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Weakly normal rings

Junchao Wei and Libin Li

Abstract

A ring R is defined to be weakly normal if for all a, r ∈ R and e ∈ E(R) , ae = 0 implies Rera is a

nil left ideal of R , where E(R) stands for the set of all idempotent elements of R . It is proved that R is

weakly normal if and only if Rer(1 − e) is a nil left ideal of R for each e ∈ E(R) and r ∈ R if and only

if Tn(R, R) is weakly normal for any positive integer n . And it follows that for a weakly normal ring R

(1) R is Abelian if and only if R is strongly left idempotent reflexive; (2) R is reduced if and only if R is

n-regular; (3) R is strongly regular if and only if R is regular; (4) R is clean if and only if R is exchange.

(5) exchange rings have stable range 1.

Key Words: Weakly normal rings, Abelian rings, regular rings, quasi-normal rings, semiabelian rings,

exchange rings, clean rings

1. Introduction

Throughout this paper, all rings are associative with identity. Let R be a ring, we use E(R), N∗(R),

J(R) and N(R) to denote the set of all idempotents, the nilradical (i.e., the sum of all nil ideals ), the Jacobson

radical and the set of all nilpotent elements in R , respectively. According to [5], a ring R is called reversible

if ab = 0 implies ba = 0 for a, b ∈ R . In [1], Anderson and Camillo observed the rings whose zero products

commute, used the term ZC2 for what is called reversible; while Krempa and Niewieczerzal [8] took the term

C0 for it. In [17], a generalization of reversible rings is given, that is, a ring R is called weakly reversible if

ab = 0 implies that Rbra is a nil left ideal of R for all a, b, r ∈ R . Clearly semicommutative rings (e.g., ab = 0

implies aRb = 0 for all a, b ∈ R) are weakly reversible. A ring R is Abelian if every idempotent element of R

is contained in the central C(R) of R . Evidently, semicommutative rings are Abelian.

According to [13], an element k of a ring R is called left minimal if Rk is a minimal left ideal of R ,
and an idempotent e of R is said to be left minimal idempotent if e is a left minimal element of R . We use
MEl(R) to denote the set of all left minimal idempotent elements of R .

According to [13], A ring R is left min-abel if every element of MEl(R) is left semicentral in R . Clearly,
Abelian rings and so semicommutative rings are left min-abel.
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A ring R is called quasi-normal if ae = 0 implies eaRe = 0 for a ∈ N(R) and e ∈ E(R) [14], and R

is said to be semiabelian [4] if every idempotent of R is either left semicentral or right semicentral. Clearly,

Abelian rings are semiabelian and quasi-normal. Following [4], we know that there exists a semiabelian ring
which is not Abelian.

A ring R is called weakly normal if for all a, r ∈ R and e ∈ E(R), ae = 0 implies Rera is a nil left ideal
of R . Clearly, weakly reversible rings and Abelian rings are weakly normal.

A ring R is called an exchange ring [9] if for every x ∈ R there exists e ∈ E(R) such that e ∈ xR and

1 − e ∈ (1 − x)R , and R is said to be clean if every element of R is a sum of a unit and an idempotent [9].

Clearly, clean rings are always exchange rings. And the converse is true when R is an Abelian ring by [16].
But, as far as we can determine, it appears to be an open question whether exchange rings are exactly clean
rings in general.

The present paper is such an attempt in this direction, in other words, we shall give some weaker
conditions for exchange rings being clean rings such as weakly normal rings.

Recall that a ring R is said to be have stable range 1 if for any a, b ∈ R satisfying Ra + Rb = R , there
exists y ∈ R such that a + yb is right invertible [11]. In [16, Theorem 6], Yu, H.P. showed that exchange rings
with all idempotents central have stable range 1. In this paper, we generalize this result to weakly normal
rings.

In section 2, using trivial extensions of rings, we give some characterization of weakly normal rings. In
term of these characterizations, we discuss the relations among semiabelian rings, quasi-normal rings, weakly
normal rings and left min-abel rings.

In section 3, we give some applications of weakly normal rings. It is shown that: (1) R is an Abelian

ring if and only if R is a weakly normal strongly left idempotent reflexive ring; (2) R is a strongly regular ring

if and only if R is a weakly normal von Neumann regular ring; (3) A weakly normal ring R is exchange if and

only if R is clean; (4) A weakly normal exchange ring has stable range 1.

2. Some properties of weakly normal rings

We begin with the following characterization of weakly normal rings.

Theorem 2.1 The following conditions are equivalent for a ring R :

(1) R is a weakly normal ring.

(2) Rer(1 − e) is a nil left ideal of R for all e ∈ E(R) and r ∈ R .

(3) eR(1 − e) ⊆ N∗(R) for any e ∈ E(R) .

Proof. (1) =⇒ (2) Let e ∈ E(R). Then (1− e)e = 0 implies Rer(1− e) is a nil left ideal of R for any r ∈ R

because R is a weakly normal ring.

(2) =⇒ (3) Let e ∈ E(R). Then Rer(1 − e) ⊆ N∗(R) for all r ∈ R by (2). Hence eR(1 − e) ⊆ N∗(R).

(3) =⇒ (1) Assume that ae = 0, where a ∈ R and e ∈ E(R). Hence a = a(1 − e). By (3),

eRa = eRa(1 − e) ⊆ eR(1 − e) ⊆ N∗(R), so, we have Rera ⊆ N∗(R) for any r ∈ R , which shows that R is a
weakly normal ring. �
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Call an element a of a ring R left projective if RRa is a projective module. Clearly, every idempotent

element of R is left projective. Call an element e of a ring R a op − idempotent if e2 = −e . Clearly, op-

idempotent is not idempotent in general. For example, let R = Z/3Z . Then 2̄ ∈ R is a op-idempotent, while it

is not idempotent. Call an element e ∈ R potent in case there exists some integer n ≥ 2 such that en = e (We

write p(e) for the minimal positive integer n). Clearly, idempotent is potent, while there exists a potent element

which is not idempotent. For example,
(

1 0
0 −1

)
∈ M2(Z) is a potent element, while it is not idempotent.

We use Pl(R), Eo(R) and PE(R) to denote the set of all left projective elements, the set of all op-idempotent
elements and the set of all potent elements of R . By Theorem 2.1, we observe that every weakly-normal rings
can be characterized by its op-idempotents and potent elements as follows.

Theorem 2.2 (1) R is a weakly normal ring if and only if eR(1 + e) ⊆ N∗(R) for any e ∈ Eo(R) .

(2) R is a weakly normal ring if and only if eR(1 − ep(e)−1) ⊆ N∗(R) for any e ∈ PE(R) .

(3) R is a quasi-normal ring if and only if eR(1 + e)Re = 0 for all e ∈ Eo(R) .

(4) R is a quasi-normal ring if and only if eR(1 − ep(e)−1)Re = 0 for any e ∈ PE(R) .

(5) R is a left min-abel ring if and only if eR(1 − e)Re = 0 for all e ∈ MEl(R) .

(6) The following conditions are equivalent for a ring R :

(a) R is a weakly normal ring.

(b) For any a ∈ R and k ∈ Pl(R) , ak = 0 implies Rkra is a nil left ideal of R .

(c) Rer(1 − e) is a nil left ideal of R for all e ∈ E(R) and r ∈ N(R) .

(d) eN(R)(1 − e) ⊆ N∗(R) for any e ∈ E(R) .

Proof. (1) and (2) are immediate consequences of Theorem 2.1.

(3) and (4) follow from [14, Theorem 2.1].

(5) Assume that R is a left min-abel ring and e ∈ MEl(R). Since e is left semicentral, (1 − e)Re = 0.

Hence eR(1 − e)Re = 0.

Converse, if e ∈ MEl(R), then by hypothesis, eR(1−e)Re = 0. If (1−e)Re �= 0, then R(1−e)Re = Re

because Re is a minimal left ideal of R . Hence eR(1 − e)Re = eRe �= 0, which is a contradiction. Therefore

(1 − e)Re = 0 and so R is a left min-abel ring.

(6) (a) =⇒ (b) Let a ∈ R and k ∈ Pl(R) with ak = 0. Since RRk is a projective module, there exists

e ∈ E(R) such that l(k) = l(e). Hence k = ek and ae = 0 because a ∈ l(k). Since R is a weakly normal ring,
Rexa is a nil left ideal of R for any x ∈ R . Especially, Rkra = Rekra is a nil left ideal of R for any r ∈ R .

(b) =⇒ (a) is clear because E(R) ⊆ Pl(R).

(a) =⇒ (c) and (a) =⇒ (d) are direct results of Theorem 2.1.

(c) =⇒ (a) Since for any r ∈ R and e ∈ E(R), er(1 − e) ∈ N(R). Hence, by (c), Rer(1 − e) =

Re(er(1 − e))(1 − e) is a nil left ideal of R .

(d) =⇒ (a) Since for any e ∈ E(R), eR(1 − e) ⊆ N(R). Hence eR(1 − e) = e(eR(1 − e))(1 − e) ⊆
eN(R)(1 − e) ⊆ N∗(R) by (d). �

By Theorem 2.1 and Theorem 2.2, we have the following corollaries.
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Corollary 2.3 (1) Quasi-normal rings are weakly normal.

(2) Let R be a left pp ring. Then R is a weakly normal ring if and only if R is a weakly reversible ring.

Proof. (1) Let R be a quasi-normal ring and e ∈ Eo(R). Then eR(1 + e)Re = 0 by Theorem 2.2(3), so

ReR(1+e) is a nilpotent left ideal of R , which implies that ReR(1+e) ⊆ N∗(R). Hence R is a weakly normal

ring by Theorem 2.2(1).

(2) Since R is a left pp ring, Pl(R) = R . By Theorem 2.2(6), we know that R is a weakly reversible
ring if and only if R is a weakly normal ring. �

Corollary 2.4 (1) weakly normal rings are left min-abel.

(2) Weakly normal rings are directly finite.

Proof. (1) Let e ∈ MEl(R) and a ∈ R . Write h = ae − eae . If h �= 0, then eh = 0, he = h and

Rh = Re . Since R is a weakly normal ring, by Theorem 2.1, R(1 − e)re ⊆ N∗(R) for any r ∈ R . Especially,

Re = Rh = R(1 − e)h = R(1 − e)he ⊆ N∗(R), which is a contradiction. Hence h = 0, which implies e is left
semicentral in R , so R is left min-abel.

(2) Let R be a weakly normal ring and ab = 1. Write e = ba . Then eR(1−e) ⊆ N∗(R) by Theorem 2.1.

Especially, 1−e = ab(1−e) = aeb(1−e) ∈ N∗(R), which implies 1−e = 0. Hence R is a directly finite ring. �

It is well known that for any positive integer n , the n × n full matrix rings Mn(R) over real number

field R are directly finite. But, by the following Example 2.13, we know that Mn(R) are not weakly normal

for n ≥ 2. Hence, the converse of Corollary 2.4(2) is not true in general.

By Corollary 2.3 and Corollary 2.4, we obtain the following corollary.

Corollary 2.5 (1) Quasi-normal rings are directly finite and left min-abel.

(2) Semi-abelian rings are directly finite and left min-abel.

(3) Weakly reversible rings are directly finite and left min-abel.

The following corollary also follows from Theorem 2.1 and Theorem 2.2.

Corollary 2.6 (1) The subrings and finite direct products of weakly normal rings are weakly normal.

(2) Let I be an ideal of a weakly normal ring R and idempotents can be lifted modulo I . Then R/I is
also a weakly normal ring.

(3) Let R be a weakly normal ring. If e ∈ E(R) satisfies ReR = R , then e = 1 .

(4) Let R be a weakly normal ring. If e ∈ Eo(R) satisfies ReR = R , then e = −1 .

(5) Let R be a weakly normal ring. If e ∈ PE(R) satisfies ReR = R , then ep(e)−1 = 1 .

Lemma 2.7 Let R be a ring and I an ideal of R such that R/I is weakly normal. If I ⊆ N(R) , then R is
weakly normal.

Proof. Let a ∈ R and e ∈ E(R) with ae = 0. Hence, in R̄ = R/I , āē = 0̄. Since R̄ is weakly normal, R̄ēr̄ā

is a nil left ideal of R̄ for all r ∈ R . Hence, for any x ∈ R , there exists n ≥ 1 such that (xera)n ∈ I . Since
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I ⊆ N(R), there exists m ≥ 1 such that (xera)nm = 0, which implies xera ∈ N(R) for all x ∈ R . Hence
Rera is a nil left ideal of R for all r ∈ R . Thus R is a weakly normal ring. �

Theorem 2.8 Suppose S and T are rings, and M is an (S, T )-bimodule. Let R =
(

S M
0 T

)
. Then R is

weakly normal if and only if S and T are weakly normal.

Proof. By Corollary 2.6(1), we know that if R is weakly normal then S and T are weakly normal.

Conversely, suppose S and T are weakly normal. Put I =
(

0 M
0 0

)
. Then I is an ideal of R and

R/I ∼= S × T is weakly normal by Corollary 2.6(1) and hypothesis. Since I ⊆ N(R), by Lemma 2.7, R is
weakly normal. �

The following corollary follows immediately by Theorem 2.8 and induction on n .

Corollary 2.9 R is a weakly normal ring if and only if, for any n ≥ 1 , the n × n upper triangular matrix
ring Tn(R) is a weakly normal ring.

Given a ring R and a bimodule RMR , the trivial extension of R by M is the ring T (R, M) = R ⊕ M

with the usual addition and the following multiplication

(r1, m1)(r2, m2) = (r1r2, r1m2 + m1r2).

This is isomorphic to the ring of all matrix
(

r m
0 r

)
, where r ∈ R and m ∈ M and the usual matrix

operations are used.

Corollary 2.10 R is a weakly normal ring if and only if its trivial extension is a weakly normal ring.

Corollary 2.11 Let R be a ring. Then R is a weakly normal ring if and only if for any n ≥ 1 , R[x]/(xn) is

a weakly normal ring, where (xn) is the ideal of R[x] generated by xn .

Theorem 2.12 If R is a subdirect product of a finite family of weakly normal rings {Ri : i = 1, 2, · · · , m} ,
then R is a weakly normal ring.

Proof. Let Ri = R/Ai where Ai be ideals of R with ∩m
i=1Ai = 0. Let e ∈ E(R). Then ei = e+Ai ∈ E(Ri),

i = 1, 2, · · · , m . Since each Ri is weakly normal, Rieiri(1− ei) ⊆ N∗(Ri) for all ri = r + Ai ∈ Ri . So, for any

x, r ∈ R , there exist a family positive integers ni, i = 1, 2, · · · , m such that (xieiri(1− ei))ni = 0 in Ri , where

xi = x + Ai and ri = r + Ai . This implies (xer(1 − e))ni ⊆ Ai for all i . Let n = max{n1, n2, · · · , nm} . Then

we have (xer(1 − e))n ⊆ ∩m
i=1Ai = 0 for all x, r ∈ R . Therefore R is a weakly normal ring. �

Example 2.13 If R is a weakly normal ring and n is any integer greater than 1 , then the full matrix ring
Mn(R) is not weakly normal.
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For n = 2, observe that(
0 0
0 1

) (
1 0
0 0

)
= 0.

But
(

0 1
1 0

) (
1 0
0 0

) (
0 1
1 0

) (
0 0
0 1

)
/∈ N(M2(R)).

So M2(R) is not weakly normal. One can augment these matrices in a similar way if n > 2.

Being weakly normal is not a Morita invariant property by Example 2.13.

The following example is given to show that the converse of Corollary 2.3 is not true in general.

Let F be a division ring and R =

⎛
⎝ F F F

0 F F
0 0 F

⎞
⎠ . Consider the idempotent e = e11+e33 , by computing,

we can see that eR(1 − e)Re =

⎛
⎝ 0 0 F

0 0 0
0 0 0

⎞
⎠ �= 0, so R is not quasi-normal by [14, Theorem 2.1]. But by

Corollary 2.9, we know that R is weakly normal. Hence there exists a weakly normal ring R which is not
quasi-normal and so there exists a left min-abel ring R which is not quasi-normal by Corollary 2.4. �

By Example 2.13, we know that there exists a ring S which is not weakly normal. By Corollary 2.6(1),

the polynomial ring S[x] is not weakly normal. But S[x] is left min-abel. Hence the converse of Corollary

2.4(1) is not true, that is there exists a left min-abel ring which is not weakly normal.

Example 2.14 Let R1 and R2 be semiabelian rings which are not Abelian. Take e1 ∈ E(R1) to be a right

semicentral which is not central and e2 ∈ E(R2) to be a left semicentral which is not central, then the idempotent

(e1, e2) is neither right nor left semicentral in R1 ⊕ R2 . Hence R1 ⊕ R2 is not semiabelian, but R1 ⊕ R2 is
quasi-normal.

By Example 2.14, we know that {Abelian rings} � {semiabelian rings} � {quasi − normal rings} �

{weakly normal rings} � {left min − abel rings} .

It is well known that (1) a ring R is an exchange ring if and only if R/J(R) is an exchange ring and

idempotents can be lifted modulo J(R). (2) If R is an exchange ring and R/J(R) is an Abelian ring, then R

is a left and right quasi-duo ring. So we have the following theorem.

Theorem 2.15 Let R be an exchange ring. If R is a weakly normal ring, then R/J(R) is an Abelian ring
and R is a left quasi-duo ring.

Proof. Let a ∈ R with a − a2 ∈ J(R). Since R is an exchange ring, there exists e ∈ E(R) such that

e − a ∈ J(R). Since R is a weakly normal ring, (1 − e)Re ⊆ N∗(R) by Theorem 2.1. Since N∗(R) ⊆ J(R),

(1 − e)Re ⊆ J(R). Hence (1 − a)Ra ⊆ J(R), which implies R/J(R) is an Abelian ring. Consequently, R is a
left quasi-duo ring. �

By Theorem 2.15 and Corollary 2.3(1), we have the following corollary.

Corollary 2.16 Let R be an exchange ring. If R is a quasi-normal ring, then R is a left quasi-duo ring.
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Observing for any division ring F , the ring R =

⎛
⎝ F F F

0 F F
0 0 F

⎞
⎠ is an exchange left quasi-duo ring. So

there exists an exchange left quasi-duo ring which is not quasi-normal. Since R is also a weakly normal ring,
we naturally ask whether exchange left quasi-duo rings are always weakly normal.

Theorem 2.17 Let R be a weakly normal ring. Then

(1) If M is a maximal left ideal of R , then for any e ∈ E(R) , either e ∈ M or 1 − e ∈ M .

(2) If R is a clean ring, then for any two distinct maximal left ideals M and N of R , there exists

e ∈ E(R) such that e ∈ M \ N and 1 − e ∈ N \ M .

Proof. (1) If e /∈ M , then Re + M = R . Let 1 = xe + m for some x ∈ R and m ∈ M . Since

(1 − e)xe ∈ N∗(R) ⊆ J(R) ⊆ M , 1 − e = (1 − e)xe + (1 − e)m ∈ M .

(2) Since M �= N , there exists a ∈ M \ N . Hence Ra + N = R and then 1 − ra ∈ N for some r ∈ R .

Clearly, ra ∈ M \ N . Since R is a clean ring, ra = e + u where e ∈ E(R) and u ∈ R is an invertible element

of R . Since u = ra − e /∈ M , e /∈ M . By (1), 1 − e ∈ M . If e /∈ N , then 1 − e ∈ N by (1). Hence

u = ra− e = (ra− 1)+ (1− e) ∈ N , which is a contradiction. Thus e ∈ N , so 1− e /∈ N . Therefore e ∈ N \M

and 1 − e ∈ M \ N . �

3. Some applications

A ring R is called (1) left idempotent reflexive if aRe = 0 implies eRa = 0 for all a ∈ R and e ∈ E(R);

(2) strongly left idempotent reflexive if ae = 0 implies ea = 0 for all a ∈ J(R) and e ∈ E(R); (3) weakly left
idempotent reflexive if ae = 0 implies ea = 0 for all a ∈ R and left semi-central idempotent e of R .

A ring R is called (1) von Neumann regular if a ∈ aRa for all a ∈ R ; (2) unit-regular if for any a ∈ R ,

a = aua for some u ∈ U(R), where U(R) denotes the group of units of R ; (3) strongly regular if a ∈ a2R for

all a ∈ R ; (4) n-regular [12] if a ∈ aRa for all a ∈ N(R).

Clearly, strongly regular =⇒ unit-regular =⇒ von Neumann regular =⇒ n-regular; strongly regular
=⇒ reduced =⇒ n-regular; Abelian rings are strongly left idempotent reflexive.

Lemma 3.1 (1) Strongly left idempotent reflexive rings are left idempotent reflexive, and left idempotent
reflexive rings are weakly left idempotent reflexive.

(2) Let R be a ring. If J(R) ⊆ C(R) , then R is a strongly left idempotent reflexive ring. Hence
semiprimitive rings are strongly left idempotent reflexive.

(3) R is an Abelian ring if and only if R is a weakly normal strongly left idempotent reflexive ring.

(4) R is an Abelian ring if and only if R is a quasi-normal left idempotent reflexive ring.

(5) R is an Abelian ring if and only if R is a semiabelian weakly left idempotent reflexive ring.

(6)Let R be a weakly normal ring and x ∈ R . If x is von Neumann regular, then x ∈ Rx2 ∩ x2R .

Proof. (1) First, we assume that R is a strongly left idempotent reflexive ring and aRe = 0, where a ∈ R

and e ∈ E(R). If eRa �= 0, then there exists b ∈ R such that eba �= 0. Since (ebaR)2 = 0, eba ∈ J(R).
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Hence ebae = 0 implies e(eba) = 0 because R is a strongly left idempotent reflexive ring. Hence eba = 0 which
contradicts eba �= 0. Thus eRa = 0 and so R is a left idempotent reflexive ring.

Next, suppose R is a left idempotent reflexive ring and bg = 0, where b ∈ R and g is a left semi-central
idempotent of R . Since bRg = bgRg = 0 and R is a left idempotent reflexive ring, gRb = 0. Thus gb = 0 and
so R is a weakly left idempotent reflexive ring.

(2) It is evident.

Now let e ∈ E(R). For any a ∈ R , set h = ea− eae . Then eh = h, he = 0 and h2 = 0. If R is a weakly
normal strongly left idempotent reflexive ring, then Rerh is a nil left ideal of R for any r ∈ R , especially,
Rh = Reh ⊆ N∗(R) ⊆ J(R). Hence he = 0 implies h = eh = 0; If R is a quasi-normal left idempotent reflexive
ring, then ehRe = 0, that is hRe = 0. Hence eRh = 0, and so h = eh = 0; If R is a semiabelian weakly left
idempotent reflexive ring, then e is either left semi-central or right semi-central. If e is left semi-central, then
he = 0 implies eh = 0, which shows that h = 0. If e is right semi-central, then h = 0 is evident. All these
show that every idempotent of R is left semi-central, hence R is Abelian. Consequently, (3), (4) and (5) hold.

(6) Let x = xyx for some y ∈ R . Write e = yx . Then e2 = e ∈ R and x = xe . Since R is a weakly

normal ring, R(1 − e)x is a nil left ideal of R . Thus there exists n ≥ 1 such that (y(1 − e)x)n = 0. Since

y(1 − e)x = yx − yex = e − yex , there exists a ∈ R such that 0 = (y(1 − e)x)n = (e − yex)n = e − aex .

Hence x = xe = xaex = xayx2 ∈ Rx2 . Now let g = xy . Then x = gx and g ∈ E(R). By Theorem 2.1,

gR(1 − g) ⊆ N∗(R), so x(1 − g) = gx(1 − g) ∈ gR(1 − g) ⊆ N∗(R). Thus x(1 − g)y ∈ N∗(R) which implies

x ∈ x2R . �

The following theorem follows from Lemma 3.1(6).

Theorem 3.2 The following conditions are equivalent for a ring R .

(1) R is a strongly regular ring.

(2) R is a weakly normal ring and unit-regular ring.

(3) R is a weakly normal ring and von Neumann regular ring.

(4) R is a quasi-normal ring and von Neumann regular ring.

(5) R is a semiabelian ring and von Neumann regular ring.

(6) R is a weakly reversible ring and von Neumann regular ring.

Let R be a ring and a ∈ R . Then a is called Π-regular, if there exists n ≥ 1 and b ∈ R such that

an = anban , and a is said to be strongly Π-regular, if an = ban+1 . A ring R is called Π-regular and strongly
Π-regular, if every element of R is Π-regular and strongly Π-regular, respectively. A ring R is called strongly
clean if a = e + u where e ∈ E(R), u ∈ U(R) and eu = ue for every a ∈ R .

Corollary 3.3 Let R be a weakly normal Π-regular ring. Then R is a strongly Π-regular ring, consequently,
R is a strongly clean ring.

Proof. Since R is Π− regular, for any x ∈ R , there exists a positive integer n such that xn is von Neumann

regular. Since R is a weakly normal, xn ∈ R(xn)2 ⊆ Rxn+1 by Lemma 3.1(6). Thus R is a strongly Π−regular.

By [10], strongly Π-regular rings are always strongly clean. �
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Theorem 3.4 The following conditions are equivalent for a ring R .

(1) R is a reduced ring.

(2) R is a weakly reversible n-regular ring.

(3) R is a weakly normal n-regular ring.

(4) R is a quasi-normal n-regular ring.

(5) R is a semiabelian n-regular ring.

Proof. (1) =⇒ (2) =⇒ (3) and (1) =⇒ (5) =⇒ (4) =⇒ (3) are trivial.

(3) =⇒ (1) Suppose a2 = 0, then a = aba for some b ∈ R because R is n-regular. By Lemma 3.1(6),

a ∈ Ra2 = 0, which implies a = 0. Thus R is a reduced ring. �

Following [9], a ring R is called clean if every element of R is a sum of a unit and an idempotent and
clean rings are always exchange rings, but the converse is not true unless R is an Abelian ring. Hence, we have
the following theorem.

Theorem 3.5 Let R be a weakly normal ring. Then R is clean if and only if R is exchange.

Proof. One direction is trivial.
For the other direction, let R be an exchange ring, then R/J(R) is exchange and idempotents can be

lifted modulo J(R). By Corollary 2.6(2), R/J(R) is weakly normal because R is weakly normal. Since R/J(R)

is semiprimitive, R/J(R) is strongly left idempotent reflexive by Lemma 3.1(2). Hence R/J(R) is Abelian by

Lemma 3.1(3). Therefore R/J(R) is clean by [9], so, by [3, Proposition 7], R is a clean ring. �

The following corollary is an immediate result of Theorem 3.5.

Corollary 3.6 (1) Let R be a semiabelian ring. Then R is clean if and only if R is exchange [4].

(2) Let R be a quasi-normal ring. Then R is clean if and only if R is exchange [14].

(3) Let R be a weakly reversible ring. Then R is clean if and only if R is exchange.

Recall that a ring R is said to have stable range 1 [11] if for any a, b ∈ R satisfying aR + bR = R , there

exists y ∈ R such that a+ by is right invertible. Clearly, R has stable range 1 if and only if R/J(R) has stable

range 1. [16 Theorem 6] showed that exchange rings with all idempotents central have stable range 1. We now
generalize this result as follows.

Theorem 3.7 Weakly normal exchange rings have stable range 1.

Proof. Let R be a weakly normal exchange ring. Then R/J(R) is exchange with all idempotents central by

the proof of Theorem 3.5, so, by [16, Theorem 6], R/J(R) has stable range 1. Therefore R has stable range 1.�

Naturally, we have the following corollary.

Corollary 3.8 (1) Semiabelian exchange rings have stable range 1 [4].

(2) Quasi-normal clean rings have stable range 1 [14].
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(3) Quasi-normal Π-regular rings have stable range 1.

(4) Weakly normal clean rings have stable range 1.

(5) Weakly normal Π-regular rings have stable range 1.

(6) Quasi-normal exchange rings have stable range 1.

(7) Semiabelian Π-regular rings have stable range 1.

(8) Semiabelian clean rings have stable range 1.

(9) Weakly reversible Π-regular rings have stable range 1.

(10) Weakly reversible clean rings have stable range 1.

(11) Weakly reversible exchange rings have stable range 1.

[6] showed that if R is a unit regular ring, then every element in R is a sum of two units. A ring R is

called an (S, 2)-ring [7] if every element in R is a sum of two units of R . In [2, Theorem 6] it is proved that

if R is an abelian Π-regular ring, then R is an (S, 2)-ring if and only if Z/2Z is not a homomorphic image of

R . Clearly, R is an (S, 2)-ring if and only if R/J(R) is an (S, 2)-ring.

In [15], a ring R is said to satisfy the unit 1-stable condition if for any a, b, c ∈ R with ab + c = 1, there

exists u ∈ U(R) such that au + c ∈ U(R). It is easy to prove that R satisfies the unit 1-stable condition if

and only if R/J(R) satisfies the unit 1-stable condition. [4, Proposition 3.18] showed that for a semiabelian

exchange ring R , R is an (S, 2)-ring if and only if R satisfies the unit 1-stable condition.

Combining [4, Proposition 3.18] with Lemma 3.1, Corollary 2.6, we have the following proposition.

Proposition 3.9 Let R be a weakly-normal exchange ring. Then the following conditions are equivalent:

(1) R is an (S, 2)-ring.

(2) R satisfies the unit 1-stable condition.

(3) Every factor ring R1 of R is an (S, 2)-ring.

(4) Z2 is not a homomorphic image of R .

.
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