 , then xi ∈ F1 for all i

(i = 1, · · · , n). Similarly xi ∈ F2 for all i (i = 1, · · · , n). Hence xi ∈ F1 ∩ F2 for i = 1, · · · , n . Therefore
F1 ∩ F2 is a C∗ -face of K1 ∩ K2 .

(ii) K1 is a C∗ -face of K1 and F2 is a C∗ -face of K2 . So by part (i), K1 ∩ F is a C∗ -face of
K1 ∩ K2 = K1 , provided that it is nonempty.

(iii) Let x ∈ F and x =
∑n

i=1 a∗
i xiai be a proper C∗ -convex combination of elements xi ∈ K1 . Since

x ∈ F1 and F1 is a C∗ -face of K1 , then xi ∈ F1 for all i (1 ≤ i ≤ n). So x ∈ F and x =
∑n

i=1 a∗
i xiai

is a proper C∗ -convex combination of elements xi ∈ F1 ⊆ C∗ -co(F1). Thus xi ∈ F for all i (1 ≤ i ≤ n).
Therefore F is a C∗ -face of K1 .

(iv) Let x ∈ K1 ∩ C∗ -ext(K2) and x =
∑n

i=1 a∗
i xiai be a proper C∗ -convex combination of elements

xi ∈ K1 . The inclusion K1 ⊆ K2 implies that x =
∑n

i=1 a∗
i xiai is a proper C∗ -convex combination of ele-

ments xi ∈ K2 . Since x ∈ C∗ -ext(K2), we conclude that x ∼ xi for all i (1 ≤ i ≤ n). Thus x ∈ C∗ -ext(K1).�

Corollary 3.8 (i) Let {Ki}i∈I be a collection of compact C∗ -convex subsets of a topological ∗-ring R, and
Fi be a compact C∗ -face of Ki for each i ∈ I . Then ∩i∈IFi is a compact C∗ -face of the compact C∗ -convex
set ∩i∈IKi .

(ii) Let K1 and K2 be C∗ -convex subsets of R such that K1 ⊆ K2 and F2 be a C∗ -face of K2 which
is contained in K1 . Then F2 is also a C∗ -face of K1 .
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Remark 3.9 (i) Note that the inclusion in the part (iv) of the above theorem is proper. For example suppose

R = C (the ring of all complex numbers with complex conjugation as involution), K1 = [0, 1] and K2 = [−1, 1] .

It is easy to see that 0 is a C∗ -extreme point of K1 which does not belong to K1 ∩ C∗ - ext(K2).

(ii) Let F be a C∗ -face of the C∗ -convex set K in R such that P = {x ∈ R : 0 ≤ x ≤ 1R} ⊆ K , and

(F ∩ G(P)) \ 1R �= ∅ (where G(P) is the set of all invertible elements of P ) and every element of P has a

positive square root. Then F contains 0 and 1R . To see this let x ∈ F ∩ G(P) and x �= 1R . Then

x = x1/2 1Rx1/2 + (1R − x)1/2 0(1R − x)1/2

is a proper C∗ -convex combination of 0 and 1R in K . Also, x ∈ F and F is a C∗ -face of K . Therefore
0, 1R ∈ F .

Proposition 3.10 Let K be a compact C∗ -convex subset of a topological ∗-ring R, and C∗ -F(K) be the

collection of all compact C∗ -faces of K which is partially ordered by inclusion. Then C∗ -F(K) is a complete
lattice.
Proof. Every set of elements of C∗ -F(K) has a greatest lower bound in the partial ordering (namely the

intersection of its elements). Also every subset of C∗ -F(K) has a least upper bound since the set of all its

upper bounds has a greatest lower bound. Thus C∗ -F(K) is a complete lattice. �

Theorem 3.11 Suppose K is a non-empty C∗ -convex compact set in a topological ∗-ring R, ϕ : R → C

is a continuous ∗-homomorphism and M = supx∈KRe(ϕ(x)) . Then the set F of all x ∈ K such that

Re(ϕ(x)) = M is a compact C∗ -face of K .

Proof. The set F is non-empty, since compactness of K implies that there is a point x0 ∈ K such that
M = Re(ϕ(x0)). Since ϕ is continuous, then F is closed in K and hence F is compact. Suppose x ∈ F and

x =
∑n

i=1 a∗
i xiai is a proper C∗ -convex combination of elements xi ∈ K . Since

∑n
i=1 a∗

i ai = 1R , then

1 = ϕ(1R) = ϕ(
n∑

i=1

a∗
i ai) =

n∑
i=1

ϕ(ai)ϕ(ai) =
n∑

i=1

| ϕ(ai) |2, (1)

Also,

M = Re(ϕ(x)) = Re(ϕ(
n∑

i=1

a∗
i xiai)) = Re(

n∑
i=1

ϕ(ai)ϕ(xi)ϕ(ai))

= Re(
n∑

i=1

| ϕ(ai) |2 ϕ(xi)) =
n∑

i=1

| ϕ(ai) |2 Re(ϕ(xi)).

Thus

M =
n∑

i=1

| ϕ(ai) |2 Re(ϕ(xi)). (2)

If xi /∈ F for some i (1 ≤ i ≤ n), then Re(ϕ(xi)) < M . So (1) and (2) imply that M < M which is a

contradiction. Therefore xi ∈ F for all i (1 ≤ i ≤ n). �

Proof of the following proposition is not difficult and is left to the reader.
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Proposition 3.12 Suppose R1 and R2 are ∗-rings and g : R1 → R2 is a ∗-isomorphism. Then

(i) K is a C∗ -convex subset of R1 if and only if g(K) is a C∗ -convex subset of R2 .

(ii) F is a C∗ -face of a C∗ -convex set K if and only if g(F) is a C∗ -face of g(K) .

4. C∗ -convex maps

In this section we introduce the notion of C∗ -convex maps on C∗ -convex subsets of a ∗ -ring. The results
of this section are mostly extensions of their analogs from linear convexity.

Definition 4.1 Let K be a C∗ -convex subset of R. We say that a map f : K → K is C∗ -convex if

f(
n∑

i=1

a∗
i xiai) ≤

n∑
i=1

a∗
i f(xi)ai (1)

where xi ∈ K , ai ∈ R, and
∑n

i=1 a∗
i ai = 1R . If the inequality (1) is strict, then we say that f is strictly

C∗ -convex. If −f is C∗ -convex, we say that f is C∗ -concave.

Note that if R is a ∗ -algebra then every C∗ -convex (C∗ -concave) map is convex (concave) map in the
classical sense.

Example 4.2 The following maps are C∗ -convex maps on R, which are not strictly C∗ -convex.

(i) f(x) = mx where m ∈ N .

(ii) f(x) = x∗ .

(iii) f(x) = αx where α ∈ C and R is a ∗-algebra.

(iv) f(x) = αx + b where α ∈ C , b ∈ Z(R) and R is a ∗-algebra.

Remark 4.3 Every increasing C∗ -convex map of a C∗ -convex map, is C∗ -convex (Note that f : K → K is

called increasing if a ≤ b implies that f(a) ≤ f(b)).

To see this let f be C∗ -convex and g be an increasing C∗ -convex map on a C∗ -convex set K in R .
Then for every C∗ -convex combination of elements xi ∈ K we have

f(
n∑

i=1

a∗
i xiai) ≤

n∑
i=1

a∗
i f(xi)ai.

So

g(f(
n∑

i=1

a∗
i xiai)) ≤ g(

n∑
i=1

a∗
i f(xi)ai) ≤

n∑
i=1

a∗
i g(f(xi))ai.

Therefore g ◦ f is a C∗ -convex map.

Definition 4.4 The graph of a map f : R → R is the set

{(x, y) : x ∈ R, y = f(x)} ⊆ R⊕R,
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and the epi-graph of f which we denote by epi(f) is the set

{(x, y) : x ∈ R, f(x) ≤ y} ⊆ R⊕R.

Definition 4.5 We say that K ⊆ R ⊕ R is a diag-C∗ -convex subset of R ⊕ R if K is closed under C∗ -

convex combinations with diagonal coefficients, that is,
∑n

i=1(ai, ai)∗(xi, yi)(ai, ai) ∈ K whenever (xi, yi) ∈ K ,

ai ∈ R, and
∑n

i=1 a∗
i ai = 1R .

Theorem 4.6 Let K ⊆ R. A map f on K is C∗ -convex if and only if epi(f) is a diag-C∗ -convex subset of
R⊕R.

Proof. Let f be a C∗ -convex map on K ⊆ R and let (xi, yi) ∈ epi(f), ai ∈ R , and
∑n

i=1 a∗
i ai = 1R . We

must show that
∑n

i=1(ai, ai)∗(xi, yi)(ai, ai) belongs to epi(f). Since (xi, yi) ∈ epi(f), then yi ≥ f(xi), and

hence a∗
i yiai ≥ a∗

i f(xi)ai . Thus

n∑
i=1

a∗
i yiai ≥

n∑
i=1

a∗
i f(xi)ai ≥ f(

n∑
i=1

a∗
i xiai)

as f is a C∗ -convex map. Therefore

(
n∑

i=1

a∗
i xiai,

n∑
i=1

a∗
i yiai) ∈ epi(f).

Conversely, suppose that epi(f) is a diag-C∗ -convex subset of R ⊕ R and
∑n

i=1 a∗
i xiai is a C∗ -convex

combination of elements xi ∈ K . We must show that

f(
n∑

i=1

a∗
i xiai) ≤

n∑
i=1

a∗
i f(xi)ai.

Our assumption, together with the fact that (xi, f(xi)) ∈ epi(f), implies that

n∑
i=1

(ai, ai)∗(xi, yi)(ai, ai) ∈ epi(f)

and hence

(
n∑

i=1

a∗
i xiai,

n∑
i=1

a∗
i f(xi)ai) ∈ epi(f).

Therefore

f(
n∑

i=1

a∗
i xiai) ≤

n∑
i=1

a∗
i f(xi)ai.

�
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Theorem 4.7 Let f : R → R be a C∗ -convex map on a unital ∗-algebra R, and α ∈ C . Then each of the
following sets is a C∗ -convex subset of R.

(i) K = {x ∈ R | f(x) ≤ α1R} .

(ii) M = {x ∈ R : f(x) ≤ x} .

A similar result holds when f is C∗ -concave and M = {x ∈ R : f(x) ≥ x} .

(iii) g−1({α}) , where g : R → C is a ∗-homomorphism.

Proof. (i) Let xi ∈ K , ai ∈ R and
∑n

i=1 a∗
i ai = 1R . Then,

f(
n∑

i=1

a∗
i xiai) ≤

n∑
i=1

a∗
i f(xi)ai ≤

n∑
i=1

a∗
i α1Rai = α(

n∑
i=1

a∗
i ai) = α(1R).

So
∑n

i=1 a∗
i xiai ∈ K and hence K is a C∗ -convex set.

(ii) Let xi ∈ M , ai ∈ R and
∑n

i=1 a∗
i ai = 1R . Since f(xi) ≤ xi then

n∑
i=1

a∗
i f(xi)ai ≤

n∑
i=1

a∗
i xiai.

On the other hand f(
∑n

i=1 a∗
i xiai) ≤

∑n
i=1 a∗

i f(xi)ai since f is a C∗ -convex map. So we conclude that

f(
n∑

i=1

a∗
i xiai) ≤

n∑
i=1

a∗
i xiai

and hence
∑n

i=1 a∗
i xiai ∈ M . Therefore M is a C∗ -convex subset of R .

(iii) Suppose
∑n

i=1 a∗
i xiai is a C∗ -convex combination of elements xi ∈ g−1({α}). Since g(xi) = α for

each i (i = 1, 2, · · · , n) and g is a ∗ -homomorphism, then

g(
n∑

i=1

a∗
i xiai) =

n∑
i=1

g(a∗
i )g(xi)g(ai) =

n∑
i=1

¯g(ai)αg(ai) = α

n∑
i=1

|g(ai)|2 = α.

n∑
i=1

|g(ai)|2 =
n∑

i=1

¯g(ai)g(ai) =
n∑

i=1

g(a∗
i )g(ai) = g(

n∑
i=1

a∗
i ai) = 1R.

Hence
∑n

i=1 a∗
i xiai ∈ g−1({α}). Therefore g−1({α}) is a C∗ -convex set in R . �

Theorem 4.8 Suppose R is a topological ∗-ring, C∗ -ext(K) is closed and S is a compact subset of C∗ − Co(C∗ -

ext(K)) containing C∗ -ext(K) . Then every continuous unital homomorphism f : R → R attains its maximum
and minimum on S at C∗ -extreme points of K . Moreover, maximum and minimum of f on S is equal with
its maximum and minimum on C∗ -ext(K) respectively.

Proof. Suppose f admits its maximum on S at a point x ∈ S . Then there exists a net (xλ) ⊆ C∗ -Co(C∗ -

ext(K)) such that (xλ) converges to x . But

xλ =
n(λ)∑
i=1

a∗
λ,ixλ,iaλ,i,
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where n(λ) is a positive integer and xλ,i ∈ C∗ -ext(K) for i = 1, . . . , n(λ) and aλ,i ∈ R satisfies
∑n(λ)

i=1 a∗
λ,iaλ,i =

1R. Thus

f(xλ) = f(
n(λ)∑
i=1

a∗
λ,ixλ,iaλ,i) =

n(λ)∑
i=1

f(a∗
λ,ixλ,iaλ,i)

=
n(λ)∑
i=1

f(a∗
λ,i)f(xλ,i)f(aλ,i) ≤ max

1≤i≤n(λ)
f(xλ,i)

n(λ)∑
i=1

f(a∗
λ,i)f(aλ,i)

= max
1≤i≤n(λ)

f(xλ,i)f(
n(λ)∑
i=1

a∗
λ,iaλ,i) = max

1≤i≤n(λ)
f(xλ,i).

So
f(xλ) ≤ max

1≤i≤n(λ)
f(xλ,i) = f(xλ,iλ).

Therefore,

f(x) = f( lim
λ→∞

xλ) = lim
λ→∞

f(xλ) ≤ lim
λ→∞

f(xλ,iλ) = f( lim
λ→∞

xλ,iλ). (1)

Since S is compact and (xλ,iλ) ⊆ S , then limλ→∞ xλ,iλ ∈ S . On the other hand f(x) is maximal. So (1)

implies that f(x) = f(limλ→∞ xλ,iλ). Therefore f takes its maximum at the point limλ→∞ xλ,iλ which is

contained in C∗ -ext(K) (Since C∗ -ext(K) is closed). The statement for the minimum of f can be proved
with a similar argument. �

Corollary 4.9 If S ⊆ Mn is compact, C∗ -convex, and the set of all C∗ -extreme points of S is closed, then
every continuous unital homomorphism f : Mn → R , attains its maximum and minimum on S at C∗ -extreme
points of S .

Proof. Let K = S and use theorem 4.5. of [16]. �

Note that the same conclusion holds everywhere that a Krein-Milman type theorem exists. For example
in the generalized state space of a C∗ -algebra with bounded-weak topology such a conclusion holds.
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