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Invariant parametrizations and complete systems of global
invariants of curves in the pseudo-Euclidean geometry

Omer Peksen, Djavvat Khadjiev, Idris Oren

Abstract
Let M(n,p) be the group of all transformations of an n-dimensional pseudo-Euclidean space E; of
index p generated by all pseudo-orthogonal transformations and parallel translations of F, . Definitions of
a pseudo-Euclidean type of a curve, an invariant parametrization of a curve and an M (n,p)-equivalence
of curves are introduced. All possible invariant parametrizations of a curve with a fixed pseudo-Euclidean
type are described. The problem of the M (n,p)-equivalence of curves is reduced to that of paths. Global
conditions of the M (n, p)-equivalence of curves are given in terms of the pseudo-Euclidean type of a curve

and the system of polynomial differential M (n, p)-invariants of a curve z(s).
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1. Introduction

Let R be the field of real numbers, n and p are integers such that 0 < p < n. The n-dimensional
pseudo-Euclidean space of index p (that is the space R™ with the scalar product < z,y >= —x1y1 — -+ —
TpYp + Tp+1Yp+1 + -+ + Tnyn ) Will be denoted by E}. Ef is the Minkowski spacetime. The group of all
pseudo-orthogonal transformations of £ (that is the set of all linear transformations g : E}) — EJ such that
< gr,gy >=< x,y > for all z,y € E}) is denoted by O(n,p). Put M(n,p)={F : E} — E} | Fx = gx +,
g€0(n,p), b€ B} and SM(n,p) = {F € M(n,p): detg =1}.

The Frenet-Serret formalism for both time-like and space-like curves in spaces E3 and Ef is studied in
papers [13, 21] and in the thesis [14]. In papers [2, 5, 6, 9, 20], the Frenet-Serret curve analysis is extended
from non-null curves in E{ to null (lightlike, isotropic) curves. For arbitrary n, this theory is extended to the
Lorentz space ET and to the space EJ in papers [3, 18] and in the book ([10], pp. 52-76). The Frenet-Serret
theory for degenerate curves in spaces ET and EZ is investigated in [11-12]. The Frenet-Serret theory of
curves in Ej for arbitrary n and index p is considered in papers [4, 7, 8]. In [7], the fundamental theorem
of a naturally-parametrized curve in ) for arbitrary n and index p is obtained. It is found necessary and

sufficient conditions under which given real-valued functions ¢1,..., -1, n > 2, on an interval I of the real
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axis are the successive curvatures of a naturally-parametrized curve in £ which is defined by them uniquely
up to congruence for a given distribution of unit and pseudounit vectors in a Frenet (n — 1)-frame of the curve.

The Frenet-Serret equations for a curve in an Euclidean space EJ provide curvature functions
k1(s),...,kn—1(s) of a curve. The curvatures ki(s),...,kn—2(s) are M(n,0)-invariant. But the curvature
kn—1(s) is not M (n,0)-invariant, it is SM(n,0)-invariant. For example, the torsion of a curve in Ej is
SM (3, 0)-invariant, but it is not M (3, 0)-invariant. Therefore the system ki(s),. .., kn—1(s) gives a solution of
the problem of the G-equivalence of curves ounly for G = SM(n,0) ([19], p.p. 61-64). Besides, the method of
moving frames essentially gives only conditions of a local G-equivalence of curves. A similar situation is valid
for an arbitrary index p.

In the present paper we use an invariant-theoretic approach to the theory of curves in the pseudo-
Euclidean geometry. We give a solution of the problem of global G-equivalence of curves for groups G =
M(n,p), SM(n,p) in terms of invariants of a curve.

This paper is organized as follows. In Section 1, the definitions of the pseudo-Euclidean type and an
invariant parametrization of a curve are given. The pseudo-Euclidean type of a curve is M (n, p)-invariant
and it has the following forms: (0,1), where 0 < [ < o0, (—00,0) and (—o0,+00). All possible invariant
parametrizations of a curve with a fixed pseudo-Euclidean type are described. In Theorem 1, the problems of
the M (n,p)-equivalence and the SM (n,p)-equivalence of curves are reduced to that of paths. In Section 2,
the conditions of the global G-equivalence of curves are given in terms of the pseudo-Euclidean type and the
system of polynomial differential G- invariant functions.

A description of a complete system of correlations between the elements of the complete system of
differential invariants of a curve in £ will be considered in our next paper. The theory of regular curves in

E}} given in the present paper contains also some class of null curves (look at the Remarks 2-3 and Example 4

below). More detailed theory of invariants of null curves in E} will be considered also in our next paper.

2. Invariant parametrizations of a curve
Let J = (a,b) be an open interval of R.
Definition 1 (see [16, 17]). A C* -mapping x :J — E} will be called a J-path (shortly, a path) in E .

Definition 2 (see [16, 17]). A Ji-path x(t) and a Ja-path y(r) in Ey will be called D -equivalent if a
C -diffeomorphism ¢ : Jy — Jy ezists such that © (r) > 0 and y(r) = z(o(r)) for all v € Jy. A class of

D -equivalent paths in B} will be called a curve in Ej . A path x € o will be called a parametrization of a curve
a.

If x(t) is a J-path then Fz(t) isa J-path in £} for any ' € M(n,p). Let G be a subgroup of M(n,p).

Definition 3 Two J-paths x(t) and y(t) in E; are called G-equivalent if there evists F' € G such that
y(t) = Fx(t). This being the case, we write x(t) S y(t)

Let a = {h,,7 € Q} be a curve in £}, where h, is a parametrization of a. Then Fa = {Fh,,7 € Q} is a
curve in B for any F' € M(n,p).
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Definition 4 (see [16, 17]) Two curves o and 3 in E}} are called G -equivalent if 3 = Fa for some F € G.

This being the case, we write o < 0.

Let x(t) = (z1(t),...,2n(t)) be a J-path in E}, z (t) = (zy(t),. ..,z (t)) is its first derivative and z®)(¢) is

its k-th derivative. Denote the determinant of vectors 2 (), 2 (t),..., (™ (t) by [x/(t)x@)(t) Cz™()] .

Definition 5 A J-path x(t) in E} will be called pseudo-euclidean regular (regular, for short) if one of the
following conditions hold:

(51). <a'(t),z () >#£0 foralteJ;

(55). [x/(t)x@)(t) N .x(")(t)} £0 forallteJ;

(53). ‘< z (t),z'(t) >‘ + ‘ [x/(t)x@)(t) . .x(")(t)} ‘ #0 forallte J.

A curve o will be called regular if it contains a reqular path.

Remark 1 It is obvious that (51) — (53) and (52) — (53). The following examples 1-3 below show that
(51) 7 (52), (52) 7 (51), (53) 7 (51), (53) 7 (52) and (53) 7> (51) U (51).
Example 1 Consider the J-path z(t) = (3t%,£t%) in E?, where J = (0,2). Then < z (t),z'(t) >= 0 for

t =1, but [x/(t)x@)(t)} # 0 for all ¢ € J. Hence (52) / (51). In the case p = 0, it is easy to see that
(52) = (51).

Example 2 Consider the J-path z(t) = (1t3, 23) in E?, where J = (0,2). Then [x/(t)x@)(t)} =0 for all
teJ,but <a'(t),z'(t) >#0 for all t € J. Hence (51) £ (52).

Example 3 Consider the J-path z(t) = (¢, 3t%, 1¢t*) in E?, where J = (—%,2). Then [x/(t)x@)(t)x@)(t)] =6t
and < z'(t),2'(t) >= 1+ 12— 1% for all t € J. The equality [:c/ (t)x(Q)(t)x(3)(t)] = 6t implies that
[x/(t)x@)(t)x@)(t) =0 only for t = ¢; = 0. There exists unique t = ¢, € J such that < 2’ (¢),z (t) >=0. It
is easy to see that 1 < t3 < 2. Then [x/(t)x(Q)(t)x(3)(t)] =0 for some t = t; € J and < z (t),z (t) >= 0
for some t =ty € J, where t; # to, but ‘< z (), (t) >‘ + Hx/(t)x@)(t)x(:i)(t)” # 0 for all ¢ € J. Hence
(53) # (51) U (52). In particularly, (53) 4 (51) and (53) 4 (52).

Definition 6 (see [2]) A J-path x(t) is called null if < z'(t),z’ (t) >=0 forall t € J.

Remark 2 There exists a null J-path such that [x/(t)x@)(t) . .x(")(t)} #0 forall te J.

Example 4 Consider the J-path

z(t) = (t, %tQ, /01 V14 t2dt)
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in B3, where J = (0,1). Then < z'(t),z'(t) >=0 for all t € .J and [x/(t)x@)(t)x@)(t) = (1+12)"2 #0 for

all t € J.
Hence there exists a regular null J-path in E. Therefore the theory of regular curves in £} given below

contains also some class of null curves.
Now we define invariant parametrizations of regular curves in Ej. Let z(t) be a regular J-path in E}.

We put
z(c,d) /|<:c >|2dt

in case (51) of Definition 5. If (5;) doesn’t hold and case (52) holds, we put

(c,d) / ‘ £z (t) .x(")(t)}

If the cases (51) and (52) don’t hold and the case (53) holds, we put

(c,d) /|<:c >|2 dt+/‘ )@ (t) .x(")(t)}

The limits I,(a,d) = lim.—ql:(¢c,d) < 400 and I, (c,b) = limg_p l;(c,d) < 400 exist. There are only four

2
FIGESY)

dt.

2
n(n+1
dt.

possibilities:
(T1)~la:(aa d) < +00, lm(ca b) < +00; (T2)~la:(aa d) < +00, lm(ca b) = +00;
(T3)~la:(aa d) = 00, lm(ca b) < +00; (T4)~la:(aa d) = o0, lm(ca b)

+00.

Suppose that the case (T1) or (T3) holds for some ¢,d € J. Then | = I (a,d) + lz(c,b) — lz(c,d),
where 0 <1 < 400, does not depend on ¢,d € J. In this case we say that = belongs to the pseudo-euclidean
type of (0,1). The cases (T3) and (74) do not depend on ¢,d. In these cases, we say that x belongs to the
pseudo-euclidean types of (—o00,0) and (—oo, +00), respectively. There exist paths of all types (0,1), where
I < +00, (0,+00), (—00,0) and (—oo,+00). The pseudo-euclidean type of a path x will be denoted by L(x).
It is obvious that:

() if x Mip) y then L(x) = L(y);
(#d) if x,y is parametrizations of a curve « then L(z) = L(y).

The pseudo-euclidean type of a path x € «, will be called the pseudo-euclidean type of the curve o and
denoted by L(«). L(«) is an M (n,p)-invariant of a curve «.

Now we define an invariant parametrization of a regular curve in E). Let J = (a,b) and z(t) be a
regular J-path in E}'. We define the pseudo-euclidean arc length function s,(t) for each pseudo-euclidean type
as follows. We put s,(t) = lz(a,t) for the case L(z) = (0,1), where | < +o00, and s;(t) = —I;(¢,b) for the case
L(z) = (—00,0). Let L(z) = (—o0, +00). We choose a fixed point in every interval J = (a,b) of R and denote
it by ay. Let ay =0 for J = (—o0,+00). We set s5(t) = lz(as,t).

Since s, (t) > 0 for all t € J, the inverse function of s, (t) exists. Let us denote it by t,(s). The domain
of t,(s) is L(x) and t,(s) > 0 for all s € L(z).
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Proposition 1 Let I = (a,b) and x be a regular I-path in E}. Then

(1) spz(t) = s.(t) and tpy(s) =tu(s) for all F € M(n,p);

(i) the equalities sy, (r) = s2(@(r)) + s0 and @(ty(p)(s + s0)) = tz(s) hold for any C* -diffeomorphism
¢ :J = (c,;d) — I such that @ (r) > 0 for all 7 € J, where s = 0 for L(z) # (—o0,+00) and
so = lz(plag),ar) for L(z) = (—o0,+00).

Proof.  The proof of statement (i) is obvious. We prove statement (ii) for case (53) in Definition 5. Let

L(x) = (—00,+00). Then we have s;(,)(r) =

/ < Sl gralolr) > i‘[%x@(r»...%xw)ﬂ ST
j P (|< 2etetr), 2a o) > i \ el ot i

Lo (p(ar), ¢(r) = l(ar, o(r) + e (e(as), ar).

S0 54() (1) = 52(p(r)) + s0, where so = l.(¢(as),ar). This implies p(ty(,)(s + s0)) = te(s). For L(x) #
(=00, +00), it is easy to see that sy =0.

Proofs of statement (ii) for cases (51) and (52) in Definition 5 are similar. O

Let a be a regular curve, x € a. Then z(t5(s)) is a parametrization of «.

Definition 7 The parametrization x(t(s)) of a regular curve o will be called an invariant parametrization of
o

We denote the set of all invariant parametrizations of « by Ip(«). Every y € Ip(a) is a J-path, where
J=L(x).

Proposition 2 Let a be a regular curve, x € o and x be a J-path, where J = L(a). Assume that the

condition (51) in Definition 5 holds for x. Then the following conditions are equivalent:

(1) x is an invariant parametrization of «;
(1) |<2'(t),2'(t) >| =1 forall s € L(a);

(7i1) sz(s) =s for all s € L(a).
Proof. (i) — (i¢). Let € Ip(a). Then there exists y € a such that z(s) = y(ty(s)). By Proposition 1,
sz(s) = sy(ty)(s) = sy(ty(s)) + so = s+ so, where sq is as in Proposition 1. Since sg does not depend on s, we
have ds;—s(s):|< x'(t), ' (t) >|% = 1. Hence |< 2/(t),2'(t) >| =1 for all s € L(a).

(16) — (i7). Let |<a'(t),2'(t) >] = 1 for all s € L(a). Using the definition of s,(t), we get

dsés(s) |< 2/(t), z'(t) >|% = 1. Therefore s;(s) = s+ ¢ for some ¢ € R. In the case L(z) # (—o0,+00),
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conditions s;(s) = s+ ¢ and s;(s) € L(a) for all s € L(a) implies ¢ = 0, that is, sz(s) = s. In the case
L(a) = (—00,4+00), equalities s,(s) = l;(as,s) =15(0,s) = s+ ¢ implies 0 =[,(0,0) = ¢, that is , s.(s) = s.
(79i) — (). Since sz(s) = s implies t,(s) = s, we get z(s) = x(tx(s)) € Ip(a). O

Similar results are true for conditions (52) and (53) in Definition 5.
Remark 3 In papers [2-9, 11, 18, 20, 21], in the thesis [14] and in the book [10], essentially the parametrization
in the 5; of Definition 5 is used and it is used only for curves of the type (0,1), where 0 < ! < co. By remark 2
and Examples 1-3, parametrizations in the cases 52 and 53 are independent of the parametrization in the case
51. Hence the class of curves which investigated in the present paper is essentially wider then in the mentioned
papers. By Remark 2 and Example 4, parametrizations in the cases 52 and 53 contain also parametrizations

of some class of null curves.

Proposition 3 Let a be a regular curve and L(a) # (—o0,+00). Then there exists the unique invariant

parametrization of a.

Proof. A proof is similar to the proof of Proposition 4 in [16]. O

Let a be a regular curve and L(a) = (—00,+00). Then it is easy to see that the set Ip(a) is infinite

and it is not countable.

Proposition 4 Let « be a regular curve, L(a) = (=00, 4+00) and z € Ip(a). Then Ip(a) =
{y:y(s) = (s +¢),c € (—o0, +00)}.

Proof. A proof is similar to the proof of Proposition 5 in [16]. a

Theorem 1 Let «, 8 be regular curves and x € Ip(a),y € Ip(B). Then:

M(n,p)

M(ze) B if and only if x  ~" y;

(i) for L(a) = L(P) # (=00, +0), «

M(rgvp) ﬂ 'Lf (lnd Only 'Lf xT M(rg’p) y(’ll)c) fO?" some c € (7005 +OO); whe're

(ii) for L(e) = L(f) = (-0, +0), «
Ye(s) =s+c.

Proof. (i). Let « M(ze) 0 and h € . Then there exists F' € M(n,p) such that 8 = Fa. This implies

Fh € . Using Propositions 1-3, we get z(s) = h(tn(s)),y(s) = (Fh)(tpn(s)) and Fz(s) = F(h(tp(s))) =

(Fh)(tn(s)) = (Fh)(trn(s)) = y(s). Thus x M) y. Conversely, let x Mp) y, that is, there exists

F € M(n,p) such that Foz =y. Then « M(ze) G.
(ii). Let « Mip) (3. Then there exist J-paths h € a,k €  and F' € M(n,p) such that k(t) = Fh(t).
We have k(tx(s)) = k(trn(s)) = k(tn(s)) = (Fh)(tn(s)). By Proposition 4, x(s) = k(tx(s + s1)),y(s) =
h(tn(s+sz2)) for some s1,$9 € (—o0, +00). Therefore x(s—s1) = Fy(s—sg). This implies that x Mip) y(e),
where 9.(s) = s+c¢ and ¢ = s1 —s2. Conversely, let = M) y(¥.) for some ¢ € (—o0, +00), where . = s+c.

Then there exists F' € M(n,p) such that y(s +¢) = Fz(s). Since y(s +¢) € 3, then « Mip) 8. O
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Theorem 1 reduces the problems of the G-equivalence of regular curves for groups G = M (n, p), SM (n, p)
to that of paths only for the case L(a) = L(f) # (—o00,4+00). Let H be a subgroup of M(n,p).

Definition 8 J-paths x(t) and y(t) will be called [H,(—o00,+00)]-equivalent, if there exist h € H and
d € (—o0,+00) such that y(t) = hx(t+d) forall t € J.

Theorem 1 reduces the problem of the H-equivalence of curves to [H, (—o0, +00)]-equivalence of paths
for the case L(a) = L(fB) = (—o0, +00).

3. Conditions of G-equivalence of paths and curves

Below we use some notations and facts from the differential algebra and the theory of differential invariants
of a paths. They may be found in [1, 15, 16, 17].

Definition 9 A J-path x(t) in E} will be called non-singular if [x/(t)x@)(t) M) #0 forallteJ. A
curve o will be called non-sigular if it contains a non-singular path.

Let G be a subgroup of M(n,p).

Definition 10 (see [1], Definition 8). A differential polynomial function f{x} of a path x(t) is called G-
invariant if f{gz} = f{x} forall g€ G.

Let z(t) and y(t) be J-paths in E} such that = M) y. Then f{x} = f{y} for any M (n,p)-invariant

differential polynomial f{z}. The converse statement (that is conditions of M (n,p)-equivalence of J-paths)

is true in the following form.
Theorem 2 Assume that x(t) and y(t) be non-singular J-paths in E} such that
<aW(t), V() >=< 4y (8), 5 (t) > (1)

forallte J and 1 <i<n. Then xM(An/p)y

Proof. For a proof of this theorem, we use several lemmas. O
Lemma 1 Assume that 1 < i,j,i4+ j < 2n+ 1. Then, for each differential polynomial < xz 2U) >, q
differential polynomial Pij{yi,...,ys} exists such that

< x(i),x(j) >= Pij{< x/,x/ >, < x(k),x(k) >} ,

where k = [%] .

Proof. A proof is similar to the proof of Proposition 6 in [1]. |
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Lemma 2 The equality

(=DPyr - ynlle1 - zn] = det|| < yi, 25 > |]ij=1,2,..m

holds for all vectors yi, ..., Yn, 21, -, 2n in E.

Proof. Let Y =|y1...yn|| and Z =||21...2,]|| be n X n-matrices of systems {y1,...,yn} and {z1,...,2,}
of column vectors yi,...,Yn, 21, ., 2n € £ and I, = [|b;;|| be the diagonal n x n-matrix such that b;; = —1
forall i=1,...,p and bj; =1 forall j =p+1,...,n. Then we have Y ' I,Z = ||< y;, 2; >||Z.’].:172w’n, where
YT is the transpose matrix of Y. Passing on to determinants, we obtain the desired equality. O

Denote the determinant det ||< @ 2() >||Z by A = A,. Equation (1) and Lemma 1 implies

J=1,2,...n
that < ) (t),20)(t) >=< y@(t),yU)(t) > for all t € J and all 1 < i < j < n. Using these equalities,
we get Ag(t) = Ay(t) for all t € J. Since x,y are non-singular J-paths, we have A,(t) # 0,Ay(t) # 0

for all t € J. Hence A,(t)™' = Ay(t)~'. Denote the system {< 2 >, ., <z () >} of differential

polynomials by V. Denote the differential R-algebra generated by elements of the system V' and the function
Al by R{V,A'}. Let f{z} € R{V,A™'}. Then, using Equation (1) and A,(t)"! = Ay(t)~", we obtain
fAz@®)} = f{y()} (2)
forall t e J.
Denote the matrix Hx/(t):c@)(t) CaM(t) H by A(x(t)), where we consider () (t) as a column-vector. We
let 4 A(z(t)) = ||:c(2)(t):c(3)(t) . .x("“)(t)H . Since x(¢) is non-singular, we have detA(z(t)) = [:c/(t) CxM(t)] £

0 for all ¢ € J. Hence the matrix A~!(x(t)) exists for all ¢t € J. We consider the matrix A~ (z(t))<L A(z(t)) =

l[ef; ()] It is easy to see that
(a) ¢f4q;(0)=1forallte Jand 1 <j<n-—1;
(b) c;(t)=0forallteJand j#n,i#j+1,1<i<n;

. [¢ (1), =D (02" ()2 (1)..a™ (1)]
(C) Czn(t) - [I/(t)wgg(")(t)]

forall t € J and 1 <i <n.

Lemma 3 cf;(t) = c/;(t) forallteJ and 1 <i<j<n.

Proof.  The above equality (a) implies ¢f;(t) = ¢, ,;(t) for all 1 < j <n —1 and the equality (b) implies
cfi(t) = cfj(t) forall j#n, i#j+1,1<i<n. Prove ¢f,(t) =c},(t) for all 1 <i<n. Using Lemma 2 to
vectors y; = 2\ (1), z; = xU)(t) (i,5 =1,...,n), we obtain

’

(—1) [:c (1) ...2™(®)] = det]| < 2D (), 29 () > || (3)
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Similarly, using Lemma 2 to vectors z ,...,z(=1 gm+D) g+ 20 2" 2 we have
(—=1)P [x/ gD (D ) .x(")] [:c/ . .x(”)} = det]| < ™ 20 > ||, (4)

where k =1,...,i—1,n+1,i+1,...,n;l = 1,2,...,n. From Equation (3), Equation (4), Equation (1),
Lemma 1 and the equality ¢, (t) =

[x/ Lz D) (1) .x<n>} (—1)P [x Lz D) g+ .x<n>} [x .. .x<n>}

[z"... 2] (1P [2 .. ,gg(n)]2 ’

for 1 <1i < n, we obtain

[x/ gD ) 4D .x<n>} [y Ly Dy (41 .y(")]
[« 2] N v ]

for all + =1,...,n. The lemma is proved. O

Equation (1) and Lemma 3 implies A~ (x(t))< A(x(t

s ) = Ail(y(t))%A(y(t)) for all t € J. The last

equality implies

0

2 (AWAE)™) = (S AWDAW) ™ + Al) o (A) ™) = (o A AG) ™
AWAGE) (5 AE)AG) ™ = AW)(AG) ™ S Al) — Ale) ™2 A @) =0,

for all ¢t € J. Using this equality and connectedness of .J, we obtain that A(y(t))A(x(t))~! does not depend
ont e J. Put F=A(y)A(z)~!. According to detA(z(t)) # 0 and detA(y(t)) # 0 for all t € J, we have
detF' # 0 and A(y(t)) = FA(z(t)) for all t € J. We prove that F' € O(n,p).

Let A(z)" be the transpose matrix of A(z). Let I, = ||b;;| be the diagonal n x n-matrix such that
bii = —1 forall i = 1,...,p and bj; = 1 for all j = p+ 1,...,n. Using the equality A(z)'[,A(z) =

|< 2@, 2@ >|. , Lemma 1 and Equation (1), we obtain that A(x)'I,A(z) = A(y)"I,A(y). This

J=1,2,...n
equality and the equality A(y) = FA(x) imply that F'I,F = I,. Hence F € O(n,p).
The equality Ay(t) = FAz(t) implies %y(t) = F%x(t) for all t € J. Then there exists a constant

vector b € E} such that y(t) = Fx(t) + b for all t € J. The theorem is completed. O

Corollary 1 Let «, 3 be non-singular curves in E} and z € Ip(a),y € Ip(B). Assume that x,y satisfy the
condition (51) in Definition 5. Then

(1) in the case L(a) = L(B) # (—o00, +00), « Mip) B if and only if
sgn < (s),a (s) >= sgn <y (s),y (5) >, (5)
<al(s), 20 (s) >=< y(s),y" (s) > (6)

forall s€ L(a) and i =2,...,n;
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M(n.p)

(ii) in the case L(a) = L(B) = (—o0, +0), « B if and only if

sgn <z (8),x (s) >=sgn <y (s),y (s) >,

< 2@ (s),20(s) >=< yD(s+ s1),yD (s +51) >

for some s1 € (—00,400), all s € L(a) and i =2,...,n;

M(n.p)

Proof. Let « (. Then it is obvious that Equation (5) and Equation (6) hold. Conversely, assume

that Equation (5) and Equation (6) hold. By Proposition 2, |< z'(s),z (s) >‘ = ‘< Y (s),y (s) >| =1 for all

s € L(a). This equality and Equation (5) imply that < z'(s),z (s) >=< ¢ (s),4 (s) > for all s € L(a). The

(n,

last equality and Equation (6), by Theorem 2, imply z M M) G.

2 y. Applying Theorem 1, we obtain «

Similarly, the proof of statement (i:) follows from statement (i4) of Theorem 1. O

Remark 4 Similar results are true if z,y satisfy conditions (52) or (53)) in Definition 5.
Let « be a curve and z € Ip(a).
Remark 5 According to Corollary 1 the system

{L(a), sgn < x/,x/ > <a® 2@ > <™ g >}

is a complete system of M (n,p)-invariants of a curve « for the case L(a) # (—00,+00). But they are not

invariants of a curve « for the case L(a) = (—o0,400). They depend on reparametrizations s — s+ a of a
curve a.

Let § = 0, be the determinant of the matrix || < y;,2; > ||i j=1,2,...n—1, Where y; = 21 = x/,yg =29 =

2@ . yn_1 = 2zp_1 = 2™ V. Denote the system
{< x>, ., <z g s [x/(t)x@)(t) . .x(")(t)} }
of differential polynomials by Z. Denote the differential R-algebra generated by elements of Z by R{Z}.

Lemma 4 <y;,z; >€ R{Z} forall1<i,j,i+j<2n—1 and § € R{Z}.

Proof. Using Lemma 1, we get < z(9) 20) >¢ R{Z} for all 1 < i,j,i+j < 2n — 1. Since the element

< ¥4, 25 > of the determinant § is the function < z® 20 > where 1 <4,j < n—1, we obtain that § € R {Z}.
O

Theorem 3 Assume that x(t) and y(t) be non-singular J -paths in E} such that 6,(t) # 0 and 6,(t) # 0 for
all t € J. Then equalities

<a0(1),20() >=< yD 1),y 1) >, [+ O ) ... 2@ )] = [y OOy @) (7)

forallteJ and 1<i<j<n,i+j<2n-1 impliesxs%n)y.
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Proof. Let f{z} € R{Z}. Then Equation (7) implies

fAz®)} = f{y()} (8)

for all t € J. By Lemma 4, 6, € R{Z}. Hence Equation (8) implies 6, = J, for all ¢t € J. By the assumption
of our theorem, we have J, # 0 and J, # 0 for all ¢t € J. Hence the equality 6, = d, for all ¢ € J implies
51 = 6; L for all t € J. Denote the differential R-algebra generated by elements of the system Z, the functions
A~'and 67 by R{Z,07',A~}. Let f{z} € R{Z,67',A'}). Then the equality 6! =4, ", Equation (7)
and Equation (8) imply

fHx(w)} = f{y(u)} 9)
forall te J.
Lemma 5 A € R{Z}.
Proof. Using Lemma 2 to vectors y; = z; = x/,yg =z =23 ..y, =2, = 2™ we obtain
2@ am)?
(—1)P [:c ¢® ™| = det|< i,z > g0 .= A (10)
Since [x/:c@) . .x(")] € Z, we have A € R{Z}. O

Lemma 6 <z 2™ > R{Z,61,A7'} and R{V,A™'} C R{Z, 671, A71}.

Proof. Fori=1,2,...,n,denote the cofactor of the element < y,,, z; > of the matrix A = ||< y;, z; >||

ii=1,2,...
in Equation (10) by D,;. Then we obtain the equality -
A =<yn,21 > Dni+ < Yn,22 > Dna + -+ < Yn, 2n-1 > Dnn—1+ < Yn, 20 > Dnn.
Since § = Dy, # 0, this equality implies
<Yy zn >=< 2™ 2 S= A§T = < yp, 21 > Dp1d = < yp,zo > Dpadt — (11)

o= < Yn, Zn—1> Dnn71671~

By Lemma 1, we have < y,, z; >=< (™, 20) >c R{Z} for each 1 < j <n — 1. We prove that D, € R{Z}
for every 1 < s <n—1. We have

Dps = (=1)""det || < yi, Zj||i:l,2,...,nfl;j:1,2,...,571,s+1,...,n .

Elements of D, have forms < y;,2; >, < y;, 2, >, where i,j < n. By < y;,2; >€ R{Z},< y;, zn, >=<
Yn, 2z >€ R{Z}, we obtain D, € R{Z}. Hence Equation (11) implies < y,,z, >€ R{Z,671,A=!}. Using
V C ZU{(yn,2n)}, we get R{V,A7'} Cc R{Z,671,A71}. ]
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Using Equations (7), (9)-(11) and R{V,A™'} ¢ R{Z,67',A7'} in Lemma 6, we obtain Equation
(1). Hence, by Theorem 2, F' € O(n,p) and b € E) exist such that y(u) = Fw(u)+b. Using this equal-

ity and [x/(t):c@)(t) . .x(")(t)} = [y/ )y (@) ... .y™ (t)} in Equation (7), we get [:c/(t):c@)(t) M) =

detF [x/(t):c@)(t) . .x(")(t)} . Since [:c/(t):c@)(t) . .x(")(t)} # 0 for all ¢ € J, we obtain detF' = 1. Hence

s
x M(r) 1. The theorem is completed.

a

Corollary 2 Let a,3 be non-singular curves in E} and x € Ip(a),y € Ip(B). Assume that x,y satisfy the

condition (51)) in Definition 5 and conditions 05(t) # 0, §,(t) #0 for all t € J. Then

SM(n,p)

(1) in the case L(a) = L(B) # (—o00, +00), « B if and only if

’

[x/(s) . .x(")(s)] = [y (s)...y"™(s)],
sgn < (s), 2 (s) >= sgn <y (),y () >,
<aW(s),20(s) >=< ¢ (s),4"(s) >
forall se L(a) and all i =2,...,n—1;

SM(n,p)

(ii) in the case L(a) = L(B) = (—o0, +0), « B if and only if

[x/(s) . .x(")(s)] = [y/ (s451)...4" (s +s1)|,
sgn < (s),a (s) >= sgn <y (s),y (5) >,

< 20(s),20 () >=< YD (s + 1),y (s + 51) >

for some s1 € (—00,4+00), all s € L(a) and i=2,...,n—1;

Proof. (i). Let « SMp)

invariant, we obtain that Equation (12)—(14) hold.

3. Since elements of Z and the function sgn < z (s),z (s) > are SM(n,p)-

Conversely, assume that Equation (12)—(14) hold. According to Proposition 2, we get |< z (s), z (s) >| =

<y'(s),y (s) >| =1 forall s € L(). Then, using Equation (13), we obtain < z (s),z (s) >= <y (s),y (s) >

for all s € L(a). The latest equality, Equation (12) and Equation (14), by Lemmas 4 and 5, imply

0z = 0y, Ay = A,. Then, by Lemma 6, we obtain < 2 2 >=< 4 y() > By this equality, Equa-
tion (12), Equation (14) and Theorem 3, there exists F' € SM(n,p) such that y(s) = Fa(s) = gz(s) + b.

The proof of statement (i) is completed. Similarly, the proof of (ii) follows from statement (i) of Theorem 1.0

Remark 6 Similar results are true for conditions (52)) or (53)) in Definition 5.

Let « be a curve and z € Ip(a).
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Remark 7 According to Corollary 2, the system

{L(a), sgn < x/, z > <@ 2@ > <t gl S [az/x@) .. .x(")} }

is a complete system of SM (n, p)-invariants of a curve o for the case L(« —0o0, +00). But they are not
p y D ) y

invariants of a curve « for the case L(a) = (—00,400). They depend on reparametrizations s — s 4+ a of the
curve a.
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