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doi:10.3906/mat-1006-327

The character variety of a class of rational links

Khaled Qazaqzeh

Abstract

Let Gn be the fundamental group of the exterior of the rational link C(2n) in Conway’s normal form, see

[7]. A presentation for Gn is given by 〈a, b | (ab)n = (ba)n〉 [3, Thm. 2.2]. We study the character variety

in SL(2, � ) of the group Gn . In particular, we give the defining polynomial of the character variety of Gn .

As an application, we show a well-known result that Gn and Gm are isomorphic only when n = m . Also

as a consequence of the main theorem of this paper, we give a basis of the Kauffman bracket skein module

of the exterior of the rational link C(2n) modulo its (A + 1)-torsion.
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1. Introduction

Given a finitely generated group G with a presentation 〈x1, . . . , xk| rα〉 , a group homomorphism ρ :

G −→ SL(2, C) is called a unimodular complex representation of dimension 2, that will be abbreviated

in this paper by just a representation. Two representations ρ, ρ
′

are said to be equivalent if and only if

ρ(g) = P−1ρ
′
(g)P for some P ∈ SL(2, C) and for every g ∈ G . A representation is reducible if it is equivalent

to a representation into upper triangular matrices. Otherwise the representation is irreducible.

A representation is uniquely determined by a point in SL(2, C)k ⊂ C4k . The latter inclusion defines affine

coordinates via the correspondence ρ �→ {ρ(xi)}k
i=1 . After substituting k general matrices into the relators,

we obtain a set of polynomials in these coordinates. The Hilbert basis theorem assures that the number of
polynomials is finite. Therefore, the set of all these points R(G) inherits the structure of affine algebraic

variety. (see [8] for more details).

The character of a representation ρ is the function χρ : G −→ C given by χρ(g) = tr(ρ(g)). Equivalent
representations clearly have the same character, and the converse is true only if one of the representations is
irreducible, [2, Prop. 1.5.2]. Now define tg : R(G) −→ C by tg(ρ) = χρ(g) = tr(ρ(g)) for every g ∈ G . It has

been proved that the ring T generated by all functions {tg| g ∈ G} is a finitely generated ring [2, Prop. 1.4.1]

using the following well-known trace identities that will be used very often within this paper:
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tr(A) = tr(A−1) (1)

tr(AB) = tr(BA) (2)

tr(B) = tr(ABA−1) (3)

tr(AB) = tr(A) tr(B) − tr(AB−1). (4)

The last identity follows from the identity B + B−1 = tr(B)I , which in turn follows from the Cayley-

Hamilton theorem. Moreover, it has been proved that the set: {txi, txixj , txixjxl | 1 ≤ i < j < l ≤ k} is a set of

generators of T ([4, Cor. 4.1.2]).

We choose elements g1, . . . , gm ∈ G such that T is generated by {tgi | 1 ≤ i ≤ m} and define the map

t : R(G) −→ Cm by t(ρ) = (tg1(ρ), . . . , tgm(ρ)) = (χρ(g1), . . . , χρ(gm)). Now it is clear that each character is

uniquely determined by the point (tr(ρ(g1)), . . . , tr(ρ(gm))) ∈ Cm , where m = k(k2+5)
6 . The set of all these

points is an algebraic variety (see [2, Cor. 1.4.5] for the proof) that is called the character variety of G and is

denoted by X(G). It is a simple exercise to show that X(G) is well defined up to an isomorphism. So it is an

invariant of the group G . The coordinate ring of the character variety X(G), C[X(G)] , is the quotient of the

polynomial ring C[tgi ], 1 ≤ i ≤ m by the ideal generated by the defining polynomials of this variety.

The Kauffman bracket skein module of an oriented 3-manifold M , K(M), is an algebraic invariant of
M that is defined in terms of framed links. It is defined to be the quotient of the module freely generated

by equivalence classes of framed links in M over Z[A, A−1] by the smallest submodule containing Kauffman

relations (see [1, 11] for more details). Till recently, this module was topologically unexplained. The topological

meaning of this module was given by Bullock in [1] at a special value of A . He showed that this module, after

we set A = −1 and we tensor it with C , K−1(M), has a natural algebra structure over C . Moreover, it is
canonically isomorphic to the coordinate ring of the character variety of the fundamental group of M after
factoring it by its nilradical.

We state the main results of this paper and delay their proof for the next section, but we recall the
definition of Chebyshev polynomials of the first kind; see [6].

Definition 1.1 The kth Chebyshev polynomial of the first kind Sk(x) is defined inductively by S0(x) =

1, S1(x) = x and Sk(x) = xSk−1(x) − Sk−2(x) .

For a given representation ρ of the group Gn = < a, b | (ab)n = (ba)n > , we write tr(x) to denote

tr(ρ(x)) for any word x in a and b . Also, we abbreviate tr(a), tr(b) and tr(ab) by t1, t2 and t3 respectively.

Theorem 1.2 The character variety X(Gn) is an algebraic subvariety of the variety C3 , and the defining

polynomial is given by the equality tr((ab)na−1b−1) − tr((ba)n−1) = 0 . Furthermore, we have the factorization

tr((ab)na−1b−1) − tr((ba)n−1) = (t23 + t22 + t21 − t3t2t1 − 4)Sn−1(t3) . The first factor determines the character
variety for abelian representations, and the second factor determines the character variety for nonabelian
representations.

As an application to the above theorem, we show the following well-known result.
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Corollary 1.3 If Gn and Gm are isomorphic as groups, then n = m.

Theorem 1.4 If L is the rational link C(2n) , then K(S3 \L)/N is a free module over Z[A, A−1] with a basis

{xix′jyk| i, j ≥ 0, 0 ≤ k ≤ n} , where N is the (A + 1)-torsion submodule. Here x, x
′
, and y represents the

conjugacy classes of a, b and ab in the fundamental group of the exterior of L respectively.

2. Proofs

Let F be the free group of rank 2 on the generators a and b and L be the rational link C(2n). The

Fricke-Vogt theorem states that X(F ) = C3 (see [5] for more details). We prove the first theorem of this paper
as a sequence of the following lemmas.

Lemma 2.1 Let R, A, B be three matrices in SL(2, C) such that tr(A) = t1, tr(B) = t2, and tr(AB) = t3 
=
(st) + (st)−1 , where s + s−1 = t1, t + t−1 = t2, tr(R) = 2, tr(RA) = t1, and tr(RB) = t2 , then R = I (identity

matrix).

Proof. If R 
= I then we choose an equivalent representation so that R =
(

1 1
0 1

)
. Now tr(RA) = t1

and tr(RB) = t2 implies A =
(

s u
0 s−1

)
, and B =

(
t v
0 t−1

)
, where s, t, s−1, t−1, u, v ∈ C . Hence

tr(AB) = st + (st)−1 . �

Remark 2.2 The above lemma and its proof are generalizations of [12, Lem. 2] and its proof.

Lemma 2.3 For any representation of F , we have

tr((ab)na−1b−1) − tr((ba)n−1) = (t23 + t22 + t21 − t3t2t1 − 4)Sn−1(t3).

Proof. We show this by induction on n . It is clear that the statement is true for n = 1 and n = 2. Now
using the trace identities, we obtain the relation

tr((ab)na−1b−1) − tr((ba)n−1) = tr(ab) tr((ab)n−1a−1b−1) − tr((ab)n−2a−1b−1)

− tr(ab) tr((ba)n−2) + tr((ba)n−3)

= tr(ab)(tr((ab)n−1a−1b−1) − tr((ba)n−2))

− (tr((ab)n−2a−1b−1) − tr((ba)n−3))

= (t3Sn−2(t3) − Sn−3(t3))(t23 + t22 + t21 − t3t2t1 − 4)

= (t23 + t22 + t21 − t3t2t1 − 4)Sn−1(t3).

The last two equalities follows from the induction hypothesis and the inductive definition of Chebyshev poly-
nomials, respectively. �
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Lemma 2.4 For any representation of F and m ≥ 1 , we have

tr((ba)n(ba)m) − tr((ab)n(ba)m) = Sn−1(t3)Sm−1(t3)(t23 + t22 + t21 − t3t2t1 − 4).

Proof. We show this by induction on m . For m = 1

tr((ba)n(ba)) − tr((ab)n(ba)) = tr(ab) tr((ba)n) − tr((ba)n−1)

− tr(ab) tr((ab)n) + tr((ab)na−1b−1)

= tr((ab)na−1b−1) − tr((ba)n−1)

= Sn−1(t3)(t23 + t22 + t21 − t3t2t1 − 4).

Now for m > 1, we have

tr((ba)n(ba)m) − tr((ab)n(ba)m) = tr(ab) tr((ba)n(ba)m−1) − tr((ba)n(ba)m−2)

− tr(ab) tr((ab)n(ba)m−1) + tr((ab)n(ba)m−2)

= tr(ab)(tr((ba)n(ba)m−1) − tr((ab)n(ba)m−1))

− (tr((ba)n(ba)m−2) − tr((ab)n(ba)m−2))

= (Sn−1(t3)(t23 + t22 + t21 − t3t2t1 − 4))(t3Sm−2(t3) − Sm−3(t3)).

The last equality follows by the induction hypothesis. Finally, the result follows by the inductive definition of
the Chebyshev polynomial. �

Lemma 2.5 For any representation of F , we have

tr((ab)n(a−1b−1)n) − 2 = (t23 + t22 + t21 − t3t2t1 − 4)S2
n−1(t3).

Proof.

tr((ab)n(a−1b−1)n) − 2 = tr((ab)n(a−1b−1)n − I)

= tr((ab)n − (ba)n)(a−1b−1)n)

= tr((a−1b−1)n) tr((ab)n − (ba)n) − tr((ab)n(ba)n − (ba)2n)

= tr((ba)n(ba)n) − tr((ab)n(ba)n).

The result follows by applying Lemma 2.4 for m = n . �

Now we are ready to connect all these lemmas and give a proof of the main theorem. If ρ is a

representation of Gn where ρ(a) = A and ρ(b) = B , then it is clear that tr((ab)na−1b−1)−tr((ba)n−1) = 0. We

must prove the converse: if t1, t2, and t3 satisfy tr((ab)na−1b−1) − tr((ba)n−1) = 0, then there exist matrices

A and B such that tr(A) = t1, tr(B) = t2, and tr(AB) = t3 such that (AB)n(A−1B−1)n = I . We have one of

the two factors t23 + t22 + t21 − t3t2t1 − 4 or Sn−1(t3) equal to zero.
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1. If the first factor is zero, then the matrices A =
(

s 0
0 s−1

)
and B =

(
t 0
0 t−1

)
, where s + s−1 = t1

and t + t−1 = t2 satisfy the above requirements.

2. If the second factor is zero, then consider R = (AB)n(A−1B−1)n , then tr(R) = 2 by using Lemma
2.5. To show that that R = I , it is enough to satisfy the conditions of Lemma 2.1. We can rewrite

R = AWA−1W−1 , where W = A−1(AB)n . We have tr(RA−1) = tr(AWA−1W−1A−1) = tr(A−1) =

tr(A) = t1 . By trace identities tr(RA)+tr(RA−1) = tr(A) tr(R) = 2t1 . Hence, tr(RA) = t1 . Similarly, we

can rewrite R = UBU−1B−1 , where U = (AB)nB−1 . Now we have tr(RB) = tr(UBU−1) = tr(B) = t2 .
At the end, since all the conditions of Lemma 2.1 are satisfied, then R = I .

Finally, Lemma 2.3 takes care of the factorization of tr((ab)na−1b−1)−tr((ba)n−1) in C[t1, t2, t3] . This completes
the proof of the theorem.

Remark 2.6 The above proof of the main theorem imitates the proof of [9, Thm. 3.3.1]. We can give another

proof by combining the result of [4, Thm. 3.2] and Lemmas 2.3, 2.4, and 2.5.

Now we proceed to prove Corollary 1.3. It is a well-know fact that the kth Chebyshev polynomial has k distinct
roots; see [6]. Therefore, we conclude X(Gn) and X(Gm) have different number of irreducible components if
n 
= m . Hence Corollary 1.3 follows since the character variety is defined up to an isomorphism.

We note that the t3 degree of tr((ab)na−1b−1)−tr((ba)n−1) is n+1 since the kth Chebyshev polynomial
is of degree k .

Lemma 2.7 [10, Lemm. 1.1] If D2 is the two-punctured disk, then as an element of the Kauffman bracket skein

module K(D2 × I) ∼= Z[A, A−1][x, x
′
, y] the closure of a braid on 2k strands is a polynomial having y -degree k

with coefficient of the form ±Am, m ∈ Z and hence it is invertible in Z[A, A−1] .

For what follows, we let r = (ab)na−1b−1−(ba)n−1 and D(t1, t2, t3) = t23+t22+t21−t3t2t1−4. We recall the

maps Φ and Ψ defined in [1]. The map Φ : K−1(S3 \ L) → C[X(Gn)] = C[t1, t2, t3]/ < D(t1, t2, t3)Sn−1(t3) >

is defined by Φ(K)(χρ) = −χρ(K) = − tr(ρ(K)). Also the map Ψ : C[ta, tb, tab] → K−1(S3 \ L) is defined

by Ψ(tw) = −Kw , for any word w in a and b , where Kw is any knot in the homotopy class of the unique

unoriented curve that corresponds to w in K−1(S3 \ L).

Proof of Theorem 1.4. The conjugacy classes of (ab)na−1b−1 and (ba)n−1 represent two equal skein elements

of the module K(S3 \L). As S3 \L is obtained by gluing two copies of D2×I , then the above two elements can

be considered two equal skein elements in K(D2 × I) that can be represented as closure of two braids of 2n +2
and 2n − 2 strands, respectively in a natural way. After we expand these two elements in terms of the basis

elements of K(D2 × I), we obtain yn+1 = terms of smaller degree . Hence the set {xix′jyk|i, j ≥ 0, 0 ≤ k ≤ n}
spans K(S3 \ L) over Z[A, A−1] , where x, x

′
, and y represents the conjugacy classes of a, b and ab in the

fundamental group of the exterior of L respectively.

It is clear that K−1(D2 × I) projects onto K−1(S3 \ L) and the conjugacy class of r in K−1(S3 \ L)

is equal to zero. So the conjugacy class of r as an element of K−1(D2 × I) is in the kernel of the projection.
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Hence we obtain a projection p̃ : K−1(D2 × I)/ < r >→ K−1(S3 \ L) and an inclusion ĩ : K−1(S3 \ L) →
K−1(D2 × I)/ < r > . Now the map Φ ◦ p̃ : K−1(D2 × I)/ < r >→ C[t1, t2, t3]/ < D(t1, t2, t3)Sn−1(t3) > is an

algebra isomorphism since the algebra homomorphism ĩ ◦Ψ : C[ta, tb, tab]/ < tr >→ K−1(D2 × I)/ < r > is its

inverse as Ψ(tr) = −Kr = 0 ∈ K−1(S3 \ L) under the identification of C[X(Gn)] and C[ta, tb, tab]/ < tr > .

Now if we combine K−1(D2 × I)/ < r >∼= C[X(Gn)] from above and K−1(S3 \ L)/
√

0 ∼= C[X(Gn)] [1,

Thm. 10], we get K−1(D2 × I)/ < r >∼= K−1(S3 \L)/
√

0. Therefore, we get K−1(D2 × I)/ < r >∼= K−1(S3 \L)

since the first module projects onto the second module. Hence the set {xix′jyk|i, j ≥ 0, 0 ≤ k ≤ n} is linearly

independent over C in K−1(S3 \ L), then it is a basis for K(S3 \ L)/N .

Corollary 2.8 The algebra K−1(S3 \ L) has trivial nilradical.
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