Invariant parametrizations and complete systems of global invariants of curves in the pseudo-Euclidean geometry

Ömer Pekşen, Djavvat Khadjiev, İdris Ören

Abstract

Let $M(n, p)$ be the group of all transformations of an n-dimensional pseudo-Euclidean space E_{p}^{n} of index p generated by all pseudo-orthogonal transformations and parallel translations of E_{p}^{n}. Definitions of a pseudo-Euclidean type of a curve, an invariant parametrization of a curve and an $M(n, p)$-equivalence of curves are introduced. All possible invariant parametrizations of a curve with a fixed pseudo-Euclidean type are described. The problem of the $M(n, p)$-equivalence of curves is reduced to that of paths. Global conditions of the $M(n, p)$-equivalence of curves are given in terms of the pseudo-Euclidean type of a curve and the system of polynomial differential $M(n, p)$-invariants of a curve $x(s)$.

Key Words: Curve, pseudo-Euclidean geometry, invariant parametrization

1. Introduction

Let R be the field of real numbers, n and p are integers such that $0 \leq p<n$. The n-dimensional pseudo-Euclidean space of index p (that is the space R^{n} with the scalar product $\langle x, y\rangle=-x_{1} y_{1}-\cdots-$ $x_{p} y_{p}+x_{p+1} y_{p+1}+\cdots+x_{n} y_{n}$) will be denoted by E_{p}^{n}. E_{1}^{4} is the Minkowski spacetime. The group of all pseudo-orthogonal transformations of E_{p}^{n} (that is the set of all linear transformations $g: E_{p}^{n} \rightarrow E_{p}^{n}$ such that $<g x, g y>=<x, y>$ for all $\left.x, y \in E_{p}^{n}\right)$ is denoted by $O(n, p)$. Put $M(n, p)=\left\{F: E_{p}^{n} \rightarrow E_{p}^{n} \mid F x=g x+b\right.$, $\left.g \in O(n, p), b \in E_{p}^{n}\right\}$ and $S M(n, p)=\{F \in M(n, p): \operatorname{det} g=1\}$.

The Frenet-Serret formalism for both time-like and space-like curves in spaces E_{1}^{3} and E_{1}^{4} is studied in papers $[13,21]$ and in the thesis [14]. In papers $[2,5,6,9,20]$, the Frenet-Serret curve analysis is extended from non-null curves in E_{1}^{4} to null (lightlike, isotropic) curves. For arbitrary n, this theory is extended to the Lorentz space E_{1}^{n} and to the space E_{2}^{n} in papers $[3,18]$ and in the book ($[10]$, pp. 52-76). The Frenet-Serret theory for degenerate curves in spaces E_{1}^{n} and E_{2}^{n} is investigated in [11-12]. The Frenet-Serret theory of curves in E_{p}^{n} for arbitrary n and index p is considered in papers [4, 7, 8]. In [7], the fundamental theorem of a naturally-parametrized curve in E_{p}^{n} for arbitrary n and index p is obtained. It is found necessary and sufficient conditions under which given real-valued functions $\varphi_{1}, \ldots, \varphi_{n-1}, n \geq 2$, on an interval I of the real

[^0]axis are the successive curvatures of a naturally-parametrized curve in E_{p}^{n} which is defined by them uniquely up to congruence for a given distribution of unit and pseudounit vectors in a Frenet ($n-1$)-frame of the curve.

The Frenet-Serret equations for a curve in an Euclidean space E_{0}^{n} provide curvature functions $k_{1}(s), \ldots, k_{n-1}(s)$ of a curve. The curvatures $k_{1}(s), \ldots, k_{n-2}(s)$ are $M(n, 0)$-invariant. But the curvature $k_{n-1}(s)$ is not $M(n, 0)$-invariant, it is $S M(n, 0)$-invariant. For example, the torsion of a curve in E_{0}^{3} is $S M(3,0)$-invariant, but it is not $M(3,0)$-invariant. Therefore the system $k_{1}(s), \ldots, k_{n-1}(s)$ gives a solution of the problem of the G-equivalence of curves only for $G=S M(n, 0)$ ([19], p.p. 61-64). Besides, the method of moving frames essentially gives only conditions of a local G-equivalence of curves. A similar situation is valid for an arbitrary index p.

In the present paper we use an invariant-theoretic approach to the theory of curves in the pseudoEuclidean geometry. We give a solution of the problem of global G-equivalence of curves for groups $G=$ $M(n, p), S M(n, p)$ in terms of invariants of a curve.

This paper is organized as follows. In Section 1, the definitions of the pseudo-Euclidean type and an invariant parametrization of a curve are given. The pseudo-Euclidean type of a curve is $M(n, p)$-invariant and it has the following forms: $(0, l)$, where $0<l \leq \infty,(-\infty, 0)$ and $(-\infty,+\infty)$. All possible invariant parametrizations of a curve with a fixed pseudo-Euclidean type are described. In Theorem 1, the problems of the $M(n, p)$-equivalence and the $S M(n, p)$-equivalence of curves are reduced to that of paths. In Section 2, the conditions of the global G-equivalence of curves are given in terms of the pseudo-Euclidean type and the system of polynomial differential G - invariant functions.

A description of a complete system of correlations between the elements of the complete system of differential invariants of a curve in E_{p}^{n} will be considered in our next paper. The theory of regular curves in E_{p}^{n} given in the present paper contains also some class of null curves (look at the Remarks 2-3 and Example 4 below). More detailed theory of invariants of null curves in E_{p}^{n} will be considered also in our next paper.

2. Invariant parametrizations of a curve

Let $J=(a, b)$ be an open interval of R.

Definition 1 (see [16, 17]). A C^{∞}-mapping $x: J \rightarrow E_{p}^{n}$ will be called a J-path (shortly, a path) in E_{p}^{n}.
Definition 2 (see [16, 17]). A J_{1}-path $x(t)$ and a J_{2}-path $y(r)$ in E_{p}^{n} will be called D-equivalent if a C^{∞}-diffeomorphism $\varphi: J_{2} \rightarrow J_{1}$ exists such that $\varphi^{\prime}(r)>0$ and $y(r)=x(\varphi(r))$ for all $r \in J_{2}$. A class of D-equivalent paths in E_{p}^{n} will be called a curve in E_{p}^{n}. A path $x \in \alpha$ will be called a parametrization of a curve α.

If $x(t)$ is a J-path then $F x(t)$ is a J-path in E_{p}^{n} for any $F \in M(n, p)$. Let G be a subgroup of $M(n, p)$.
Definition 3 Two J-paths $x(t)$ and $y(t)$ in E_{p}^{n} are called G-equivalent if there exists $F \in G$ such that $y(t)=F x(t)$. This being the case, we write $x(t) \stackrel{G}{\sim} y(t)$

Let $\alpha=\left\{h_{\tau}, \tau \in Q\right\}$ be a curve in E_{p}^{n}, where h_{τ} is a parametrization of α. Then $F \alpha=\left\{F h_{\tau}, \tau \in Q\right\}$ is a curve in E_{p}^{n} for any $F \in M(n, p)$.

Definition 4 (see [16, 17]) Two curves α and β in E_{p}^{n} are called G-equivalent if $\beta=F \alpha$ for some $F \in G$. This being the case, we write $\alpha \stackrel{G}{\sim} \beta$.

Let $x(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right)$ be a J-path in $E_{p}^{n}, x^{\prime}(t)=\left(x_{1}^{\prime}(t), \ldots, x_{n}^{\prime}(t)\right)$ is its first derivative and $x^{(k)}(t)$ is its k-th derivative. Denote the determinant of vectors $x^{\prime}(t), x^{(2)}(t), \ldots, x^{(n)}(t)$ by $\left[x^{\prime}(t) x^{(2)}(t) \ldots x^{(n)}(t)\right]$.

Definition 5 A J-path $x(t)$ in E_{p}^{n} will be called pseudo-euclidean regular (regular, for short) if one of the following conditions hold:
$\left(5_{1}\right) .<x^{\prime}(t), x^{\prime}(t)>\neq 0$ for all $t \in J$;
$\left(5_{2}\right) .\left[x^{\prime}(t) x^{(2)}(t) \ldots x^{(n)}(t)\right] \neq 0$ for all $t \in J$;
$\left(5_{3}\right) .\left|<x^{\prime}(t), x^{\prime}(t)>\left|+\left|\left[x^{\prime}(t) x^{(2)}(t) \ldots x^{(n)}(t)\right]\right| \neq 0\right.\right.$ for all $t \in J$.
A curve α will be called regular if it contains a regular path.

Remark 1 It is obvious that $\left(5_{1}\right) \rightarrow\left(5_{3}\right)$ and $\left(5_{2}\right) \rightarrow\left(5_{3}\right)$. The following examples 1-3 below show that $\left(5_{1}\right) \nrightarrow\left(5_{2}\right),\left(5_{2}\right) \nrightarrow\left(5_{1}\right),\left(5_{3}\right) \nrightarrow\left(5_{1}\right),\left(5_{3}\right) \nrightarrow\left(5_{2}\right)$ and $\left(5_{3}\right) \nrightarrow\left(5_{1}\right) \cup\left(5_{1}\right)$.
Example 1 Consider the J-path $x(t)=\left(\frac{1}{2} t^{2}, \frac{1}{3} t^{3}\right)$ in E_{1}^{2}, where $J=(0,2)$. Then $<x^{\prime}(t), x^{\prime}(t)>=0$ for $t=1$, but $\left[x^{\prime}(t) x^{(2)}(t)\right] \neq 0$ for all $t \in J$. Hence $\left(5_{2}\right) \nrightarrow\left(5_{1}\right)$. In the case $p=0$, it is easy to see that $\left(5_{2}\right) \rightarrow\left(5_{1}\right)$.
Example 2 Consider the J-path $x(t)=\left(\frac{1}{3} t^{3}, \frac{2}{3} t^{3}\right)$ in E_{1}^{2}, where $J=(0,2)$. Then $\left[x^{\prime}(t) x^{(2)}(t)\right]=0$ for all $t \in J$, but $<x^{\prime}(t), x^{\prime}(t)>\neq 0$ for all $t \in J$. Hence $\left(5_{1}\right) \nrightarrow\left(5_{2}\right)$.
Example 3 Consider the J-path $x(t)=\left(t, \frac{1}{2} t^{2}, \frac{1}{4} t^{4}\right)$ in E_{1}^{3}, where $J=\left(-\frac{1}{2}, 2\right)$. Then $\left[x^{\prime}(t) x^{(2)}(t) x^{(3)}(t)\right]=6 t$ and $<x^{\prime}(t), x^{\prime}(t)>=1+t^{2}-t^{6}$ for all $t \in J$. The equality $\left[x^{\prime}(t) x^{(2)}(t) x^{(3)}(t)\right]=6 t$ implies that $\left[x^{\prime}(t) x^{(2)}(t) x^{(3)}(t)\right]=0$ only for $t=t_{1}=0$. There exists unique $t=t_{2} \in J$ such that $<x^{\prime}(t), x^{\prime}(t)>=0$. It is easy to see that $1<t_{2}<2$. Then $\left[x^{\prime}(t) x^{(2)}(t) x^{(3)}(t)\right]=0$ for some $t=t_{1} \in J$ and $<x^{\prime}(t), x^{\prime}(t)>=0$ for some $t=t_{2} \in J$, where $t_{1} \neq t_{2}$, but $\left|<x^{\prime}(t), x^{\prime}(t)>\left|+\left|\left[x^{\prime}(t) x^{(2)}(t) x^{(3)}(t)\right]\right| \neq 0\right.\right.$ for all $t \in J$. Hence $\left(5_{3}\right) \nrightarrow\left(5_{1}\right) \cup\left(5_{2}\right)$. In particularly, $\left(5_{3}\right) \nrightarrow\left(5_{1}\right)$ and $\left(5_{3}\right) \nrightarrow\left(5_{2}\right)$.

Definition 6 (see [2]) A J-path $x(t)$ is called null if $<x^{\prime}(t), x^{\prime}(t)>=0$ for all $t \in J$.

Remark 2 There exists a null J-path such that $\left[x^{\prime}(t) x^{(2)}(t) \ldots x^{(n)}(t)\right] \neq 0$ for all $t \in J$.
Example 4 Consider the J-path

$$
x(t)=\left(t, \frac{1}{2} t^{2}, \int_{0}^{1} \sqrt{1+t^{2}} d t\right)
$$

in E_{1}^{3}, where $J=(0,1)$. Then $<x^{\prime}(t), x^{\prime}(t)>=0$ for all $t \in J$ and $\left[x^{\prime}(t) x^{(2)}(t) x^{(3)}(t)\right]=\left(1+t^{2}\right)^{-\frac{3}{2}} \neq 0$ for all $t \in J$.

Hence there exists a regular null J-path in E_{p}^{n}. Therefore the theory of regular curves in E_{p}^{n} given below contains also some class of null curves.

Now we define invariant parametrizations of regular curves in E_{p}^{n}. Let $x(t)$ be a regular J-path in E_{p}^{n}. We put

$$
l_{x}(c, d)=\int_{c}^{d}\left|<x^{\prime}(t), x^{\prime}(t)>\right|^{\frac{1}{2}} d t
$$

in case $\left(5_{1}\right)$ of Definition 5. If $\left(5_{1}\right)$ doesn't hold and case (55_{2}) holds, we put

$$
l_{x}(c, d)=\int_{c}^{d}\left|\left[x^{\prime}(t) x^{(2)}(t) \ldots x^{(n)}(t)\right]\right|^{\frac{2}{n(n+1)}} d t
$$

If the cases $\left(5_{1}\right)$ and $\left(5_{2}\right)$ don't hold and the case (5_{3}) holds, we put

$$
l_{x}(c, d)=\left.\int_{c}^{d}\left|<x^{\prime}(t), x^{\prime}(t)>\left.\right|^{\frac{1}{2}} d t+\int_{c}^{d}\right|\left[x^{\prime}(t) x^{(2)}(t) \ldots x^{(n)}(t)\right]\right|^{\frac{2}{n(n+1)}} d t
$$

The limits $l_{x}(a, d)=\lim _{c \rightarrow a} l_{x}(c, d) \leq+\infty$ and $l_{x}(c, b)=\lim _{d \rightarrow b} l_{x}(c, d) \leq+\infty$ exist. There are only four possibilities:

$$
\begin{array}{ll}
\left(T_{1}\right) \cdot l_{x}(a, d)<+\infty, l_{x}(c, b)<+\infty ; & \left(T_{2}\right) \cdot l_{x}(a, d)<+\infty, l_{x}(c, b)=+\infty ; \\
\left(T_{3}\right) \cdot l_{x}(a, d)=+\infty, l_{x}(c, b)<+\infty ; & \left(T_{4}\right) \cdot l_{x}(a, d)=+\infty, l_{x}(c, b)=+\infty
\end{array}
$$

Suppose that the case $\left(T_{1}\right)$ or $\left(T_{2}\right)$ holds for some $c, d \in J$. Then $l=l_{x}(a, d)+l_{x}(c, b)-l_{x}(c, d)$, where $0 \leq l \leq+\infty$, does not depend on $c, d \in J$. In this case we say that x belongs to the pseudo-euclidean type of $(0, l)$. The cases $\left(T_{3}\right)$ and $\left(T_{4}\right)$ do not depend on c, d. In these cases, we say that x belongs to the pseudo-euclidean types of $(-\infty, 0)$ and $(-\infty,+\infty)$, respectively. There exist paths of all types $(0, l)$, where $l<+\infty,(0,+\infty),(-\infty, 0)$ and $(-\infty,+\infty)$. The pseudo-euclidean type of a path x will be denoted by $L(x)$. It is obvious that:
(i) if $x \stackrel{M(n, p)}{\sim} y$ then $L(x)=L(y)$;
(ii) if x, y is parametrizations of a curve α then $L(x)=L(y)$.

The pseudo-euclidean type of a path $x \in \alpha$, will be called the pseudo-euclidean type of the curve α and denoted by $L(\alpha) . L(\alpha)$ is an $M(n, p)$-invariant of a curve α.

Now we define an invariant parametrization of a regular curve in E_{p}^{n}. Let $J=(a, b)$ and $x(t)$ be a regular J-path in E_{p}^{n}. We define the pseudo-euclidean arc length function $s_{x}(t)$ for each pseudo-euclidean type as follows. We put $s_{x}(t)=l_{x}(a, t)$ for the case $L(x)=(0, l)$, where $l \leq+\infty$, and $s_{x}(t)=-l_{x}(t, b)$ for the case $L(x)=(-\infty, 0)$. Let $L(x)=(-\infty,+\infty)$. We choose a fixed point in every interval $J=(a, b)$ of R and denote it by a_{J}. Let $a_{J}=0$ for $J=(-\infty,+\infty)$. We set $s_{x}(t)=l_{x}\left(a_{J}, t\right)$.

Since $s_{x}^{\prime}(t)>0$ for all $t \in J$, the inverse function of $s_{x}(t)$ exists. Let us denote it by $t_{x}(s)$. The domain of $t_{x}(s)$ is $L(x)$ and $t_{x}^{\prime}(s)>0$ for all $s \in L(x)$.

PEKŞEN, KHADJIEV, ÖREN

Proposition 1 Let $I=(a, b)$ and x be a regular I-path in E_{p}^{n}. Then
(i) $s_{F x}(t)=s_{x}(t)$ and $t_{F x}(s)=t_{x}(s)$ for all $F \in M(n, p)$;
(ii) the equalities $s_{x(\varphi)}(r)=s_{x}(\varphi(r))+s_{0}$ and $\varphi\left(t_{x(\varphi)}\left(s+s_{0}\right)\right)=t_{x}(s)$ hold for any C^{∞}-diffeomorphism $\varphi: J=(c, d) \rightarrow I$ such that $\varphi^{\prime}(r)>0$ for all $r \in J$, where $s_{0}=0$ for $L(x) \neq(-\infty,+\infty)$ and $s_{0}=l_{x}\left(\varphi\left(a_{J}\right), a_{I}\right)$ for $L(x)=(-\infty,+\infty)$.

Proof. The proof of statement (i) is obvious. We prove statement (ii) for case $\left(5_{3}\right)$ in Definition 5. Let $L(x)=(-\infty,+\infty)$. Then we have $s_{x(\varphi)}(r)=$

$$
\begin{array}{r}
\int_{a_{J}}^{r}\left(\left|<\frac{d}{d r} x(\varphi(r)), \frac{d}{d r} x(\varphi(r))>\left.\right|^{\frac{1}{2}}+\right|\left[\frac{d}{d r} x(\varphi(r)) \cdots \frac{d^{n}}{d r^{n}} x(\varphi(r))\right]^{\frac{2}{n(n+1)}}\right) d r= \\
\int_{a_{J}}^{r} \frac{d \varphi}{d r}\left(\left|<\frac{d}{d \varphi} x(\varphi(r)), \frac{d}{d \varphi} x(\varphi(r))>\left.\right|^{\frac{1}{2}}+\left|\left[\frac{d}{d \varphi} x(\varphi(r)) \cdots \frac{d^{n}}{d \varphi^{n}} x(\varphi(r))\right]\right|^{\frac{2}{n(n+1)}}\right) d r=\right. \\
l_{x}\left(\varphi\left(a_{J}\right), \varphi(r)\right)=l_{x}\left(a_{I}, \varphi(r)\right)+l_{x}\left(\varphi\left(a_{J}\right), a_{I}\right) .
\end{array}
$$

So $s_{x(\varphi)}(r)=s_{x}(\varphi(r))+s_{0}$, where $s_{0}=l_{x}\left(\varphi\left(a_{J}\right), a_{I}\right)$. This implies $\varphi\left(t_{x(\varphi)}\left(s+s_{0}\right)\right)=t_{x}(s)$. For $L(x) \neq$ $(-\infty,+\infty)$, it is easy to see that $s_{0}=0$.

Proofs of statement $(i i)$ for cases $\left(5_{1}\right)$ and $\left(5_{2}\right)$ in Definition 5 are similar.

Let α be a regular curve, $x \in \alpha$. Then $x\left(t_{x}(s)\right)$ is a parametrization of α.

Definition 7 The parametrization $x\left(t_{x}(s)\right)$ of a regular curve α will be called an invariant parametrization of α.

We denote the set of all invariant parametrizations of α by $I p(\alpha)$. Every $y \in I p(\alpha)$ is a J-path, where $J=L(\alpha)$.

Proposition 2 Let α be a regular curve, $x \in \alpha$ and x be a J-path, where $J=L(\alpha)$. Assume that the condition (51) in Definition 5 holds for x. Then the following conditions are equivalent:
(i) x is an invariant parametrization of α;
(ii) $\left|<x^{\prime}(t), x^{\prime}(t)>\right|=1$ for all $s \in L(\alpha)$;
(iii) $s_{x}(s)=s$ for all $s \in L(\alpha)$.

Proof. $\quad(i) \rightarrow(i i)$. Let $x \in I p(\alpha)$. Then there exists $y \in \alpha$ such that $x(s)=y\left(t_{y}(s)\right)$. By Proposition 1, $s_{x}(s)=s_{y\left(t_{y}\right)}(s)=s_{y}\left(t_{y}(s)\right)+s_{0}=s+s_{0}$, where s_{0} is as in Proposition 1. Since s_{0} does not depend on s, we have $\frac{d s_{x}(s)}{d s}=\left|<x^{\prime}(t), x^{\prime}(t)>\right|^{\frac{1}{2}}=1$. Hence $\left|<x^{\prime}(t), x^{\prime}(t)>\right|=1$ for all $s \in L(\alpha)$.
$(i i) \rightarrow($ iii $)$. Let $\left|<x^{\prime}(t), x^{\prime}(t)>\right|=1$ for all $s \in L(\alpha)$. Using the definition of $s_{x}(t)$, we get $\frac{d s_{x}(s)}{d s}=\left|<x^{\prime}(t), x^{\prime}(t)>\right|^{\frac{1}{2}}=1$. Therefore $s_{x}(s)=s+c$ for some $c \in R$. In the case $L(x) \neq(-\infty,+\infty)$,

PEKŞEN, KHADJIEV, ÖREN

conditions $s_{x}(s)=s+c$ and $s_{x}(s) \in L(\alpha)$ for all $s \in L(\alpha)$ implies $c=0$, that is, $s_{x}(s)=s$. In the case $L(\alpha)=(-\infty,+\infty)$, equalities $s_{x}(s)=l_{x}\left(a_{J}, s\right)=l_{x}(0, s)=s+c$ implies $0=l_{x}(0,0)=c$, that is, $s_{x}(s)=s$. $($ iii $) \rightarrow(i)$. Since $s_{x}(s)=s$ implies $t_{x}(s)=s$, we get $x(s)=x\left(t_{x}(s)\right) \in \operatorname{Ip}(\alpha)$.

Similar results are true for conditions $\left(5_{2}\right)$ and $\left(5_{3}\right)$ in Definition 5.
Remark 3 In papers [2-9, 11, 18, 20, 21], in the thesis [14] and in the book [10], essentially the parametrization in the 5_{1} of Definition 5 is used and it is used only for curves of the type $(0, l)$, where $0<l<\infty$. By remark 2 and Examples 1-3, parametrizations in the cases 5_{2} and 5_{3} are independent of the parametrization in the case 5_{1}. Hence the class of curves which investigated in the present paper is essentially wider then in the mentioned papers. By Remark 2 and Example 4, parametrizations in the cases 5_{2} and 5_{3} contain also parametrizations of some class of null curves.

Proposition 3 Let α be a regular curve and $L(\alpha) \neq(-\infty,+\infty)$. Then there exists the unique invariant parametrization of α.
Proof. A proof is similar to the proof of Proposition 4 in [16].

Let α be a regular curve and $L(\alpha)=(-\infty,+\infty)$. Then it is easy to see that the set $\operatorname{Ip}(\alpha)$ is infinite and it is not countable.

Proposition 4 Let α be a regular curve, $L(\alpha)=(-\infty,+\infty)$ and $x \in \operatorname{Ip}(\alpha)$. Then $\operatorname{Ip}(\alpha)=$ $\{y: y(s)=x(s+c), c \in(-\infty,+\infty)\}$.
Proof. A proof is similar to the proof of Proposition 5 in [16].

Theorem 1 Let α, β be regular curves and $x \in \operatorname{Ip}(\alpha), y \in \operatorname{Ip}(\beta)$. Then:
(i) for $L(\alpha)=L(\beta) \neq(-\infty,+\infty), \alpha \stackrel{M(n, p)}{\sim} \beta$ if and only if $x \stackrel{M(n, p)}{\sim} y$;
(ii) for $L(\alpha)=L(\beta)=(-\infty,+\infty), \alpha \stackrel{M(n, p)}{\sim} \beta$ if and only if $x \stackrel{M(n, p)}{\sim} y\left(\psi_{c}\right)$ for some $c \in(-\infty,+\infty)$, where $\psi_{c}(s)=s+c$.

Proof. (i). Let $\alpha \stackrel{M(n, p)}{\sim} \beta$ and $h \in \alpha$. Then there exists $F \in M(n, p)$ such that $\beta=F \alpha$. This implies $F h \in \beta$. Using Propositions 1-3, we get $x(s)=h\left(t_{h}(s)\right), y(s)=(F h)\left(t_{F h}(s)\right)$ and $F x(s)=F\left(h\left(t_{h}(s)\right)\right)=$ $(F h)\left(t_{h}(s)\right)=(F h)\left(t_{F h}(s)\right)=y(s)$. Thus $x \stackrel{M(n, p)}{\sim} y$. Conversely, let $x \stackrel{M(n, p)}{\sim} y$, that is, there exists $F \in M(n, p)$ such that $F x=y$. Then $\alpha \stackrel{M(n, p)}{\sim} \beta$.
(ii). Let $\alpha \stackrel{M(n, p)}{\sim} \beta$. Then there exist J-paths $h \in \alpha, k \in \beta$ and $F \in M(n, p)$ such that $k(t)=F h(t)$. We have $k\left(t_{k}(s)\right)=k\left(t_{F h}(s)\right)=k\left(t_{h}(s)\right)=(F h)\left(t_{h}(s)\right)$. By Proposition $4, x(s)=k\left(t_{k}\left(s+s_{1}\right)\right), y(s)=$ $h\left(t_{h}\left(s+s_{2}\right)\right)$ for some $s_{1}, s_{2} \in(-\infty,+\infty)$. Therefore $x\left(s-s_{1}\right)=F y\left(s-s_{2}\right)$. This implies that $x \stackrel{M(n, p)}{\sim} y\left(\psi_{c}\right)$, where $\psi_{c}(s)=s+c$ and $c=s_{1}-s_{2}$. Conversely, let $x \stackrel{M(n, p)}{\sim} y\left(\psi_{c}\right)$ for some $c \in(-\infty,+\infty)$, where $\psi_{c}=s+c$. Then there exists $F \in M(n, p)$ such that $y(s+c)=F x(s)$. Since $y(s+c) \in \beta$, then $\alpha \stackrel{M(n, p)}{\sim} \beta$.

Theorem 1 reduces the problems of the G-equivalence of regular curves for groups $G=M(n, p), S M(n, p)$ to that of paths only for the case $L(\alpha)=L(\beta) \neq(-\infty,+\infty)$. Let H be a subgroup of $M(n, p)$.

Definition $8 J$-paths $x(t)$ and $y(t)$ will be called $[H,(-\infty,+\infty)]$-equivalent, if there exist $h \in H$ and $d \in(-\infty,+\infty)$ such that $y(t)=h x(t+d)$ for all $t \in J$.

Theorem 1 reduces the problem of the H-equivalence of curves to $[H,(-\infty,+\infty)]$-equivalence of paths for the case $L(\alpha)=L(\beta)=(-\infty,+\infty)$.

3. Conditions of G-equivalence of paths and curves

Below we use some notations and facts from the differential algebra and the theory of differential invariants of a paths. They may be found in $[1,15,16,17]$.

Definition $9 A J$-path $x(t)$ in E_{p}^{n} will be called non-singular if $\left[x^{\prime}(t) x^{(2)}(t) \ldots x^{(n)}(t)\right] \neq 0$ for all $t \in J . A$ curve α will be called non-sigular if it contains a non-singular path.

Let G be a subgroup of $M(n, p)$.
Definition 10 (see [1], Definition 8). A differential polynomial function $f\{x\}$ of a path $x(t)$ is called G invariant if $f\{g x\}=f\{x\}$ for all $g \in G$.

Let $x(t)$ and $y(t)$ be J-paths in E_{p}^{n} such that $x \stackrel{M(n, p)}{\sim} y$. Then $f\{x\}=f\{y\}$ for any $M(n, p)$-invariant differential polynomial $f\{x\}$. The converse statement (that is conditions of $M(n, p)$-equivalence of J-paths) is true in the following form.

Theorem 2 Assume that $x(t)$ and $y(t)$ be non-singular J-paths in E_{p}^{n} such that

$$
\begin{equation*}
<x^{(i)}(t), x^{(i)}(t)>=<y^{(i)}(t), y^{(i)}(t)> \tag{1}
\end{equation*}
$$

for all $t \in J$ and $1 \leq i \leq n$. Then $x \stackrel{M(n, p)}{\sim} y$.
Proof. For a proof of this theorem, we use several lemmas.

Lemma 1 Assume that $1 \leq i, j, i+j \leq 2 n+1$. Then, for each differential polynomial $\left\langle x^{(i)}, x^{(j)}\right\rangle, a$ differential polynomial $P_{i j}\left\{y_{1}, \ldots, y_{k}\right\}$ exists such that

$$
<x^{(i)}, x^{(j)}>=P_{i j}\left\{<x^{\prime}, x^{\prime}>, \ldots,<x^{(k)}, x^{(k)}>\right\}
$$

where $k=\left[\frac{i+j}{2}\right]$.
Proof. A proof is similar to the proof of Proposition 6 in [1].

PEKŞEN, KHADJIEV, ÖREN

Lemma 2 The equality

$$
(-1)^{p}\left[y_{1} \ldots y_{n}\right]\left[z_{1} \ldots z_{n}\right]=\operatorname{det}\left\|<y_{i}, z_{j}>\right\| \|_{i, j=1,2, \ldots, n}
$$

holds for all vectors $y_{1}, \ldots, y_{n}, z_{1}, \ldots, z_{n}$ in E_{p}^{n}.
Proof. Let $Y=\left\|y_{1} \ldots y_{n}\right\|$ and $Z=\left\|z_{1} \ldots z_{n}\right\|$ be $n \times n$-matrices of systems $\left\{y_{1}, \ldots, y_{n}\right\}$ and $\left\{z_{1}, \ldots, z_{n}\right\}$ of column vectors $y_{1}, \ldots, y_{n}, z_{1}, \ldots, z_{n} \in E_{p}^{n}$ and $I_{p}=\left\|b_{i j}\right\|$ be the diagonal $n \times n$-matrix such that $b_{i i}=-1$ for all $i=1, \ldots, p$ and $b_{j j}=1$ for all $j=p+1, \ldots, n$. Then we have $Y^{\top} I_{p} Z=\left\|<y_{i}, z_{j}>\right\|_{i, j=1,2, \ldots, n}$, where Y^{\top} is the transpose matrix of Y. Passing on to determinants, we obtain the desired equality.

Denote the determinant $\operatorname{det}\left\|<x^{(i)}, x^{(j)}>\right\|_{i, j=1,2, \ldots, n}$ by $\Delta=\Delta_{x}$. Equation (1) and Lemma 1 implies that $<x^{(i)}(t), x^{(j)}(t)>=<y^{(i)}(t), y^{(j)}(t)>$ for all $t \in J$ and all $1 \leq i \leq j \leq n$. Using these equalities, we get $\Delta_{x}(t)=\Delta_{y}(t)$ for all $t \in J$. Since x, y are non-singular J-paths, we have $\Delta_{x}(t) \neq 0, \Delta_{y}(t) \neq 0$ for all $t \in J$. Hence $\Delta_{x}(t)^{-1}=\Delta_{y}(t)^{-1}$. Denote the system $\left.\left\{\left\langle x^{\prime}, x^{\prime}\right\rangle, \ldots,<x^{(n)}, x^{(n)}\right\rangle\right\}$ of differential polynomials by V. Denote the differential R-algebra generated by elements of the system V and the function Δ^{-1} by $R\left\{V, \Delta^{-1}\right\}$. Let $f\{x\} \in R\left\{V, \Delta^{-1}\right\}$. Then, using Equation (1) and $\Delta_{x}(t)^{-1}=\Delta_{y}(t)^{-1}$, we obtain

$$
\begin{equation*}
f\{x(t)\}=f\{y(t)\} \tag{2}
\end{equation*}
$$

for all $t \in J$.
Denote the matrix $\left\|x^{\prime}(t) x^{(2)}(t) \ldots x^{(n)}(t)\right\|$ by $A(x(t))$, where we consider $x^{(i)}(t)$ as a column-vector. We let $\frac{d}{d t} A(x(t))=\left\|x^{(2)}(t) x^{(3)}(t) \ldots x^{(n+1)}(t)\right\|$. Since $x(t)$ is non-singular, we have $\operatorname{det} A(x(t))=\left[x^{\prime}(t) \ldots x^{(n)}(t)\right] \neq$ 0 for all $t \in J$. Hence the matrix $A^{-1}(x(t))$ exists for all $t \in J$. We consider the matrix $A^{-1}(x(t)) \frac{d}{d t} A(x(t))=$ $\left\|c_{i j}^{x}(t)\right\|$. It is easy to see that
(a) $c_{j+1 j}^{x}(t)=1$ for all $t \in J$ and $1 \leq j \leq n-1$;
(b) $c_{i j}^{x}(t)=0$ for all $t \in J$ and $j \neq n, i \neq j+1,1 \leq i \leq n$;
(c) $c_{i n}^{x}(t)=\frac{\left[x^{\prime}(t) \ldots x^{(i-1)}(t) x^{(n+1)}(t) x^{(i+1)}(t) \ldots x^{(n)}(t)\right]}{\left[x^{\prime}(t) \ldots x^{(n)}(t)\right]}$
for all $t \in J$ and $1 \leq i \leq n$.
Lemma $3 c_{i j}^{x}(t)=c_{i j}^{y}(t)$ for all $t \in J$ and $1 \leq i \leq j \leq n$.
Proof. The above equality (a) implies $c_{j+1 j}^{x}(t)=c_{j+1 j}^{y}(t)$ for all $1 \leq j \leq n-1$ and the equality (b) implies $c_{i j}^{x}(t)=c_{i j}^{y}(t)$ for all $j \neq n, i \neq j+1,1 \leq i \leq n$. Prove $c_{i n}^{x}(t)=c_{i n}^{y}(t)$ for all $1 \leq i \leq n$. Using Lemma 2 to vectors $y_{i}=x^{(i)}(t), z_{j}=x^{(j)}(t) \quad(i, j=1, \ldots, n)$, we obtain

$$
\begin{equation*}
(-1)^{p}\left[x^{\prime}(t) \ldots x^{(n)}(t)\right]^{2}=\operatorname{det}\left\|<x^{(i)}(t), x^{(j)}(t)>\right\| . \tag{3}
\end{equation*}
$$

PEKŞEN, KHADJIEV, ÖREN

Similarly, using Lemma 2 to vectors $x^{\prime}, \ldots, x^{(i-1)}, x^{(n+1)}, x^{(i+1)}, \ldots, x^{(n)}, x^{\prime}, \ldots, x^{(n)}$, we have

$$
\begin{equation*}
(-1)^{p}\left[x^{\prime} \ldots x^{(i-1)} x^{(n+1)} x^{(i+1)} \ldots x^{(n)}\right]\left[x^{\prime} \ldots x^{(n)}\right]=\operatorname{det}\left\|<x^{(k)}, x^{(l)}>\right\| \tag{4}
\end{equation*}
$$

where $k=1, \ldots, i-1, n+1, i+1, \ldots, n ; l=1,2, \ldots, n$. From Equation (3), Equation (4), Equation (1), Lemma 1 and the equality $c_{i n}^{x}(t)=$

$$
\frac{\left[x^{\prime} \ldots x^{(i-1)} x^{(n+1)} x^{(i+1)} \ldots x^{(n)}\right]}{\left[x^{\prime} \ldots x^{(n)}\right]}=\frac{(-1)^{p}\left[x^{\prime} \ldots x^{(i-1)} x^{(n+1)} x^{(i+1)} \ldots x^{(n)}\right]\left[x^{\prime} \ldots x^{(n)}\right]}{(-1)^{p}\left[x^{\prime} \ldots x^{(n)}\right]^{2}},
$$

for $1 \leq i \leq n$, we obtain

$$
\frac{\left[x^{\prime} \ldots x^{(i-1)} x^{(n+1)} x^{(i+1)} \ldots x^{(n)}\right]}{\left[x^{\prime} \ldots x^{(n)}\right]}=\frac{\left[y^{\prime} \ldots y^{(i-1)} y^{(n+1)} y^{(i+1)} \ldots y^{(n)}\right]}{\left[y^{\prime} \ldots y^{(n)}\right]}
$$

for all $i=1, \ldots, n$. The lemma is proved.

Equation (1) and Lemma 3 implies $A^{-1}(x(t)) \frac{d}{d t} A(x(t))=A^{-1}(y(t)) \frac{d}{d t} A(y(t))$ for all $t \in J$. The last equality implies

$$
\begin{gathered}
\frac{\partial}{\partial t}\left(A(y) A(x)^{-1}\right)=\left(\frac{\partial}{\partial t} A(y)\right) A(x)^{-1}+A(y) \frac{\partial}{\partial t}\left(A(x)^{-1}\right)=\left(\frac{\partial}{\partial t} A(y)\right) A(x)^{-1}- \\
A(y) A(x)^{-1}\left(\frac{\partial}{\partial t} A(x)\right) A(x)^{-1}=A(y)\left(A(y)^{-1} \frac{\partial}{\partial t} A(y)-A(x)^{-1} \frac{\partial}{\partial t} A(x)\right) A(x)^{-1}=0 .
\end{gathered}
$$

for all $t \in J$. Using this equality and connectedness of J, we obtain that $A(y(t)) A(x(t))^{-1}$ does not depend on $t \in J$. Put $F=A(y) A(x)^{-1}$. According to $\operatorname{det} A(x(t)) \neq 0$ and $\operatorname{det} A(y(t)) \neq 0$ for all $t \in J$, we have $\operatorname{det} F \neq 0$ and $A(y(t))=F A(x(t))$ for all $t \in J$. We prove that $F \in O(n, p)$.

Let $A(x)^{\top}$ be the transpose matrix of $A(x)$. Let $I_{p}=\left\|b_{i j}\right\|$ be the diagonal $n \times n$-matrix such that $b_{i i}=-1$ for all $i=1, \ldots, p$ and $b_{j j}=1$ for all $j=p+1, \ldots, n$. Using the equality $A(x)^{\top} I_{p} A(x)=$ $\left\|<x^{(i)}, x^{(j)}>\right\|_{i, j=1,2, \ldots, n}$, Lemma 1 and Equation (1), we obtain that $A(x)^{\top} I_{p} A(x)=A(y)^{\top} I_{p} A(y)$. This equality and the equality $A(y)=F A(x)$ imply that $F^{\top} I_{p} F=I_{p}$. Hence $F \in O(n, p)$.

The equality $A y(t)=F A x(t)$ implies $\frac{\partial}{\partial t} y(t)=F \frac{\partial}{\partial t} x(t)$ for all $t \in J$. Then there exists a constant vector $b \in E_{p}^{n}$ such that $y(t)=F x(t)+b$ for all $t \in J$. The theorem is completed.

Corollary 1 Let α, β be non-singular curves in E_{p}^{n} and $x \in \operatorname{Ip}(\alpha), y \in \operatorname{Ip}(\beta)$. Assume that x, y satisfy the condition (51) in Definition 5. Then
(i) in the case $L(\alpha)=L(\beta) \neq(-\infty,+\infty), \alpha \stackrel{M(n, p)}{\sim} \beta$ if and only if

$$
\begin{align*}
\operatorname{sgn} & <x^{\prime}(s), x^{\prime}(s)>=\operatorname{sgn}<y^{\prime}(s), y^{\prime}(s)>, \tag{5}\\
& <x^{(i)}(s), x^{(i)}(s)>=<y^{(i)}(s), y^{(i)}(s)> \tag{6}
\end{align*}
$$

for all $s \in L(\alpha)$ and $i=2, \ldots, n$;
(ii) in the case $L(\alpha)=L(\beta)=(-\infty,+\infty), \alpha \stackrel{M(n, p)}{\sim} \beta$ if and only if

$$
\begin{array}{r}
\operatorname{sgn}<x^{\prime}(s), x^{\prime}(s)>=s g n<y^{\prime}(s), y^{\prime}(s)>, \\
<x^{(i)}(s), x^{(i)}(s)>=<y^{(i)}\left(s+s_{1}\right), y^{(i)}\left(s+s_{1}\right)>
\end{array}
$$

for some $s_{1} \in(-\infty,+\infty)$, all $s \in L(\alpha)$ and $i=2, \ldots, n$;
Proof. Let $\alpha \stackrel{M(n, p)}{\sim} \beta$. Then it is obvious that Equation (5) and Equation (6) hold. Conversely, assume that Equation (5) and Equation (6) hold. By Proposition 2, $\left|<x^{\prime}(s), x^{\prime}(s)>\left|=\left|<y^{\prime}(s), y^{\prime}(s)>\right|=1\right.\right.$ for all $s \in L(\alpha)$. This equality and Equation (5) imply that $\left\langle x^{\prime}(s), x^{\prime}(s)>=<y^{\prime}(s), y^{\prime}(s)>\right.$ for all $s \in L(\alpha)$. The last equality and Equation (6), by Theorem 2, imply $x{ }^{M(n, p)} y$. Applying Theorem 1, we obtain $\alpha \stackrel{M(n, p)}{\sim} \beta$. Similarly, the proof of statement (ii) follows from statement (ii) of Theorem 1.

Remark 4 Similar results are true if x, y satisfy conditions (52) or (5_{3})) in Definition 5 .
Let α be a curve and $x \in I p(\alpha)$.
Remark 5 According to Corollary 1 the system

$$
\left\{L(\alpha), \operatorname{sgn}<x^{\prime}, x^{\prime}>,<x^{(2)}, x^{(2)}>, \ldots,<x^{(n)}, x^{(n)}>\right\}
$$

is a complete system of $M(n, p)$-invariants of a curve α for the case $L(\alpha) \neq(-\infty,+\infty)$. But they are not invariants of a curve α for the case $L(\alpha)=(-\infty,+\infty)$. They depend on reparametrizations $s \rightarrow s+a$ of a curve α.

Let $\delta=\delta_{x}$ be the determinant of the matrix $\left\|<y_{i}, z_{j}>\right\|_{i, j=1,2, \ldots, n-1}$, where $y_{1}=z_{1}=x^{\prime}, y_{2}=z_{2}=$ $x^{(2)}, \cdots, y_{n-1}=z_{n-1}=x^{(n-1)}$. Denote the system

$$
\left\{<x^{\prime}, x^{\prime}>, \ldots,<x^{(n-1)}, x^{(n-1)}>,\left[x^{\prime}(t) x^{(2)}(t) \ldots x^{(n)}(t)\right]\right\}
$$

of differential polynomials by Z. Denote the differential R-algebra generated by elements of Z by $R\{Z\}$.
Lemma $4<y_{i}, z_{j}>\in R\{Z\}$ for all $1 \leq i, j, i+j \leq 2 n-1$ and $\delta \in R\{Z\}$.
Proof. Using Lemma 1, we get $\left\langle x^{(i)}, x^{(j)}>\in R\{Z\}\right.$ for all $1 \leq i, j, i+j \leq 2 n-1$. Since the element $\left\langle y_{i}, z_{j}\right\rangle$ of the determinant δ is the function $\left\langle x^{(i)}, x^{(j)}\right\rangle$, where $1 \leq i, j \leq n-1$, we obtain that $\delta \in R\{Z\}$.

Theorem 3 Assume that $x(t)$ and $y(t)$ be non-singular J-paths in E_{p}^{n} such that $\delta_{x}(t) \neq 0$ and $\delta_{y}(t) \neq 0$ for all $t \in J$. Then equalities

$$
\begin{equation*}
<x^{(i)}(t), x^{(i)}(t)>=<y^{(i)}(t), y^{(i)}(t)>,\left[x^{\prime}(t) x^{(2)}(t) \ldots x^{(n)}(t)\right]=\left[y^{\prime}(t) y^{(2)}(t) \ldots y^{(n)}(t)\right] \tag{7}
\end{equation*}
$$

for all $t \in J$ and $1 \leq i \leq j \leq n, i+j \leq 2 n-1$ implies $x \stackrel{S M(n)}{\sim} y$.

PEKŞEN, KHADJIEV, ÖREN

Proof. Let $f\{x\} \in R\{Z\}$. Then Equation (7) implies

$$
\begin{equation*}
f\{x(t)\}=f\{y(t)\} \tag{8}
\end{equation*}
$$

for all $t \in J$. By Lemma $4, \delta_{x} \in R\{Z\}$. Hence Equation (8) implies $\delta_{x}=\delta_{y}$ for all $t \in J$. By the assumption of our theorem, we have $\delta_{x} \neq 0$ and $\delta_{y} \neq 0$ for all $t \in J$. Hence the equality $\delta_{x}=\delta_{y}$ for all $t \in J$ implies $\delta_{x}^{-1}=\delta_{y}^{-1}$ for all $t \in J$. Denote the differential R-algebra generated by elements of the system Z, the functions Δ^{-1} and δ^{-1} by $R\left\{Z, \delta^{-1}, \Delta^{-1}\right\}$. Let $f\{x\} \in R\left\{Z, \delta^{-1}, \Delta^{-1}\right\}$). Then the equality $\delta_{x}^{-1}=\delta_{y}^{-1}$, Equation (7) and Equation (8) imply

$$
\begin{equation*}
f\{x(u)\}=f\{y(u)\} \tag{9}
\end{equation*}
$$

for all $t \in J$.
Lemma $5 \Delta \in R\{Z\}$.
Proof. Using Lemma 2 to vectors $y_{1}=z_{1}=x^{\prime}, y_{2}=z_{2}=x^{(2)}, \cdots, y_{n}=z_{n}=x^{(n)}$, we obtain

$$
\begin{equation*}
(-1)^{p}\left[x^{\prime} x^{(2)} \ldots x^{(n)}\right]^{2}=\operatorname{det}\left\|<y_{i}, z_{j}>\right\|_{i, j=1,2, \ldots n}=\Delta . \tag{10}
\end{equation*}
$$

Since $\left[x^{\prime} x^{(2)} \ldots x^{(n)}\right] \in Z$, we have $\Delta \in R\{Z\}$.

Lemma $6<x^{(n)}, x^{(n)}>\in R\left\{Z, \delta^{-1}, \Delta^{-1}\right\}$ and $R\left\{V, \Delta^{-1}\right\} \subset R\left\{Z, \delta^{-1}, \Delta^{-1}\right\}$.
Proof. For $i=1,2, \ldots, n$, denote the cofactor of the element $<y_{n}, z_{j}>$ of the matrix $A=\left\|<y_{i}, z_{j}>\right\|_{i, j=1,2, \ldots n}$ in Equation (10) by $D_{n i}$. Then we obtain the equality

$$
\Delta=<y_{n}, z_{1}>D_{n 1}+<y_{n}, z_{2}>D_{n 2}+\cdots+<y_{n}, z_{n-1}>D_{n n-1}+<y_{n}, z_{n}>D_{n n} .
$$

Since $\delta=D_{n n} \neq 0$, this equality implies

$$
\begin{align*}
<y_{n}, z_{n}>=<x^{(n)}, x^{(n)}>=\Delta \delta^{-1}-<y_{n}, z_{1}> & D_{n 1} \delta^{-1}-<y_{n}, z_{2}>D_{n 2} \delta^{-1}- \tag{11}\\
& \cdots-<y_{n}, z_{n-1}>D_{n n-1} \delta^{-1}
\end{align*}
$$

By Lemma 1, we have $<y_{n}, z_{j}>=<x^{(n)}, x^{(j)}>\in R\{Z\}$ for each $1 \leq j \leq n-1$. We prove that $D_{n s} \in R\{Z\}$ for every $1 \leq s \leq n-1$. We have

$$
D_{n s}=(-1)^{n+s} \operatorname{det}\left\|<y_{i}, z_{j}\right\|_{i=1,2, \ldots, n-1 ; j=1,2, \ldots, s-1, s+1, \ldots, n} .
$$

Elements of $D_{n s}$ have forms $<y_{i}, z_{j}>,<y_{i}, z_{n}>$, where $i, j<n$. By $<y_{i}, z_{j}>\in R\{Z\},<y_{i}, z_{n}>=<$ $y_{n}, z_{i}>\in R\{Z\}$, we obtain $D_{n s} \in R\{Z\}$. Hence Equation (11) implies $<y_{n}, z_{n}>\in R\left\{Z, \delta^{-1}, \Delta^{-1}\right\}$. Using $V \subset Z \cup\left\{\left(y_{n}, z_{n}\right)\right\}$, we get $R\left\{V, \Delta^{-1}\right\} \subset R\left\{Z, \delta^{-1}, \Delta^{-1}\right\}$.

PEKŞEN, KHADJIEV, ÖREN

Using Equations (7), (9)-(11) and $R\left\{V, \Delta^{-1}\right\} \subset R\left\{Z, \delta^{-1}, \Delta^{-1}\right\}$ in Lemma 6, we obtain Equation (1). Hence, by Theorem 2, $F \in O(n, p)$ and $b \in E_{p}^{n}$ exist such that $y(u)=F x(u)+b$. Using this equality and $\left[x^{\prime}(t) x^{(2)}(t) \ldots x^{(n)}(t)\right]=\left[y^{\prime}(t) y^{(2)}(t) \ldots y^{(n)}(t)\right]$ in Equation (7), we get $\left[x^{\prime}(t) x^{(2)}(t) \ldots x^{(n)}(t)\right]=$ $\operatorname{det} F\left[x^{\prime}(t) x^{(2)}(t) \ldots x^{(n)}(t)\right]$. Since $\left[x^{\prime}(t) x^{(2)}(t) \ldots x^{(n)}(t)\right] \neq 0$ for all $t \in J$, we obtain $\operatorname{det} F=1$. Hence $x \stackrel{S M(n)}{\sim} y$. The theorem is completed.

Corollary 2 Let α, β be non-singular curves in E_{p}^{n} and $x \in \operatorname{Ip}(\alpha), y \in \operatorname{Ip}(\beta)$. Assume that x, y satisfy the condition $\left.\left(5_{1}\right)\right)$ in Definition 5 and conditions $\delta_{x}(t) \neq 0, \delta_{y}(t) \neq 0$ for all $t \in J$. Then
(i) in the case $L(\alpha)=L(\beta) \neq(-\infty,+\infty), \alpha \stackrel{S M(n, p)}{\sim} \beta$ if and only if

$$
\begin{array}{r}
{\left[x^{\prime}(s) \ldots x^{(n)}(s)\right]=\left[y^{\prime}(s) \ldots y^{(n)}(s)\right]} \\
\operatorname{sgn}<x^{\prime}(s), x^{\prime}(s)>=\operatorname{sgn}<y^{\prime}(s), y^{\prime}(s)> \\
<x^{(i)}(s), x^{(i)}(s)>=<y^{(i)}(s), y^{(i)}(s)> \tag{14}
\end{array}
$$

for all $s \in L(\alpha)$ and all $i=2, \ldots, n-1$;
(ii) in the case $L(\alpha)=L(\beta)=(-\infty,+\infty), \alpha \stackrel{S M(n, p)}{\sim} \beta$ if and only if

$$
\begin{array}{r}
{\left[x^{\prime}(s) \ldots x^{(n)}(s)\right]=\left[y^{\prime}\left(s+s_{1}\right) \ldots y^{(n)}\left(s+s_{1}\right)\right]} \\
\operatorname{sgn}<x^{\prime}(s), x^{\prime}(s)>=\operatorname{sgn}<y^{\prime}(s), y^{\prime}(s)> \\
<x^{(i)}(s), x^{(i)}(s)>=<y^{(i)}\left(s+s_{1}\right), y^{(i)}\left(s+s_{1}\right)>
\end{array}
$$

for some $s_{1} \in(-\infty,+\infty)$, all $s \in L(\alpha)$ and $i=2, \ldots, n-1$;
Proof. (i). Let $\alpha \stackrel{S M(n, p)}{\sim} \beta$. Since elements of Z and the function $\operatorname{sgn}<x^{\prime}(s), x^{\prime}(s)>$ are $S M(n, p)-$ invariant, we obtain that Equation (12)-(14) hold.

Conversely, assume that Equation (12)-(14) hold. According to Proposition 2, we get $\left|<x^{\prime}(s), x^{\prime}(s)>\right|=$ $\left|<y^{\prime}(s), y^{\prime}(s)>\right|=1$ for all $s \in L(\alpha)$. Then, using Equation (13), we obtain $<x^{\prime}(s), x^{\prime}(s)>=<y^{\prime}(s), y^{\prime}(s)>$ for all $s \in L(\alpha)$. The latest equality, Equation (12) and Equation (14), by Lemmas 4 and 5, imply $\delta_{x}=\delta_{y}, \Delta_{x}=\Delta_{y}$. Then, by Lemma 6, we obtain $<x^{(n)}, x^{(n)}>=<y^{(n)}, y^{(n)}>$. By this equality, Equation (12), Equation (14) and Theorem 3, there exists $F \in S M(n, p)$ such that $y(s)=F x(s)=g x(s)+b$. The proof of statement (i) is completed. Similarly, the proof of (ii) follows from statement (ii) of Theorem 1.

Remark 6 Similar results are true for conditions $\left(5_{2}\right)$) or $\left(5_{3}\right)$) in Definition 5.
Let α be a curve and $x \in I p(\alpha)$.

PEKŞEN, KHADJIEV, ÖREN

Remark 7 According to Corollary 2, the system

$$
\left\{L(\alpha), \operatorname{sgn}<x^{\prime}, x^{\prime}>,<x^{(2)}, x^{(2)}>, \ldots,<x^{(n-1)}, x^{(n-1)}>,\left[x^{\prime} x^{(2)} \ldots x^{(n)}\right]\right\}
$$

is a complete system of $S M(n, p)$-invariants of a curve α for the case $L(\alpha) \neq(-\infty,+\infty)$. But they are not invariants of a curve α for the case $L(\alpha)=(-\infty,+\infty)$. They depend on reparametrizations $s \rightarrow s+a$ of the curve α.

References

[1] Aripov, R. G. and Khadzhiev, D.:, The complete system of differential and integral invariants of a curve in Euclidean geometry. Russian Mathematics (Iz VUZ), 51, No. 7, 1-14 (2007).
[2] Aslaner, R. and Boran, A. I.: On the geometry of null curves in the Minkowski 4 -space. Turkish J. of Math. 32, 1-8 (2008).
[3] Bejancu, A.: Lightlike curves in Lorentz manifolds. Publ. Math. Debrecen. 44, 145-155 (1994).
[4] Bérard B. L. and Charuel X.: A generalization of Frenet's frame for nondegenerate quadratic forms with any index. In: Séminaire de théorie spectrale et géométrie. Année 2001-2002, St. Martin d'Héres: Université de Grenoble I, Institut Fourier, Sémin. Théor. Spectr. Géom. 20, 101-130 (2002).
[5] Bini, D., Geralico, A. and Jantzen, R. T.: Frenet-Serret formalism for null world lines. Class. Quantum Grav. 23, 3963-3981 (2006).
[6] Bonnor, W.: Null curves in a Minkowski spacetime. Tensor, N. S. 20, 229-242 (1969).
[7] Borisov Yu. F.: Relaxing the a priori constraints of the fundamental theorem of space curves in E_{l}^{n}. Siberian Math. J. 38, No. 3, 411-427 (1997).
[8] Borisov Yu. F.: On the theorem of natural equations of a curve. Siberian Math. J. 40, No. 4, 617-621 (1999).
[9] Çöken, C. and Çiftçi, Ü.: On the Cartan curvatures of a null curve in Minkowski spacetime. Geometriae Dedicata. 114, 71-78 (2005).
[10] Duggal, K. L. and Becancu A.: Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications. Dordrecht, Boston, London. Kluwer Acad. Publ. 1996.
[11] Ferrández, A., Giménez, A. and Lucas, P.: Degenerate curves in pseudo-Euclidean spaces of index two. In: Mladenov, Ivailo M. (ed.) et al., Proceedings of the 3rd international conference on geometry, integrability and quantization, Varna, Bulgaria, June 14-23, 2001. Sofia: Coral Press Scientific Publishing. 209-223 (2002).
[12] Ferrández, A., Giménez, A. and Lucas, P.: s-degenerate curves in Lorentzian space forms. J. Geom. Phys. 45, No. 1-2, 116-129 (2003).
[13] Formiga, L. B. and Romero, C.: On the differential geometry of time-like curves in Minkowski spacetime. Am. J. Phys. 74(10), 1012-1016 (2006).
[14] Ichimura, H.: Time-like and space-like curves in Frenet-Serret formalisms. Thesis. Hadronic J. Suppl. 3, No. 1, 1-94 (1987).

PEKŞEN, KHADJIEV, ÖREN

[15] Kaplansky, I.: An Introduction to Differential Algebra. Paris. Hermann 1957.
[16] Khadjiev, D. and Pekşen Ö.: The complete system of global integral and differential invariants for equi-affine curves. Differential Geometry and its Applications. 20, 167-175 (2004).
[17] Pekşen Ö. and Khadjiev, D.: On invariants of curves in centro-affine geometry. J. Math. Kyoto Univ. (JMKYAZ). 44-3, 603-613 (2004).
[18] Petrović-Torgas̆ev, Ilarslan K. and Nes̆ović E.: On partially null and pseudo-null curves in the semi-euclidean space R_{2}^{4}. J. Geom. 84, 106-116 (2005).
[19] Spivak, M.: A Comprehensive Introduction to Differential Geometry, Vol.2. Berkeley, CA. Publ. of Perish. Inc. 1979.
[20] Urbantke H.: Local differential geometry of null curves in conformally flat space-time. J. Math. Phys. 30(10), 2238-2245 (1989).
[21] Yılmaz, S. and Turgut, M.: On the differential geometry of curves in Minkowski space-time I. Int. J. Contemp. Math. Sciences. 3, No. 27, 1343-1349 (2008).

Ömer PEKŞEN, Djavvat KHADJIEV, İdris ÖREN
Received: 12.11.2009
Department of Mathematics
Karadeniz Technical University, Trabzon-TURKEY
e-mail: peksen@ktu.edu.tr; haciyev@ktu.edu.tr; oren@ktu.edu.tr

[^0]: 2000 AMS Mathematics Subject Classification: 53A35.
 This work was supported by the Research Fund of TUBITAK. Project number:107T049.

