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c© TÜBİTAK
doi:10.3906/mat-0911-145

Invariant parametrizations and complete systems of global
invariants of curves in the pseudo-Euclidean geometry

Ömer Pekşen, Djavvat Khadjiev, İdris Ören

Abstract

Let M(n, p) be the group of all transformations of an n-dimensional pseudo-Euclidean space En
p of

index p generated by all pseudo-orthogonal transformations and parallel translations of En
p . Definitions of

a pseudo-Euclidean type of a curve, an invariant parametrization of a curve and an M(n, p)-equivalence

of curves are introduced. All possible invariant parametrizations of a curve with a fixed pseudo-Euclidean

type are described. The problem of the M(n, p)-equivalence of curves is reduced to that of paths. Global

conditions of the M(n, p)-equivalence of curves are given in terms of the pseudo-Euclidean type of a curve

and the system of polynomial differential M(n, p)-invariants of a curve x(s) .
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1. Introduction

Let R be the field of real numbers, n and p are integers such that 0 ≤ p < n . The n-dimensional
pseudo-Euclidean space of index p (that is the space Rn with the scalar product < x, y >= −x1y1 − · · · −
xpyp + xp+1yp+1 + · · · + xnyn ) will be denoted by En

p . E4
1 is the Minkowski spacetime. The group of all

pseudo-orthogonal transformations of En
p (that is the set of all linear transformations g : En

p → En
p such that

< gx, gy >=< x, y > for all x, y ∈ En
p ) is denoted by O(n, p). Put M(n, p)={F : En

p → En
p | Fx = gx + b ,

g ∈ O(n, p), b ∈ En
p } and SM(n, p) = {F ∈ M(n, p) : detg = 1} .

The Frenet-Serret formalism for both time-like and space-like curves in spaces E3
1 and E4

1 is studied in

papers [13, 21] and in the thesis [14]. In papers [2, 5, 6, 9, 20], the Frenet-Serret curve analysis is extended

from non-null curves in E4
1 to null (lightlike, isotropic) curves. For arbitrary n , this theory is extended to the

Lorentz space En
1 and to the space En

2 in papers [3, 18] and in the book ([10], pp. 52–76). The Frenet-Serret

theory for degenerate curves in spaces En
1 and En

2 is investigated in [11–12]. The Frenet-Serret theory of

curves in En
p for arbitrary n and index p is considered in papers [4, 7, 8]. In [7], the fundamental theorem

of a naturally-parametrized curve in En
p for arbitrary n and index p is obtained. It is found necessary and

sufficient conditions under which given real-valued functions ϕ1, . . . , ϕn−1 , n ≥ 2, on an interval I of the real
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axis are the successive curvatures of a naturally-parametrized curve in En
p which is defined by them uniquely

up to congruence for a given distribution of unit and pseudounit vectors in a Frenet (n− 1)-frame of the curve.

The Frenet-Serret equations for a curve in an Euclidean space En
0 provide curvature functions

k1(s), . . . , kn−1(s) of a curve. The curvatures k1(s), . . . , kn−2(s) are M(n, 0)-invariant. But the curvature

kn−1(s) is not M(n, 0)-invariant, it is SM(n, 0)-invariant. For example, the torsion of a curve in E3
0 is

SM(3, 0)-invariant, but it is not M(3, 0)-invariant. Therefore the system k1(s), . . . , kn−1(s) gives a solution of

the problem of the G -equivalence of curves only for G = SM(n, 0) ([19], p.p. 61–64). Besides, the method of
moving frames essentially gives only conditions of a local G -equivalence of curves. A similar situation is valid
for an arbitrary index p .

In the present paper we use an invariant-theoretic approach to the theory of curves in the pseudo-
Euclidean geometry. We give a solution of the problem of global G -equivalence of curves for groups G =
M(n, p), SM(n, p) in terms of invariants of a curve.

This paper is organized as follows. In Section 1, the definitions of the pseudo-Euclidean type and an
invariant parametrization of a curve are given. The pseudo-Euclidean type of a curve is M(n, p)-invariant

and it has the following forms: (0, l), where 0 < l ≤ ∞ , (−∞, 0) and (−∞, +∞). All possible invariant
parametrizations of a curve with a fixed pseudo-Euclidean type are described. In Theorem 1, the problems of
the M(n, p)-equivalence and the SM(n, p)-equivalence of curves are reduced to that of paths. In Section 2,
the conditions of the global G -equivalence of curves are given in terms of the pseudo-Euclidean type and the
system of polynomial differential G - invariant functions.

A description of a complete system of correlations between the elements of the complete system of
differential invariants of a curve in En

p will be considered in our next paper. The theory of regular curves in

En
p given in the present paper contains also some class of null curves (look at the Remarks 2–3 and Example 4

below). More detailed theory of invariants of null curves in En
p will be considered also in our next paper.

2. Invariant parametrizations of a curve

Let J = (a, b) be an open interval of R .

Definition 1 (see [16, 17]). A C∞ -mapping x : J → En
p will be called a J -path (shortly, a path) in En

p .

Definition 2 (see [16, 17]). A J1 -path x (t) and a J2 -path y (r) in En
p will be called D -equivalent if a

C∞ -diffeomorphism ϕ : J2 → J1 exists such that ϕ
′
(r) > 0 and y(r) = x(ϕ(r)) for all r ∈ J2 . A class of

D -equivalent paths in En
p will be called a curve in En

p . A path x ∈ α will be called a parametrization of a curve
α .

If x(t) is a J -path then Fx(t) is a J -path in En
p for any F ∈ M(n, p). Let G be a subgroup of M(n, p).

Definition 3 Two J -paths x(t) and y(t) in En
p are called G-equivalent if there exists F ∈ G such that

y(t) = Fx(t) . This being the case, we write x(t) G∼ y(t)

Let α = {hτ , τ ∈ Q} be a curve in En
p , where hτ is a parametrization of α . Then Fα = {Fhτ , τ ∈ Q} is a

curve in En
p for any F ∈ M(n, p).
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Definition 4 (see [16, 17]) Two curves α and β in En
p are called G-equivalent if β = Fα for some F ∈ G .

This being the case, we write α
G∼ β .

Let x(t) = (x1(t), . . . , xn(t)) be a J -path in En
p , x

′
(t) = (x

′

1(t), . . . , x
′

n(t)) is its first derivative and x(k)(t) is

its k -th derivative. Denote the determinant of vectors x
′
(t), x(2)(t), . . . , x(n)(t) by

[
x

′
(t)x(2)(t) . . . x(n)(t)

]
.

Definition 5 A J -path x(t) in En
p will be called pseudo-euclidean regular (regular, for short) if one of the

following conditions hold:

(51) . < x
′
(t), x

′
(t) >�= 0 for all t ∈ J ;

(52) .
[
x

′
(t)x(2)(t) . . . x(n)(t)

]
�= 0 for all t ∈ J ;

(53) .
∣∣∣< x

′
(t), x

′
(t) >

∣∣∣ +
∣∣∣[x′

(t)x(2)(t) . . . x(n)(t)
]∣∣∣ �= 0 for all t ∈ J .

A curve α will be called regular if it contains a regular path.

Remark 1 It is obvious that (51) → (53) and (52) → (53). The following examples 1-3 below show that

(51) �→ (52), (52) �→ (51), (53) �→ (51), (53) �→ (52) and (53) �→ (51) ∪ (51).

Example 1 Consider the J -path x(t) = (1
2
t2, 1

3
t3) in E2

1 , where J = (0, 2). Then < x
′
(t), x

′
(t) >= 0 for

t = 1, but
[
x

′
(t)x(2)(t)

]
�= 0 for all t ∈ J . Hence (52) �→ (51). In the case p = 0, it is easy to see that

(52) → (51).

Example 2 Consider the J -path x(t) = (1
3t3, 2

3t3) in E2
1 , where J = (0, 2). Then

[
x

′
(t)x(2)(t)

]
= 0 for all

t ∈ J , but < x
′
(t), x

′
(t) >�= 0 for all t ∈ J . Hence (51) �→ (52).

Example 3 Consider the J -path x(t) = (t, 1
2 t2, 1

4t4) in E3
1 , where J = (−1

2 , 2). Then
[
x

′
(t)x(2)(t)x(3)(t)

]
= 6t

and < x
′
(t), x

′
(t) >= 1 + t2 − t6 for all t ∈ J . The equality

[
x

′
(t)x(2)(t)x(3)(t)

]
= 6t implies that

[
x

′
(t)x(2)(t)x(3)(t)

]
= 0 only for t = t1 = 0. There exists unique t = t2 ∈ J such that < x

′
(t), x

′
(t) >= 0. It

is easy to see that 1 < t2 < 2. Then
[
x

′
(t)x(2)(t)x(3)(t)

]
= 0 for some t = t1 ∈ J and < x

′
(t), x

′
(t) >= 0

for some t = t2 ∈ J , where t1 �= t2 , but
∣∣∣< x

′
(t), x

′
(t) >

∣∣∣ +
∣∣∣[x′

(t)x(2)(t)x(3)(t)
]∣∣∣ �= 0 for all t ∈ J . Hence

(53) �→ (51) ∪ (52). In particularly, (53) �→ (51) and (53) �→ (52).

Definition 6 (see [2]) A J -path x(t) is called null if < x
′
(t), x

′
(t) >= 0 for all t ∈ J .

Remark 2 There exists a null J -path such that
[
x

′
(t)x(2)(t) . . . x(n)(t)

]
�= 0 for all t ∈ J .

Example 4 Consider the J -path

x(t) = (t,
1
2
t2,

∫ 1

0

√
1 + t2dt)
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in E3
1 , where J = (0, 1). Then < x

′
(t), x

′
(t) >= 0 for all t ∈ J and

[
x

′
(t)x(2)(t)x(3)(t)

]
= (1 + t2)−

3
2 �= 0 for

all t ∈ J .
Hence there exists a regular null J -path in En

p . Therefore the theory of regular curves in En
p given below

contains also some class of null curves.
Now we define invariant parametrizations of regular curves in En

p . Let x(t) be a regular J -path in En
p .

We put

lx(c, d) =

d∫
c

|< x′(t), x′(t) >|
1
2 dt.

in case (51) of Definition 5. If (51) doesn’t hold and case (52) holds, we put

lx(c, d) =

d∫
c

∣∣∣[x′
(t)x(2)(t) . . . x(n)(t)

]∣∣∣
2

n(n+1)
dt.

If the cases (51) and (52) don’t hold and the case (53) holds, we put

lx(c, d) =

d∫
c

|< x′(t), x′(t) >|
1
2 dt +

d∫
c

∣∣∣[x′
(t)x(2)(t) . . . x(n)(t)

]∣∣∣
2

n(n+1)
dt.

The limits lx(a, d) = limc→a lx(c, d) ≤ +∞ and lx(c, b) = limd→b lx(c, d) ≤ +∞ exist. There are only four
possibilities:

(T1).lx(a, d) < +∞, lx(c, b) < +∞; (T2).lx(a, d) < +∞, lx(c, b) = +∞;

(T3).lx(a, d) = +∞, lx(c, b) < +∞; (T4).lx(a, d) = +∞, lx(c, b) = +∞.

Suppose that the case (T1) or (T2) holds for some c, d ∈ J . Then l = lx(a, d) + lx(c, b) − lx(c, d),
where 0 ≤ l ≤ +∞ , does not depend on c, d ∈ J . In this case we say that x belongs to the pseudo-euclidean
type of (0, l). The cases (T3) and (T4) do not depend on c, d . In these cases, we say that x belongs to the

pseudo-euclidean types of (−∞, 0) and (−∞, +∞), respectively. There exist paths of all types (0, l), where

l < +∞ , (0, +∞), (−∞, 0) and (−∞, +∞). The pseudo-euclidean type of a path x will be denoted by L(x).
It is obvious that:

(i) if x
M(n,p)∼ y then L(x) = L(y);

(ii) if x, y is parametrizations of a curve α then L(x) = L(y).

The pseudo-euclidean type of a path x ∈ α , will be called the pseudo-euclidean type of the curve α and
denoted by L(α). L(α) is an M(n, p)-invariant of a curve α .

Now we define an invariant parametrization of a regular curve in En
p . Let J = (a, b) and x(t) be a

regular J -path in En
p . We define the pseudo-euclidean arc length function sx(t) for each pseudo-euclidean type

as follows. We put sx(t) = lx(a, t) for the case L(x) = (0, l), where l ≤ +∞ , and sx(t) = −lx(t, b) for the case

L(x) = (−∞, 0). Let L(x) = (−∞, +∞). We choose a fixed point in every interval J = (a, b) of R and denote

it by aJ . Let aJ = 0 for J = (−∞, +∞). We set sx(t) = lx(aJ , t).

Since s
′

x(t) > 0 for all t ∈ J , the inverse function of sx(t) exists. Let us denote it by tx(s) . The domain

of tx(s) is L(x) and t
′

x(s) > 0 for all s ∈ L(x).

150
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Proposition 1 Let I = (a, b) and x be a regular I -path in En
p . Then

(i) sFx(t) = sx(t) and tFx(s) = tx(s) for all F ∈ M(n, p) ;

(ii) the equalities sx(ϕ)(r) = sx(ϕ(r)) + s0 and ϕ(tx(ϕ)(s + s0)) = tx(s) hold for any C∞ -diffeomorphism

ϕ : J = (c, d) → I such that ϕ
′
(r) > 0 for all r ∈ J , where s0 = 0 for L(x) �= (−∞, +∞) and

s0 = lx(ϕ(aJ), aI) for L(x) = (−∞, +∞) .

Proof. The proof of statement (i) is obvious. We prove statement (ii) for case (53) in Definition 5. Let

L(x) = (−∞, +∞). Then we have sx(ϕ)(r) =

r∫
aJ

(
∣∣∣∣< d

dr
x(ϕ(r)),

d

dr
x(ϕ(r)) >

∣∣∣∣
1
2

+
∣∣∣∣
[

d

dr
x(ϕ(r)) . . .

dn

drn
x(ϕ(r))

]∣∣∣∣
2

n(n+1)

)dr =

r∫
aJ

dϕ

dr
(
∣∣∣∣< d

dϕ
x(ϕ(r)),

d

dϕ
x(ϕ(r)) >

∣∣∣∣
1
2

+
∣∣∣∣
[

d

dϕ
x(ϕ(r)) . . .

dn

dϕn
x(ϕ(r))

]∣∣∣∣
2

n(n+1)

)dr =

lx(ϕ(aJ), ϕ(r)) = lx(aI , ϕ(r)) + lx(ϕ(aJ ), aI).

So sx(ϕ)(r) = sx(ϕ(r)) + s0 , where s0 = lx(ϕ(aJ), aI). This implies ϕ(tx(ϕ)(s + s0)) = tx(s). For L(x) �=
(−∞, +∞), it is easy to see that s0 = 0.

Proofs of statement (ii) for cases (51) and (52) in Definition 5 are similar. �

Let α be a regular curve, x ∈ α . Then x(tx(s)) is a parametrization of α .

Definition 7 The parametrization x(tx(s)) of a regular curve α will be called an invariant parametrization of
α .

We denote the set of all invariant parametrizations of α by Ip(α). Every y ∈ Ip(α) is a J -path, where

J = L(α).

Proposition 2 Let α be a regular curve, x ∈ α and x be a J -path, where J = L(α) . Assume that the

condition (51) in Definition 5 holds for x . Then the following conditions are equivalent:

(i) x is an invariant parametrization of α ;

(ii) |< x′(t), x′(t) >| = 1 for all s ∈ L(α) ;

(iii) sx(s) = s for all s ∈ L(α) .

Proof. (i) → (ii). Let x ∈ Ip(α). Then there exists y ∈ α such that x(s) = y(ty(s)). By Proposition 1,

sx(s) = sy(ty)(s) = sy(ty(s)) + s0 = s + s0 , where s0 is as in Proposition 1. Since s0 does not depend on s , we

have dsx(s)
ds = |< x′(t), x′(t) >|

1
2 = 1. Hence |< x′(t), x′(t) >| = 1 for all s ∈ L(α).

(ii) → (iii). Let |< x′(t), x′(t) >| = 1 for all s ∈ L(α). Using the definition of sx(t), we get
dsx(s)

ds = |< x′(t), x′(t) >|
1
2 = 1. Therefore sx(s) = s + c for some c ∈ R . In the case L(x) �= (−∞, +∞),
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conditions sx(s) = s + c and sx(s) ∈ L(α) for all s ∈ L(α) implies c = 0, that is, sx(s) = s . In the case

L(α) = (−∞, +∞), equalities sx(s) = lx(aJ , s) = lx(0, s) = s + c implies 0 = lx(0, 0) = c , that is , sx(s) = s .

(iii) → (i). Since sx(s) = s implies tx(s) = s , we get x(s) = x(tx(s)) ∈ Ip(α). �

Similar results are true for conditions (52) and (53) in Definition 5.

Remark 3 In papers [2–9, 11, 18, 20, 21], in the thesis [14] and in the book [10], essentially the parametrization

in the 51 of Definition 5 is used and it is used only for curves of the type (0, l), where 0 < l < ∞ . By remark 2
and Examples 1–3, parametrizations in the cases 52 and 53 are independent of the parametrization in the case
51 . Hence the class of curves which investigated in the present paper is essentially wider then in the mentioned
papers. By Remark 2 and Example 4, parametrizations in the cases 52 and 53 contain also parametrizations
of some class of null curves.

Proposition 3 Let α be a regular curve and L(α) �= (−∞, +∞) . Then there exists the unique invariant
parametrization of α .

Proof. A proof is similar to the proof of Proposition 4 in [16]. �

Let α be a regular curve and L(α) = (−∞, +∞). Then it is easy to see that the set Ip(α) is infinite
and it is not countable.

Proposition 4 Let α be a regular curve, L(α) = (−∞, +∞) and x ∈ Ip(α) . Then Ip(α) =

{y : y(s) = x(s + c), c ∈ (−∞, +∞)}.

Proof. A proof is similar to the proof of Proposition 5 in [16]. �

Theorem 1 Let α, β be regular curves and x ∈ Ip(α), y ∈ Ip(β) . Then:

(i) for L(α) = L(β) �= (−∞, +∞) , α
M(n,p)∼ β if and only if x

M(n,p)∼ y ;

(ii) for L(α) = L(β) = (−∞, +∞) , α
M(n,p)∼ β if and only if x

M(n,p)∼ y(ψc) for some c ∈ (−∞, +∞) , where

ψc(s) = s + c .

Proof. (i). Let α
M(n,p)∼ β and h ∈ α . Then there exists F ∈ M(n, p) such that β = Fα . This implies

Fh ∈ β . Using Propositions 1-3, we get x(s) = h(th(s)), y(s) = (Fh)(tFh(s)) and Fx(s) = F (h(th(s))) =

(Fh)(th(s)) = (Fh)(tFh(s)) = y(s). Thus x
M(n,p)∼ y . Conversely, let x

M(n,p)∼ y , that is, there exists

F ∈ M(n, p) such that Fx = y . Then α
M(n,p)∼ β .

(ii). Let α
M(n,p)∼ β . Then there exist J -paths h ∈ α, k ∈ β and F ∈ M(n, p) such that k(t) = Fh(t).

We have k(tk(s)) = k(tFh(s)) = k(th(s)) = (Fh)(th(s)). By Proposition 4, x(s) = k(tk(s + s1)), y(s) =

h(th(s+s2)) for some s1, s2 ∈ (−∞, +∞). Therefore x(s−s1) = Fy(s−s2). This implies that x
M(n,p)∼ y(ψc),

where ψc(s) = s+c and c = s1−s2 . Conversely, let x
M(n,p)∼ y(ψc) for some c ∈ (−∞, +∞), where ψc = s+c .

Then there exists F ∈ M(n, p) such that y(s + c) = Fx(s). Since y(s + c) ∈ β , then α
M(n,p)∼ β . �
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Theorem 1 reduces the problems of the G -equivalence of regular curves for groups G = M(n, p), SM(n, p)

to that of paths only for the case L(α) = L(β) �= (−∞, +∞). Let H be a subgroup of M(n, p).

Definition 8 J -paths x(t) and y(t) will be called [H, (−∞, +∞)]-equivalent, if there exist h ∈ H and

d ∈ (−∞, +∞) such that y(t) = hx(t + d) for all t ∈ J .

Theorem 1 reduces the problem of the H -equivalence of curves to [H, (−∞, +∞)]-equivalence of paths

for the case L(α) = L(β) = (−∞, +∞).

3. Conditions of G-equivalence of paths and curves

Below we use some notations and facts from the differential algebra and the theory of differential invariants
of a paths. They may be found in [1, 15, 16, 17].

Definition 9 A J -path x(t) in En
p will be called non-singular if

[
x

′
(t)x(2)(t) . . . x(n)(t)

]
�= 0 for all t ∈ J . A

curve α will be called non-sigular if it contains a non-singular path.

Let G be a subgroup of M(n, p).

Definition 10 (see [1], Definition 8). A differential polynomial function f {x} of a path x(t) is called G-

invariant if f {gx} = f {x} for all g ∈ G .

Let x(t) and y(t) be J -paths in En
p such that x

M(n,p)∼ y . Then f {x} = f {y} for any M(n, p)-invariant

differential polynomial f {x}. The converse statement (that is conditions of M(n, p)-equivalence of J -paths)
is true in the following form.

Theorem 2 Assume that x(t) and y(t) be non-singular J -paths in En
p such that

< x(i)(t), x(i)(t) >=< y(i)(t), y(i)(t) > (1)

for all t ∈ J and 1 ≤ i ≤ n . Then x
M(n,p)∼ y .

Proof. For a proof of this theorem, we use several lemmas. �

Lemma 1 Assume that 1 ≤ i, j, i + j ≤ 2n + 1 . Then, for each differential polynomial < x(i), x(j) >, a
differential polynomial Pij{y1, ..., yk} exists such that

< x(i), x(j) >= Pij

{
< x

′
, x

′
>, ..., < x(k), x(k) >

}
,

where k =
[

i+j
2

]
.

Proof. A proof is similar to the proof of Proposition 6 in [1]. �
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Lemma 2 The equality

(−1)p[y1 . . . yn][z1 . . . zn] = det|| < yi, zj > ||i,j=1,2,...,n

holds for all vectors y1, . . . , yn, z1, . . . , zn in En
p .

Proof. Let Y = ‖y1 . . . yn‖ and Z = ‖z1 . . . zn‖ be n× n-matrices of systems {y1, . . . , yn} and {z1, . . . , zn}
of column vectors y1, . . . , yn, z1, . . . , zn ∈ En

p and Ip = ‖bij‖ be the diagonal n × n-matrix such that bii = −1

for all i = 1, . . . , p and bjj = 1 for all j = p + 1, . . . , n . Then we have Y �IpZ = ‖< yi, zj >‖i,j=1,2,...,n , where

Y � is the transpose matrix of Y . Passing on to determinants, we obtain the desired equality. �

Denote the determinant det
∥∥< x(i), x(j) >

∥∥
i,j=1,2,...,n

by Δ = Δx . Equation (1) and Lemma 1 implies

that < x(i)(t), x(j)(t) >=< y(i)(t), y(j)(t) > for all t ∈ J and all 1 ≤ i ≤ j ≤ n . Using these equalities,

we get Δx(t) = Δy(t) for all t ∈ J . Since x, y are non-singular J -paths, we have Δx(t) �= 0, Δy(t) �= 0

for all t ∈ J . Hence Δx(t)−1 = Δy(t)−1 . Denote the system
{
< x

′
, x

′
>, ..., < x(n), x(n) >

}
of differential

polynomials by V . Denote the differential R -algebra generated by elements of the system V and the function

Δ−1 by R
{
V, Δ−1

}
. Let f {x} ∈ R

{
V, Δ−1

}
. Then, using Equation (1) and Δx(t)−1 = Δy(t)−1 , we obtain

f {x(t)} = f {y(t)} (2)

for all t ∈ J .

Denote the matrix
∥∥∥x

′
(t)x(2)(t) . . . x(n)(t)

∥∥∥ by A(x(t)), where we consider x(i)(t) as a column-vector. We

let d
dt

A(x(t)) =
∥∥x(2)(t)x(3)(t) . . . x(n+1)(t)

∥∥ . Since x(t) is non-singular, we have detA(x(t)) =
[
x

′
(t) . . . x(n)(t)

]
�=

0 for all t ∈ J . Hence the matrix A−1(x(t)) exists for all t ∈ J . We consider the matrix A−1(x(t)) d
dt

A(x(t)) =

||cx
ij(t)|| . It is easy to see that

(a) cx
j+1j(t) = 1 for all t ∈ J and 1 ≤ j ≤ n − 1;

(b) cx
ij(t) = 0 for all t ∈ J and j �= n , i �= j + 1, 1 ≤ i ≤ n ;

(c) cx
in(t) =

�
x
′
(t)...x(i−1)(t)x(n+1)(t)x(i+1)(t)...x(n)(t)

�

[x′
(t)...x(n)(t)]

for all t ∈ J and 1 ≤ i ≤ n .

Lemma 3 cx
ij(t) = cy

ij(t) for all t ∈ J and 1 ≤ i ≤ j ≤ n .

Proof. The above equality (a) implies cx
j+1j(t) = cy

j+1j(t) for all 1 ≤ j ≤ n− 1 and the equality (b) implies

cx
ij(t) = cy

ij(t) for all j �= n , i �= j + 1, 1 ≤ i ≤ n . Prove cx
in(t) = cy

in(t) for all 1 ≤ i ≤ n . Using Lemma 2 to

vectors yi = x(i)(t), zj = x(j)(t) (i, j = 1, . . . , n), we obtain

(−1)p
[
x

′
(t) . . . x(n)(t)

]2

= det|| < x(i)(t), x(j)(t) > ||. (3)
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Similarly, using Lemma 2 to vectors x
′
, . . . , x(i−1), x(n+1), x(i+1), . . . , x(n), x

′
, . . . , x(n) , we have

(−1)p
[
x

′
. . . x(i−1)x(n+1)x(i+1) . . . x(n)

] [
x

′
. . . x(n)

]
= det|| < x(k), x(l) > ||, (4)

where k = 1, . . . , i − 1, n + 1, i + 1, . . . , n; l = 1, 2, . . . , n . From Equation (3), Equation (4), Equation (1),

Lemma 1 and the equality cx
in(t) =

[
x

′
. . . x(i−1)x(n+1)x(i+1) . . . x(n)

]
[
x′ . . . x(n)

] =
(−1)p

[
x

′
. . . x(i−1)x(n+1)x(i+1) . . . x(n)

] [
x

′
. . . x(n)

]

(−1)p
[
x′ . . . x(n)

]2 ,

for 1 ≤ i ≤ n , we obtain
[
x

′
. . . x(i−1)x(n+1)x(i+1) . . . x(n)

]
[
x

′
. . . x(n)

] =

[
y

′
. . . y(i−1)y(n+1)y(i+1) . . . y(n)

]
[
y

′
. . . y(n)

]

for all i = 1, . . . , n . The lemma is proved. �

Equation (1) and Lemma 3 implies A−1(x(t)) d
dtA(x(t)) = A−1(y(t)) d

dtA(y(t)) for all t ∈ J . The last

equality implies

∂

∂t
(A(y)A(x)−1) = (

∂

∂t
A(y))A(x)−1 + A(y)

∂

∂t
(A(x)−1) = (

∂

∂t
A(y))A(x)−1 −

A(y)A(x)−1(
∂

∂t
A(x))A(x)−1 = A(y)(A(y)−1 ∂

∂t
A(y) − A(x)−1 ∂

∂t
A(x))A(x)−1 = 0.

for all t ∈ J . Using this equality and connectedness of J , we obtain that A(y(t))A(x(t))−1 does not depend

on t ∈ J . Put F = A(y)A(x)−1 . According to detA(x(t)) �= 0 and detA(y(t)) �= 0 for all t ∈ J , we have

detF �= 0 and A(y(t)) = FA(x(t)) for all t ∈ J . We prove that F ∈ O(n, p).

Let A(x)� be the transpose matrix of A(x). Let Ip = ‖bij‖ be the diagonal n × n-matrix such that

bii = −1 for all i = 1, . . . , p and bjj = 1 for all j = p + 1, . . . , n . Using the equality A(x)�IpA(x) =∥∥< x(i), x(j) >
∥∥

i,j=1,2,...,n
, Lemma 1 and Equation (1), we obtain that A(x)�IpA(x) = A(y)�IpA(y). This

equality and the equality A(y) = FA(x) imply that F�IpF = Ip . Hence F ∈ O(n, p).

The equality Ay(t) = FAx(t) implies ∂
∂ty(t) = F ∂

∂tx(t) for all t ∈ J . Then there exists a constant

vector b ∈ En
p such that y(t) = Fx(t) + b for all t ∈ J . The theorem is completed. �

Corollary 1 Let α, β be non-singular curves in En
p and x ∈ Ip(α), y ∈ Ip(β) . Assume that x, y satisfy the

condition (51) in Definition 5. Then

(i) in the case L(α) = L(β) �= (−∞, +∞) , α
M(n,p)∼ β if and only if

sgn < x
′
(s), x

′
(s) >= sgn < y

′
(s), y

′
(s) >, (5)

< x(i)(s), x(i)(s) >=< y(i)(s), y(i)(s) > (6)

for all s ∈ L(α) and i = 2, . . . , n ;
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(ii) in the case L(α) = L(β) = (−∞, +∞) , α
M(n,p)∼ β if and only if

sgn < x
′
(s), x

′
(s) >= sgn < y

′
(s), y

′
(s) >,

< x(i)(s), x(i)(s) >=< y(i)(s + s1), y(i)(s + s1) >

for some s1 ∈ (−∞, +∞) , all s ∈ L(α) and i = 2, . . . , n ;

Proof. Let α
M(n,p)∼ β . Then it is obvious that Equation (5) and Equation (6) hold. Conversely, assume

that Equation (5) and Equation (6) hold. By Proposition 2,
∣∣∣< x

′
(s), x

′
(s) >

∣∣∣ =
∣∣∣< y

′
(s), y

′
(s) >

∣∣∣ = 1 for all

s ∈ L(α). This equality and Equation (5) imply that < x
′
(s), x

′
(s) >=< y

′
(s), y

′
(s) > for all s ∈ L(α). The

last equality and Equation (6), by Theorem 2, imply x
M(n,p)∼ y . Applying Theorem 1, we obtain α

M(n,p)∼ β .

Similarly, the proof of statement (ii) follows from statement (ii) of Theorem 1. �

Remark 4 Similar results are true if x, y satisfy conditions (52) or (53)) in Definition 5.

Let α be a curve and x ∈ Ip(α).

Remark 5 According to Corollary 1 the system

{
L(α), sgn < x

′
, x

′
>, < x(2), x(2) >, . . . , < x(n), x(n) >

}

is a complete system of M(n, p)-invariants of a curve α for the case L(α) �= (−∞, +∞). But they are not

invariants of a curve α for the case L(α) = (−∞, +∞). They depend on reparametrizations s → s + a of a
curve α .

Let δ = δx be the determinant of the matrix || < yi, zj > ||i,j=1,2,...,n−1 , where y1 = z1 = x
′
, y2 = z2 =

x(2), · · · , yn−1 = zn−1 = x(n−1) . Denote the system

{
< x

′
, x

′
>, ..., < x(n−1), x(n−1) >,

[
x

′
(t)x(2)(t) . . . x(n)(t)

]}

of differential polynomials by Z . Denote the differential R -algebra generated by elements of Z by R {Z} .

Lemma 4 < yi, zj >∈ R {Z} for all 1 ≤ i, j, i + j ≤ 2n − 1 and δ ∈ R {Z} .

Proof. Using Lemma 1, we get < x(i), x(j) >∈ R {Z} for all 1 ≤ i, j, i + j ≤ 2n − 1. Since the element

< yi, zj > of the determinant δ is the function < x(i), x(j) > , where 1 ≤ i, j ≤ n−1, we obtain that δ ∈ R {Z} .
�

Theorem 3 Assume that x(t) and y(t) be non-singular J -paths in En
p such that δx(t) �= 0 and δy(t) �= 0 for

all t ∈ J . Then equalities

< x(i)(t), x(i)(t) >=< y(i)(t), y(i)(t) >,
[
x

′
(t)x(2)(t) . . . x(n)(t)

]
=

[
y

′
(t)y(2)(t) . . . y(n)(t)

]
(7)

for all t ∈ J and 1 ≤ i ≤ j ≤ n, i + j ≤ 2n− 1 implies x
SM(n)∼ y .
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Proof. Let f {x} ∈ R {Z} . Then Equation (7) implies

f {x(t)} = f {y(t)} (8)

for all t ∈ J . By Lemma 4, δx ∈ R {Z} . Hence Equation (8) implies δx = δy for all t ∈ J . By the assumption

of our theorem, we have δx �= 0 and δy �= 0 for all t ∈ J . Hence the equality δx = δy for all t ∈ J implies

δ−1
x = δ−1

y for all t ∈ J . Denote the differential R -algebra generated by elements of the system Z , the functions

Δ−1 and δ−1 by R
{
Z, δ−1, Δ−1

}
. Let f {x} ∈ R

{
Z, δ−1, Δ−1

}
). Then the equality δ−1

x = δ−1
y , Equation (7)

and Equation (8) imply

f {x(u)} = f {y(u)} (9)

for all t ∈ J .

Lemma 5 Δ ∈ R {Z} .

Proof. Using Lemma 2 to vectors y1 = z1 = x
′
, y2 = z2 = x(2), · · · , yn = zn = x(n) , we obtain

(−1)p
[
x

′
x(2) . . . x(n)

]2

= det ‖< yi, zj >‖i,j=1,2,...n = Δ. (10)

Since
[
x

′
x(2) . . . x(n)

]
∈ Z , we have Δ ∈ R {Z} . �

Lemma 6 < x(n), x(n) >∈ R
{
Z, δ−1, Δ−1

}
and R

{
V, Δ−1

}
⊂ R

{
Z, δ−1, Δ−1

}
.

Proof. For i = 1, 2, . . . , n , denote the cofactor of the element < yn, zj > of the matrix A = ‖< yi, zj >‖i,j=1,2,...n

in Equation (10) by Dni . Then we obtain the equality

Δ =< yn, z1 > Dn1+ < yn, z2 > Dn2 + · · ·+ < yn, zn−1 > Dnn−1+ < yn, zn > Dnn.

Since δ = Dnn �= 0, this equality implies

< yn, zn >=< x(n), x(n) >= Δδ−1− < yn, z1 > Dn1δ
−1− < yn, z2 > Dn2δ

−1 − (11)

· · ·− < yn, zn−1 > Dnn−1δ
−1.

By Lemma 1, we have < yn, zj >=< x(n), x(j) >∈ R {Z} for each 1 ≤ j ≤ n − 1. We prove that Dns ∈ R {Z}
for every 1 ≤ s ≤ n − 1. We have

Dns = (−1)n+sdet ‖< yi, zj‖i=1,2,...,n−1;j=1,2,...,s−1,s+1,...,n .

Elements of Dns have forms < yi, zj > , < yi, zn > , where i, j < n . By < yi, zj >∈ R {Z} , < yi, zn >=<

yn, zi >∈ R {Z} , we obtain Dns ∈ R {Z} . Hence Equation (11) implies < yn, zn >∈ R
{
Z, δ−1, Δ−1

}
. Using

V ⊂ Z ∪ {(yn, zn)} , we get R
{
V, Δ−1

}
⊂ R

{
Z, δ−1, Δ−1

}
. �
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Using Equations (7), (9)–(11) and R
{
V, Δ−1

}
⊂ R

{
Z, δ−1, Δ−1

}
in Lemma 6, we obtain Equation

(1). Hence, by Theorem 2, F ∈ O(n, p) and b ∈ En
p exist such that y(u) = Fx(u) + b . Using this equal-

ity and
[
x

′
(t)x(2)(t) . . . x(n)(t)

]
=

[
y

′
(t)y(2)(t) . . . y(n)(t)

]
in Equation (7), we get

[
x

′
(t)x(2)(t) . . . x(n)(t)

]
=

detF
[
x

′
(t)x(2)(t) . . . x(n)(t)

]
. Since

[
x

′
(t)x(2)(t) . . . x(n)(t)

]
�= 0 for all t ∈ J , we obtain detF = 1. Hence

x
SM(n)∼ y . The theorem is completed. �

Corollary 2 Let α, β be non-singular curves in En
p and x ∈ Ip(α), y ∈ Ip(β) . Assume that x, y satisfy the

condition (51)) in Definition 5 and conditions δx(t) �= 0 , δy(t) �= 0 for all t ∈ J . Then

(i) in the case L(α) = L(β) �= (−∞, +∞) , α
SM(n,p)∼ β if and only if

[
x

′
(s) . . . x(n)(s)

]
=

[
y

′
(s) . . . y(n)(s)

]
, (12)

sgn < x
′
(s), x

′
(s) >= sgn < y

′
(s), y

′
(s) >, (13)

< x(i)(s), x(i)(s) >=< y(i)(s), y(i)(s) > (14)

for all s ∈ L(α) and all i = 2, . . . , n− 1 ;

(ii) in the case L(α) = L(β) = (−∞, +∞) , α
SM(n,p)∼ β if and only if

[
x

′
(s) . . . x(n)(s)

]
=

[
y

′
(s + s1) . . . y(n)(s + s1)

]
,

sgn < x
′
(s), x

′
(s) >= sgn < y

′
(s), y

′
(s) >,

< x(i)(s), x(i)(s) >=< y(i)(s + s1), y(i)(s + s1) >

for some s1 ∈ (−∞, +∞) , all s ∈ L(α) and i = 2, . . . , n− 1 ;

Proof. (i). Let α
SM(n,p)∼ β . Since elements of Z and the function sgn < x

′
(s), x

′
(s) > are SM(n, p)-

invariant, we obtain that Equation (12)–(14) hold.

Conversely, assume that Equation (12)–(14) hold. According to Proposition 2, we get
∣∣∣< x

′
(s), x

′
(s) >

∣∣∣ =
∣∣∣< y

′
(s), y

′
(s) >

∣∣∣ = 1 for all s ∈ L(α). Then, using Equation (13), we obtain < x
′
(s), x

′
(s) >= < y

′
(s), y

′
(s) >

for all s ∈ L(α). The latest equality, Equation (12) and Equation (14), by Lemmas 4 and 5, imply

δx = δy , Δx = Δy . Then, by Lemma 6, we obtain < x(n), x(n) >=< y(n), y(n) > . By this equality, Equa-

tion (12), Equation (14) and Theorem 3, there exists F ∈ SM(n, p) such that y(s) = Fx(s) = gx(s) + b .

The proof of statement (i) is completed. Similarly, the proof of (ii) follows from statement (ii) of Theorem 1.�

Remark 6 Similar results are true for conditions (52)) or (53)) in Definition 5.

Let α be a curve and x ∈ Ip(α).
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Remark 7 According to Corollary 2, the system

{
L(α), sgn < x

′
, x

′
>, < x(2), x(2) >, . . . , < x(n−1), x(n−1) >,

[
x

′
x(2) . . . x(n)

]}

is a complete system of SM(n, p)-invariants of a curve α for the case L(α) �= (−∞, +∞). But they are not

invariants of a curve α for the case L(α) = (−∞, +∞). They depend on reparametrizations s → s + a of the
curve α .
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