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Small covers over products of a polygon with a simplex

Yanying Wang and Yanchang Chen

Abstract

The equivariant homeomorphism class of an (orientable) small cover over a simple convex polytope P n

bijectively corresponds to the equivalence class of its (orientable) coloring under the action of automorphism

group of face poset of P n . By calculating the number of orbits of group actions we determine the number of

equivariant homeomorphism classes of small covers over products of a polygon with a simplex. Moreover, we

calculate the number of equivariant homeomorphism classes of all orientable small covers over the product.
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1. Introduction

A small cover, defined by Davis and Januszkiewicz in [5], is a smooth closed manifold Mn with a locally

standard (Z2)n -action such that its orbit space is a simple convex polytope. This establishes a direct connection

between equivariant topology and combinatorics. From [5], we know that the connected sum of some RP (2)
′
s

is a small cover over the m-gon Pm and that real projective space RP (n) is a small cover over the n-simplex
Δn . Thus, their product is a small cover over Pm × Δn .

In [6], L ü and Masuda showed that the equivariant homeomorphism class of a small cover over a simple

convex polytope P n agrees with the equivalence class of its corresponding (Z2)n -coloring under the action of
automorphism group of face poset of P n . This holds for orientable small covers by the orientability condition in
[7] (see Theorem 5.3). But there are no general formulas to calculate the number of equivariant homeomorphism

classes of (orientable) small covers over an arbitrary simple convex polytope.

In recent years, several studies have attempted to enumerate the number of equivalence classes of all
small covers over a specific polytope. Cai, Chen and L ü calculated the number of equivariant homeomorphism
classes of small covers over 3-dimensional prisms [2]. In 2008, S. Choi determined the number of equivariant

homeomorphism classes of small covers over cubes [3]. There are few results about orientable small covers. S.

Choi calculated the number of D-J equivalence classes of orientable small covers over cubes [4].

This paper gives a calculation formula of the number of equivariant homeomorphism classes of all small
covers over Pm×Δn (see Theorem 4.1). When n=1, Pm×Δn is a 3-dimensional m-sided prism and the present

result is the same as Theorem 4.1 in [2]. So our result is a generalization of Theorem 4.1 in [2]. Furthermore,
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we determine the number of equivariant homeomorphism classes of orientable small covers over Pm × Δn (see

Theorem 5.5).

This paper is organized as follows. In Section 2, we review the basic theory about small covers and
calculate the automorphism group of face poset of Pm × Δn . In Section 3, we determine the number of all
colorings on Pm × Δn , so that in Section 4 we obtain a calculation formula of the number of equivariant
homeomorphism classes of all small covers over Pm × Δn . In Section 5, similarly we determine the number of
equivariant homeomorphism classes of orientable small covers over Pm × Δn .

2. Preliminaries

A convex polytope P n of dimension n is said to be simple if every vertex of P n is the intersection of
exactly n facets (i.e. faces of dimension (n − 1)) [8]. An n-dimensional smooth closed manifold Mn is said

to be a small cover if it admits a smooth (Z2)n -action such that the action is locally isomorphic to a standard

action of (Z2)n on Rn and the orbit space Mn/(Z2)n is a simple convex polytope of dimension n .

Let P n be a simple convex polytope of dimension n and F(P n) = {F1, · · · , Fl} be the set of facets
of P n . Suppose that π : Mn → P n is a small cover over P n . Then there are l connected submanifolds

π−1(F1), · · · , π−1(Fl). Each submanifold π−1(Fi) is fixed pointwise by a Z2 -subgroup Z2(Fi) of (Z2)n , so that

each facet Fi corresponds to the Z2 -subgroup Z2(Fi). Obviously, the Z2 -subgroup Z2(Fi) actually agrees with

an element νi in (Z2)n as a vector space. For each face F of codimension u , since P n is simple, there are u

facets Fi1 , · · · , Fiu
such that F = Fi1

∩· · ·∩Fiu . Then, the corresponding submanifolds π−1(Fi1), · · · , π−1(Fiu)

intersect transversally in the (n − u)-dimensional submanifold π−1(F ), and the isotropy subgroup Z2(F ) of

π−1(F ) is a subtorus of rank u and is generated by Z2(Fi1), · · · , Z2(Fiu) (or is determined by νi1 , · · · , νiu in

(Z2)n ). Thus, this actually gives a characteristic function [5]

λ : F(P n) −→ (Z2)n

defined by λ(Fi) = νi such that, whenever the intersection Fi1
∩ · · · ∩Fiu is non-empty, λ(Fi1), · · · , λ(Fiu) are

linearly independent in (Z2)n . If we regard each nonzero vector of (Z2)n as being a color, then the characteristic

function λ means that each facet is colored by a color. Here, we also call λ a (Z2)n -coloring on P n .

In fact, Davis and Januszkiewicz gave a reconstruction process of a small cover by using a (Z2)n -coloring

λ : F(P n) −→ (Z2)n . Let Z2(Fi) be the subgroup of (Z2)n generated by λ(Fi). Given a point p ∈ P n ,

by F (p) we denote the minimal face containing p in its relative interior. Assume F (p) = Fi1
∩ · · · ∩ Fiu

and Z2(F (p)) =
⊕u

j=1 Z2(Fij). Note that Z2(F (p)) is a u -dimensional subgroup of (Z2)n . Let M(λ) denote

P n × (Z2)n/ ∼, where (p, g) ∼ (q, h) if p = q and g−1h ∈ Z2(F (p)). The free action of (Z2)n on P n × (Z2)n

descends to an action on M(λ) with quotient P n . Thus M(λ) is a small cover over P n [5].

Two small covers M1 and M2 over P n are said to be weakly equivariantly homeomorphic if there is an
automorphism ϕ : (Z2)n → (Z2)n and a homeomorphism f : M1 → M2 such that f(t ·x) = ϕ(t) ·f(x) for every

t ∈ (Z2)n and x ∈ M1 . If ϕ is an identity, then M1 and M2 are equivariantly homeomorphic. Following [5],

two small covers M1 and M2 over P n are said to be Davis-Januszkiewicz equivalent (or simply, D-J equivalent)
if there is a weakly equivariant homeomorphism f : M1 → M2 covering the identity on P n .

By Λ(P n) we denote the set of all (Z2)n -colorings on P n . Then we have the following theorem
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Theorem 2.1 (Davis-Januszkiewicz). All small covers over P n are given by {M(λ)|λ ∈ Λ(P n)} , i.e. for each

small cover Mn over P n , there is a (Z2)n -coloring λ with an equivariant homeomorphism M(λ) −→ Mn

covering the identity on P n .

Remark 1 Generally speaking, we cannot be sure that there always exist (Z2)n -colorings over a simple convex

polytope P n when n ≥ 4 (see [5, Nonexample 1.22]).

There is a natural action of GL(n, Z2) on Λ(P n) defined by the correspondence λ �−→ σ ◦ λ , and the

action on Λ(P n) is free. Without loss of generality, we assume that F1, · · · , Fn of F(P n) meet at one vertex

p of P n . Let e1, · · · , en be the standard basis of (Z2)n . Write A(P n) = {λ ∈ Λ(P n)|λ(Fi) = ei, i = 1, · · · , n} .

In fact, A(P n) is the orbit space of Λ(P n) under the action of GL(n, Z2). Then we have this lemma:

Lemma 2.2 |Λ(P n)| = |A(P n)| × |GL(n, Z2)| .

Note that we know from [1] that |GL(n, Z2)| =
n∏

k=1

(
2n − 2k−1

)
. Two small covers M(λ1) and M(λ2)

over P n are D-J equivalent if and only if there is σ ∈ GL(n, Z2) such that λ1 = σ ◦ λ2 . So the number of D-J

equivalence classes of small covers over P n is |A(P n)| .
Let P n be a simple convex polytope of dimension n . All faces of P n form a poset (i.e., a partially ordered

set by inclusion). An automorphism of F(P n) is a bijection from F(P n) to itself which preserves the poset

structure of all faces of P n , and by Aut(F(P n)) we denote the group of automorphisms of F(P n). One can

define the right action of Aut(F(P n)) on Λ(P n) by λ × h �−→ λ ◦ h, where λ ∈ Λ(P n) and h ∈ Aut(F(P n)).

The following theorem is well known [6].

Theorem 2.3 Two small covers over an n-dimensional simple convex polytope P n are equivariantly homeo-
morphic if and only if there is h ∈ Aut(F(P n)) such that λ1 = λ2 ◦h, where λ1 and λ2 are their corresponding

(Z2)n -colorings on P n .

So the number of orbits of Λ(P n) under the action of Aut(F(P n)) is just the number of equivariant
homeomorphism classes of small covers over P n . Thus, we are going to count the orbits. Burnside Lemma is
very useful in the enumeration of the number of orbits.

Burnside Lemma Let G be a finite group acting on a set X. Then the number of orbits X under the action

of G equals to 1
|G|

∑
g∈G |Xg|, where Xg = {x ∈ X|gx = x}.

Burnside Lemma suggests that, in order to determine the number of the orbits of Λ(P n) under the

action of Aut(F(P n)), we need to understand the structure of Aut(F(P n)). As stated in Section 1, we shall
particularly be concerned with the case in which the simple convex polytope is Pm × Δn .

To be convenient, we introduce the following notation. By F ′
1, · · · , F ′

m we denote all edges of the

m-gon Pm in their general order, and by F ′
m+1, · · · , F ′

m+n+1 we denote all facets of the n-simplex Δn.

Set F ′ = {Fi = F ′
i×Δn|1 ≤ i ≤ m}, F ′′ = {Fi = Pm×F ′

i |m+1 ≤ i ≤ m+n+1}. Then F(Pm×Δn) = F ′ ⋃F ′′.

Next, we determine the automorphism group of F(Pm × Δn).

Lemma 2.4 Let Pm, Δn be m-gon and n-simplex respectively. The automorphism group Aut(F(Pm × Δn))
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is isomorphic to ⎧⎪⎪⎨
⎪⎪⎩

(Z2)3 × S3, n = 1 and m = 4,

S3 × S3 × Z2, n = 2 and m = 3,

Dm × Sn+1, n = 1 and m 
= 4, n = 2 and m 
= 3, or n ≥ 3,

where Dm is the dihedral group of order 2m and Sn+1 is the symmetric group on n + 1 symbols.

Proof. When n=1 and m=4, Pm × Δn is a 3-cube I3 . Obviously, the automorphism group Aut(F(I3))
contains a symmetric group S3 since there is exactly one automorphism for each permutation of the three pairs

of opposite sides of I3 . All elements of Aut(F(I3)) can be written in a simple form as follows: χe1
1 χe2

2 χe3
3 · u,

where e1, e2, e3 ∈ Z2 , with reflections χ1, χ2, χ3 and u ∈ S3 . Thus, the automorphism group Aut(F(I3)) is

isomorphic to (Z2)3 × S3 . In fact, Aut(F(I3)) has three copies of D4 × Z2 as subgroups.

When n=2 and m=3, Pm × Δn is Δ2 × Δ2 . In this case, F ′ = {Fi = F ′
i × Δ2|1 ≤ i ≤ 3},

F ′′ = {Fi = Δ2 × F ′
i |4 ≤ i ≤ 6} and F(Δ2 × Δ2) = F ′ ⋃F ′′. Let the facets in F ′ interchange and the

facets in F ′′ stay unchanged. Then these automorphisms form a group S3. Let the facets in F ′′ interchange
and the facets in F ′ stay unchanged. Then these automorphisms also form a group S3. We obtain a new group
S3 × S3 , each of which is an automorphism under which the facets in F ′ and F ′′ are mapped to F ′ and F ′′

respectively. We choose an automorphism f such that f(Fi) = Fi+3 for 1 ≤ i ≤ 3 and f(Fi) = Fi−3 for

4 ≤ i ≤ 6. Let Z2 = {f, 1} . Then we again get a new group S3 × S3 × Z2, each of which is an automorphism

under which the facets in F ′ and F ′′ are mapped to F ′ and F ′′ or to F ′′ and F ′ respectively. In fact,
Aut(F(Δ2 × Δ2)) is just S3 × S3 × Z2 because other bijections from F(Δ2 × Δ2) to itself don’t preserve the
poset structure of all faces of Δ2 × Δ2 .

When n=1 and m 
= 4, n=2 and m 
= 3, or n ≥ 3, the facets in F ′ and F ′′ are mapped to F ′

and F ′′ respectively under automorphisms of Aut(F(Pm ×Δn)). Since the automorphism group Aut(F(Pm))

is isomorphic to Dm and Aut(F(Δn)) is isomorphic to Sn+1 , Aut(F(Pm×Δn)) is isomorphic to Dm×Sn+1 . �

Remark 2 Let x, y, z be automorphisms in Aut(F(Pm × Δn)) with the following properties, respectively:

(1) x(Fi) = Fi+1(i = 1, 2, · · · , m − 1), x(Fm) = F1, x(Fj) = Fj, m + 1 ≤ j ≤ m + n + 1;

(2) y(Fi) = Fm+1−i(i = 1, 2, · · · , m), y(Fj) = Fj, m + 1 ≤ j ≤ m + n + 1;

(3) z(Fi) = Fi(i = 1, 2, · · · , m), z(Fj) ∈ F ′′, m + 1 ≤ j ≤ m + n + 1.

Then, when n=1 and m 
= 4, n=2 and m 
= 3, or n ≥ 3, all automorphisms in Aut(F(Pm × Δn)) can be
written in the simple form

xuyvz, (1)

with xm = y2 = 1 and xuy = yxm−u .

3. Colorings on Pm × Δn

This section is devoted to calculating the number of (Z2)n+2 -colorings on Pm × Δn .
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Theorem 3.1 By N we denote the set of natural numbers. Let a, b, c be the functions from N × N to N with
the following properties:

(1) a(j, n) = 2na(j − 1, n) + 22n+1a(j − 2, n) with a(1, n) = 1, a(2, n) = 2n ;

(2) b(j, n) = b(j − 1, n) + 2n+1b(j − 2, n) with b(1, n) = b(2, n) = 1 ;

(3) c(j, n) = 2c(j − 1, n)+ 2n+1c(j − 2, n)− (2n+1 +2)c(j − 3, n)− (2n+1 − 1)c(j − 4, n)+2n+1c(j − 5, n)

with c(1, n) = c(2, n) = 1, c(3, n) = 3, c(4, n) = 2n+1 + 3, c(5, n) = 3 × 2n+1 + 5.

Then the number of (Z2)n+2 -colorings over Pm × Δn is

|Λ(Pm × Δn)| =
n+2∏
k=1

(2n+2 − 2k−1)[a(m− 1, n) + 2b(m− 1, n) + c(m − 1, n)].

Proof. Let e1, e2, · · · , en+2 be the standard basis of (Z2)n+2 , then (Z2)n+2 contains 2n+2 − 1 nonzero ele-

ments (or 2n+2−1 colors). We choose F1, F2 from F ′ and Fm+1, · · · , Fm+n from F ′′ such that F1, F2, Fm+1, · · · ,

Fm+n meet at one vertex of Pm × Δn . Then

A(Pm × Δn) = {λ ∈ Λ(Pm × Δn)|λ(F1) = e1, λ(F2) = e2, λ(Fi) = ei−m+2, m + 1 ≤ i ≤ m + n}.

By Lemma 2.2, we have that

|Λ(Pm × Δn)| = |A(Pm × Δn)| × |GL(n + 2, Z2)| =
n+2∏
k=1

(2n+2 − 2k−1)|A(Pm × Δn)|.

In order to find those facets which have been colored and which meet at one vertex of Pm × Δn with
Fm+n+1 , we choose F1, F2 from F ′ and arbitrary n − 1 facets from F ′′ which aren’t Fm+n+1 . By the linear

independence condition of characteristic functions, the calculation of |A(Pm × Δn)| is divided into four cases.
Write

A0(Pm × Δn) = {λ ∈ A(Pm × Δn)|λ(Fm+n+1) = e3 + · · ·+ en+2},
A1(Pm × Δn) = {λ ∈ A(Pm × Δn)|λ(Fm+n+1) = e3 + · · ·+ en+2 + e1},
A2(Pm × Δn) = {λ ∈ A(Pm × Δn)|λ(Fm+n+1) = e3 + · · ·+ en+2 + e2},
A3(Pm × Δn) = {λ ∈ A(Pm × Δn)|λ(Fm+n+1) = e3 + · · ·+ en+2 + e1 + e2}.

Then we have that |A(Pm × Δn)| =
3∑

i=0

|Ai(Pm × Δn)|. Our argument is divided into the following cases.

Case 1. Calculation of |A0(Pm × Δn)|.
By the linear independence condition of characteristic functions, we see that λ(Fm) = e2 or λ(Fm) =

e2 + ek1 + ek2 + · · · + eki , 1 ≤ k1 < k2 < · · · < ki ≤ n + 2, k1 
= 2, k2 
= 2, · · · , ki 
= 2 and 1 ≤ i ≤ n + 1. Set

A0
0(Pm×Δn) = {λ ∈ A0(Pm×Δn)|λ(Fm−1) = e1 +em1 + · · ·+emj , 3 ≤ m1 < · · · < mj ≤ n+2, 0 ≤ j ≤ n} and

A1
0(Pm × Δn) = A0(Pm × Δn) − A0

0(Pm × Δn). Take a coloring λ in A0
0(Pm × Δn). Then λ(Fm−2), λ(Fm) ∈

{e2 + ek1 + ek2 + · · · + eki , 1 ≤ k1 < k2 < · · · < ki ≤ n + 2, k1 
= 2, k2 
= 2, · · · , ki 
= 2 and 0 ≤ i ≤ n + 1}.
In this case, we see that the values of λ restricted to Fm−1 and Fm have 22n+1 possible choices. Thus,

|A0
0(Pm×Δn)| = 22n+1|A0(Pm−2×Δn)| . Take a coloring λ in A1

0(Pm×Δn). Then λ(Fm−1) = e2 or λ(Fm−1) =
e2+ek1 +ek2 +· · ·+eki , 1 ≤ k1 < k2 < · · · < ki ≤ n+2, k1 
= 2, k2 
= 2, · · · , ki 
= 2 and 1 ≤ i ≤ n+1. In this case,
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if we fix any value of λ(Fm−1), then λ(Fm) has 2n possible values. Thus |A1
0(Pm×Δn)| = 2n|A0(Pm−1×Δn)| .

Further, we have that

|A0(Pm × Δn)| = 2n|A0(Pm−1 × Δn)| + 22n+1|A0(Pm−2 × Δn)|.

A direct observation shows that when m=2, |A0(Pm ×Δn)| = 1, and when m=3, |A0(Pm ×Δn)| = 2n. Thus,

we have that |A0(Pm × Δn)| = a(m − 1, n).

Case 2. Calculation of |A1(Pm × Δn)|

Similarly to Case 1, set A0
1(Pm × Δn) = {λ ∈ A1(Pm × Δn)|λ(Fm−1) = e1} and A1

1(Pm × Δn) =

A1(Pm × Δn) − A0
1(Pm × Δn). Take a coloring λ in A0

1(Pm × Δn). We have λ(Fm−2), λ(Fm) ∈ {e2 + ek1+

ek2 + · · · + eki , 1 ≤ k1 < k2 < · · · < ki ≤ n + 2, k1 
= 2, k2 
= 2, · · · , ki 
= 2 and 0 ≤ i ≤ n + 1}. Thus,

|A0
1(Pm × Δn)| = 2n+1|A1(Pm−2 × Δn)| . Take a coloring λ in A1

1(Pm × Δn). We then have λ(Fm−1) =

e2 or λ(Fm−1) = e2 + ek1 + ek2 + · · · + eki , 1 ≤ k1 < k2 < · · · < ki ≤ n + 2, k1 
= 2, k2 
= 2, · · · , ki 
=
2 and 1 ≤ i ≤ n + 1. But λ(Fm) has only one possible value whichever possible value of λ(Fm−1) is chosen,

so |A1
1(Pm × Δn)| = |A1(Pm−1 × Δn)| . Also, we see that |A1(P2 × Δn)| = |A1(P3 × Δn)| = 1. Thus,

|A1(Pm × Δn)| = b(m − 1, n).

Case 3. Calculation of |A2(Pm × Δn)|

If we interchange e1 and e2 , then the problem is reduced to Case 2, so |A2(Pm × Δn)| = b(m − 1, n).

Case 4. Calculation of |A3(Pm × Δn)|
In this case, λ(Fm) = e2 or e2 + e1 . Set A0

3(Pm × Δn) = {λ ∈ A3(Pm × Δn)|λ(Fm−1) = e1} ,

A1
3(Pm × Δn) = {λ ∈ A3(Pm × Δn)|λ(Fm−1) = e2 or e2 + e1} , and A2

3(Pm × Δn) = {λ ∈ A3(Pm ×
Δn)|λ(Fm−1) = e1 + em1 + · · · + emj or e2 + em1 + · · · + emj , 3 ≤ m1 < · · · < mj ≤ n + 2, 1 ≤ j ≤ n} .

Then |A3(Pm × Δn)| = |A0
3(Pm × Δn)| + |A1

3(Pm × Δn)| + |A2
3(Pm × Δn)| . An easy argument shows that

|A0
3(Pm × Δn)| = 2|A3(Pm−2 × Δn)| and |A1

3(Pm × Δn)| = |A3(Pm−1 × Δn)| , so

|A3(Pm × Δn)| = |A3(Pm−1 × Δn)| + 2|A3(Pm−2 × Δn)| + |A2
3(Pm × Δn)|. (2)

Set B(m, n) = {λ ∈ A2
3(Pm × Δn)|λ(Fm−2) = e2 + e1} . Then it is easy to see that

|A2
3(Pm × Δn)| = |A2

3(Pm−1 × Δn)| + |B(m, n)| (3)

and
|B(m, n)| = (2n+1 − 2)|A2

3(Pm−2 × Δn)| + (2n+1 − 2)|A3(Pm−4 × Δn)| + (2n+1 − 2)

|A3(Pm−5 × Δn)| + |B(m− 2, n)|
(4)

Combining equations (2),(3) and (4), we obtain

A3(Pm × Δn)| = 2|A3(Pm−1 × Δn)| + 2n+1|A3(Pm−2 × Δn)| − (2n+1 + 2)|A3(Pm−3×
Δn)| − (2n+1 − 1)|A3(Pm−4 × Δn)| + 2n+1|A3(Pm−5 × Δn)|.

A direct observation gives that |A3(P2×Δn)| = |A3(P3×Δn)| = 1, |A3(P4×Δn)| = 3, |A3(P5×Δn)| = 2n+1+3,

and |A3(P6 × Δn)| = 3 × 2n+1 + 5. Thus, we have |A3(Pm × Δn)| = c(m− 1, n). �
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Remark 3 From Theorem 3.1 we know that the number of D-J equivalence classes of small covers over Pm×Δn

is a(m − 1, n) + 2b(m− 1, n) + c(m − 1, n).

4. The number of equivariant homeomorphism classes

In this section, we determine the number of equivariant homeomorphism classes of all small covers over
Pm × Δn .

Theorem 4.1 Let ϕ denote the Euler’s totient function, that is, ϕ(1) = 1 and ϕ(N) for a positive integer

N(N ≥ 2) is the number of positive integers both less than N and coprime to N. Let E(Pm × Δn) denote the

number of equivariant homeomorphism classes of small covers over Pm × Δn . Then E(Pm × Δn) is equal to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2m(n+1)!

{
∑

t>1,t|m
ϕ(m

t
)|Λ(Pt × Δn)| + m

2

n+2∏
k=1

(2n+2 − 2k−1)[ρ1(m, n) + ρ2(m, n)]},

n = 2 and m 
= 3, or n ≥ 3,

1
4m

{
∑

t>1,t|m
ϕ(m

t
)[|Λ(Pt × I| + 168a(t − 1, 1)] + 84mρ1(m, 1) + 168mρ2(m, 1)},

n = 1 and m 
= 4,

1960, n = 2 and m = 3,

259, n = 1 and m = 4,

where ρ1(m, n) is defined recursively as follows:

ρ1(m, n) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, m odd,

3, m = 2,

2n+1 + 4, m = 4,

ρ1(m − 2, n) + 2n+1ρ1(m − 4, n), m ≥ 6 and m even;

and

ρ2(m, n) =

{
0, m odd,

(2n+1)
m
2 −1, m even.

Proof. From Theorem 2.3, and Burnside Lemma and Lemma 2.4, we have that

E(Pm × Δn) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2m(n+1)!

∑
g∈Aut(F(Pm×Δn)) |Λg|, n = 1 and m 
= 4, n = 2 and m 
= 3,

or n ≥ 3,

1
72

∑
g∈Aut(F(Δ2×Δ2)) |Λg|, n = 2 and m = 3,

1
48

∑
g∈Aut(F(I3)) |Λg|, n = 1 and m = 4,

where Λg = {λ ∈ Λ(Pm × Δn)|λ = λ ◦ g}.
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When n=2 and m 
= 3, or n ≥ 3, by (1) each automorphism g of Aut(F(Pm × Δn)) can be written as
xuyvz, and the argument is divided into the following cases.

Case 1. g = xu.

Let t = gcd(u, m)(the greatest common divisor of u and m). Then all facets in F ′ are divided into t

orbits under the action of g , and each orbit contains m
t facets. Thus, each (Z2)n+2 -coloring of Λg gives the

same coloring on all m
t facets of each orbit. This means that if t 
= 1, |Λg| = |Λ(Pt × Δn)|. If t = 1, then all

facets in F ′ have the same coloring, which is impossible by the definition of (Z2)n+2 -colorings. On the other

hand, for every t > 1, there are exactly ϕ(m
t ) automorphisms of the form xu , each of which divides all facets

in F ′ into t orbits. Thus, when g = xu,

∑
g=xu

|Λg| =
∑

t>1,t|m
ϕ(

m

t
)|Λ(Pt × Δn)|.

Case 2. g = xuz(z 
= 1).

In this case, there exist j1, j
′
1 such that (1) j1 
= j′1, m + 1 ≤ j1, j

′
1 ≤ m + n + 1 and (2) g(Fj1) = Fj′

1
.

Then Fj1 and Fj′
1

have the same coloring, which contradicts the definition of (Z2)n+2 -colorings. Thus, for each

such an automorphism g , Λg is empty.

Case 3. g = xuyz with m odd.

Since m is odd, each automorphism always gives an interchange between two neighborly facets in F ′ , so

the two neighborly facets have the same coloring, which contradicts the definition of (Z2)n+2 -colorings. Thus,
Λg is empty.

Case 4. g = xuyz with u even and m even.

Let l = m−u−2
2 . Then it is easy to see that such an automorphism gives an interchange between two

neighborly facets Fl and Fl+1 , so both facets Fl and Fl+1 have the same coloring. Thus, Λg is empty.

Case 5. g = xuy with u odd and m even.

Since each automorphism g = xuy contains y as its factor and u is odd, each coloring λ of Λg is

equivalent to coloring only m
2 + 1 neighborly facets in F ′ and all facets in F ′′ . We shall show that for each

g = xuy , the number of all colorings in Λg is just

|Λg| =
n+2∏
k=1

(2n+2 − 2k−1)[ρ1(m, n) + ρ2(m, n)], (5)

where ρ1(m, n) and ρ2(m, n) are stated as in Theorem 4.1. It is easy to see that there are exactly m
2

such automorphisms g = xuy since m is even and u is odd, so

∑
g=xuy

|Λg| =
m

2

n+2∏
k=1

(2n+2 − 2k−1)[ρ1(m, n) + ρ2(m, n)].

Now let us show equality (5) as follows.
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Actually, the method of Case 1 of Theorem 3.1 can still be carried out here. Also, it suffices to consider

the case g = xm−1y (i.e. g = yx) since there is no essential difference between this case and other cases.

Set X1(m, n) = {λ ∈ Λg|λ(Fm+n+1) 
= λ(Fm+1) + · · · + λ(Fm+n)} and X2(m, n) = Λg − X1(m, n). Then,

by X0
1 (m, n) we denote the set {λ ∈ X1(m, n)|λ(Fm), λ(F2), λ(Fk1), · · · , λ(Fkn) are linearly independent,

m+1 ≤ k1 < · · · < kn ≤ m+n+1} , and by X1
1 (m, n) we denote X1(m, n)−X0

1 (m, n). Similarly to the argument

of Case 1 of Theorem 3.1, we have that |X0
1 (m, n)| = |X1(m− 2, n)| and |X1

1 (m, n)| = 2n+1|X1(m− 4, n)| with

initial values |X1(2, n)| = 3
n+2∏
k=1

(2n+2−2k−1) and |X1(4, n)| = (2n+1 +4)
n+2∏
k=1

(2n+2−2k−1). Thus, |X1(m, n)| =

n+2∏
k=1

(2n+2 − 2k−1)ρ1(m, n). For X2(m, n), in a similar way we may obtain |X2(m, n)| = 2n+1|X2(m − 2, n)|

with |X2(2, n)| =
n+2∏
k=1

(2n+2 − 2k−1), which is exactly
n+2∏
k=1

(2n+2 − 2k−1)ρ2(m, n).

Case 6. g = xuyz(z 
= 1) with u odd and m even.

Just as Case 2, Λg is empty.

Combing Cases 1-6, we complete the proof for n=2 and m 
= 3 or n ≥ 3.
When n=1 and m 
= 4, using the method above, we easily give the proof. This result is the same as

Theorem 4.1 of [2].

When n=2 and m=3, the automorphism group Aut(F(Δ2×Δ2)) is isomorphic to S3 ×S3 ×Z2 . By the
linear independence condition of characteristic functions, we know that Λg is empty when g isn’t unit element

of the automorphism group Aut(F(Δ2 × Δ2)). Thus, from Theorem 3.1, we have

E(Δ2 × Δ2) =
1
72

|Λ(Δ2 × Δ2)| = 1960.

When n=1 and m=4, then Pm×Δn is a 3-cube I3 . The automorphism group Aut(F(I3)) is isomorphic

to (Z2)3 × S3 , and it has three copies of D4 × Z2 as subgroups. Similarly we can determine the case of the

action of a subgroup D4 × Z2 of Aut(F(I3)) on I3 . However, each of other 32 automorphisms in Aut(F(I3))

has no fixed coloring in Λ(I3)) since it maps top facet(or bottom facet) to a sided facet. Thus

E(I3) =
1
48

{
∑

t=2,4

ϕ(
4
t
)[|Λ(Pt × I)| + 168a(t− 1, 1)] + 84 × 4× ρ1(4, 1) + 168 × 4 × ρ2(4, 1)} = 259.

This number is the same as that of Theorem 4.1 in [2]. The proof is completed. �

5. Orientable small covers over Pm × Δn

Nakayama and Nishimura found an orientability condition for a small cover [7].

Theorem 5.1 For a basis {e1, · · · , en} of (Z2)n , a homomorphism ε : (Z2)n −→ Z2 = {0, 1} is defined by

ε(ei) = 1(i = 1, · · · , n) . A small cover M(λ) over a simple convex polytope P n is orientable if and only if there

exists a basis {e1, · · · , en} of (Z2)n such that the image of ελ is {1} .
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We call a (Z2)n -coloring which satisfies the orientability condition in Theorem 5.1 an orientable coloring

of P n . We know that there exists an orientable small cover over every simple convex 3-polytope [7]. Similarly
we know the existence of orientable small cover over Pm×Δn by existence of orientable colorings and determine
the number of equivariant homeomorphism classes.

By O(P n) we denote the set of all orientable colorings on P n . There is a natural action of GL(n, Z2)

on O(P n) defined by the correspondence λ �−→ σ ◦ λ , and the action on O(P n) is free. Assume that

F1, · · · , Fn of F(P n) meet at one vertex p of P n . Let e1, · · · , en be the standard basis of (Z2)n . Write

B(P n) = {λ ∈ O(P n)|λ(Fi) = ei, i = 1, · · · , n} . It is easy to check that B(P n) is the orbit space of O(P n)

under the action of GL(n, Z2).

Remark 4 In fact, we have B(P n) = {λ ∈ O(P n)|λ(Fi) = ei, i = 1, · · · , n and for n + 1 ≤ j ≤ 
, λ(Fj) =

ej1 + ej2 + · · ·+ ej2hj+1 , 1 ≤ j1 < j2 < · · · < j2hj+1 ≤ n} . Below we show that λ(Fj) = ej1 + ej2 + · · ·+ ej2hj+1

for n + 1 ≤ j ≤ 
 . If λ ∈ O(P n), there exists a basis {e′1, · · · , e′n} of (Z2)n such that for 1 ≤ i ≤ 
, λ(Fi) =

e′i1 + · · ·+ e′i2fi+1
, 1 ≤ i1 < · · · < i2fi+1 ≤ n. Since λ(Fi) = ei, i = 1, · · · , n , then ei = e′i1 + · · ·+ e′i2fi+1

. So we

obtain that for n+1 ≤ j ≤ 
, there are not j1, · · · , j2k such that λ(Fj) = ej1 +· · ·+ej2k , 1 ≤ j1 < · · · < j2k ≤ n.

Since B(P n) is the orbit space of O(P n), then we have

Lemma 5.2 |O(P n)| = |B(P n)| × |GL(n, Z2)| .

Two orientable small covers M(λ1) and M(λ2) over P n are D-J equivalent if and only if there is

σ ∈ GL(n, Z2) such that λ1 = σ ◦ λ2 . Thus, the number of D-J equivalence classes of orientable small covers

over P n is |B(P n)| .
One can define the right action of Aut(F(P n)) on O(P n) by λ × h �−→ λ ◦ h, where λ ∈ O(P n) and

h ∈ Aut(F(P n)). By improving the classifying result on small covers in [6], we have the following theorem.

Theorem 5.3 Two orientable small covers over an n-dimensional simple convex polytope P n are equivariantly
homeomorphic if and only if there is h ∈ Aut(F(P n)) such that λ1 = λ2 ◦ h, where λ1 and λ2 are their
corresponding orientable colorings on P n .

Proof. We know Theorem 5.3 is true by combining Lemma 5.4 in [6] with Theorem 5.1. �

By Theorem 5.3, the number of orbits of O(P n) under the action of Aut(F(P n)) is just the number
of equivariant homeomorphism classes of orientable small covers over P n . So we also are going to count the
orbits.

In the similar way, we calculate the number of all orientable colorings on Pm × Δn by Theorem 5.1,
Remark 4 and Lemma 5.2.

Theorem 5.4 Let a′, b′ be the functions from N × N to N with the following properties:

(1) a′(j, n) = 2n−1a′(j − 1, n) + 22n−1a′(j − 2, n) with a′(1, n) = 1, a′(2, n) = 2n−1 ;

(2) b′(j, n) =

{
0 j even,

(2n)
j−1
2 j odd.

Then the number of all orientable colorings on Pm × Δn is
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|O(Pm × Δn)| =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n+2∏
k=1

(2n+2 − 2k−1)[a′(m − 1, n) + 1+(−1)m

2
], n odd,

2
n+2∏
k=1

(2n+2 − 2k−1)b′(m − 1, n), n even.

Similarly, we determine the number of equivariant homeomorphism classes of all orientable small covers
over Pm × Δn by Lemma 2.4, the Burnside Lemma and Theorems 5.3, 5.4.

Theorem 5.5 Let ϕ denote the Euler’s totient function. Let Eo(Pm × Δn) denote the number of equivariant

homeomorphism classes of orientable small covers over Pm × Δn . Then Eo(Pm × Δn) is equal to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2m(n+1)!

{
∑

t>1,t|m
ϕ(m

t
)|O(Pt × Δn)| + m

2

n+2∏
k=1

(2n+2 − 2k−1)[ 1+(−1)n+1

2
(ρ′1(m, n) + 1+(−1)m

2
)

+1+(−1)n

2 (ρ′2(m, n) + ρ′3(m, n))]}, n = 2 and m 
= 3, or n ≥ 3,

1
4m

{
∑

t>1,t|m
ϕ(m

t
)[|O(Pt × I)| + 168a′(t − 1, 1)] + 168mρ′1(m, 1) + 42m[1 + (−1)m]},

n = 1 and m 
= 4,

0, n = 2 and m = 3,

70, n = 1 and m = 4,

where ρ′1(m, n), ρ′2(m, n) , and ρ′3(m, n) are defined as

ρ′1(m, n) =

{
0, m odd,

(2n)
m
2 −1, m even

ρ′2(m, n) =

{
0, m odd,

(2n)h−1, m = 4h or m = 4h − 2, h ≥ 1

and

ρ′3(m, n) =

⎧⎪⎪⎨
⎪⎪⎩

0, m odd,

(2n)h, m = 4h, h ≥ 1

(2n)h−1, m = 4h − 2, h ≥ 1.
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