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A homotopy for a complex of free Lie algebras

Micheéle Vergne

Abstract

Using the Guichardet construction, we compute the cohomology groups of a complex of free Lie algebras

introduced by Alekseev and Torossian.

1. Introduction

In their study of the relation between the KV-conjecture and Drinfeld’s associators, Alekseev and
Torossian [1] studied the Eilenberg-MacLane differential 64 : L, — Ly41, where L, is the free Lie algebra
in n variables, and computed the cohomology groups of d4 in dimensions 1,2. Following the construction of
Guichardet [2] (see also [3]), we remark that the complex d4 is acyclic, except in dimensions 1,2, where the
cohomology is of dimension 1. We also identify the cohomology groups of a similar complex d4 : T, — Ty 41,
where T, is the free associative algebra in n variables: the cohomology is of dimension 1 in any degree. The
Guichardet construction provides an explicit homotopy.

Alekseev and Torossian used the computations in dimension 2 to deduce the existence of a solution to the
KV problem from the existence of an associator. A simple by-product of their computation is the existence and
the uniqueness of the Campbell-Hausdorff formula. We do not have any other application of the computations
of higher cohomologies.

In this note, we start with a review of the construction of Guichardet. Then we adapt it to free associative
algebras and free Lie algebras.

I am thankful to the referee for his careful reading.

2. The Guichardet construction

Let V be a finite dimensional real vector space. Let F™ be the space of polynomial functions f on
VeVe.---®&V. An element f of F™ is written as f(v1,va,...,0,).
Define

n

(5nf)(v1a e '7vn+1) = Z(fl)if(vlav% N . @i; Vit1y - - '7vn)~
=1
For example:

(61f)(v1,v2) = —f(v2) + f(v1)
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(02f)(v1,v2,v3) = —f(v2,v3) + f(v1,v3) — f(v1,v2).

We define F¥ =R, and embed F° — F! as the constant functions.

The complex 0 — F* — F! — ... is acyclic except in degree 0. Indeed, s : F™ — F"~1 given by

(Sf)(vlaUQa . '7'071*1) = f(oa U1, V2, .. '7,071*1) (1)

satisfies Id := s6 + ds.

Now the additive group V operates on F™ by translations: if o € V', we write

() f)(v1,...,0n) = flo1 —a, ..., v — ).

The differential § commutes with translations, so that it induces a differential §4 on the subspace of translation
invariant functions.

It is well known that the cohomology of the complex d4 is isomorphic with A?~1V*. Here, we recall
Guichardet’s explicit construction of the isomorphism as we will adapt it to the “universal case” considered by
Alekseev-Torossian.

Let 9"~ ! be the space of differential forms of exterior degree n — 1 on V, with polynomial coefficients,
equipped with the de Rham differential.

Consider the simplex S := Sy, 4.0, in V with vertices (v1,va,...,v,). Thus the map Q"~1 — "
defined by w — |, gw induces a map from Q=1 to F™. This map commutes with the differentials (as follows
from Stokes formula) and with the natural action by translations.

Conversely, associate to f € F™ a differential form w(f) of degree (n—1) by setting for vy, va, ..., vp_1

vectors in V', identified with tangent vectors at v € V':

d
<W(f)(v), v Avg A A Un71> = Z E(O—)Ehf(va v+ €1Vs(1)y -+, U + anlva(nfl)»
oEY 1

Here if ¢ is a polynomial function of €1, ..., €,_1, we employ the notation %|0¢(e) for the coefficient of
€1 €np_1 INn @.

The map w commutes with the differential, and with the action of V' by translations. Thus the map
P, : F™* — F™ defined by

Puf) = [ )

produces a map from F™ — F™, commuting with the action of V. This map is the identity on F!.
Let us give the formulae for P, so that we see that the map P, is “universal”.

Given v := (v1,v2,...,v,) € V, consider the map p, : R"™1 — V given by
polti,ta, . tno1) = vi +t1(ve —v1) + -+ tp_1(vn — v1).

This map sends the standard simplex A, _; defined by
n—1
t; >0, Z t; <1
i=1

60



VERGNE

to the simplex S in V with vertices vy, vs, ..., vy.

Let us consider the form
pw(f) = f(t,v)dty A -+ Adtn_1.

The map P, is given by

(Puf)(v) = / £t o)t

Ap1

where f(t,v) is the element of F,, depending on ¢ described as follows.

Lemma 2.1 Let
v(t) =v1 +ti(v2 —v1) + -+ tuo1(vn —v1).

Define

f(ta V1,02, .. '7vn) = %|0 Z E(O')f(v(t), U(t) + E1(%7'(2) - Ul)a .- .,’U(t) + Enfl(vri(n) - Ul))' (2)
0€X[2,...,n]

Here t = (t1,ta,...,th—1) and X([2,...,n]) is the group of permutations of the set with (n—1) elements
[2,...,n].

Then we have the formula

(Pnf)(UI;UQa"'7vn) :/ f(tav)dtldt2"'dtnfl~
Ap_q

Let H :=1d — P. Using the injectivity of the vector spaces F™ in the category of V-modules, as it is

standard, and we will review the procedure below, to produce a homotopy
G:F"— !
commuting with the action of V' by translations such that
H=G6+ 6G.

We first use the following injectivity lemma.

Lemma 2.2 Let A, B be two real vector spaces provided with a structure of V -modules. Let uw: A — F™ be
a V -module map from A to F™. Let v: A — B be an injective map of V -modules. Then there exists a map

w: B — F" of V-modules extending u.

The formula for a map w (depending on a choice of retraction) is given below in the proof.

Proof. Denote by 7 the action of V on B. Let s be a linear map from B to A such that sv = Id. Let

b € B: we define the map w (depending on our choice of linear retraction s) by
w(b)(vla V2, . . '7vn) = U(ST(fvl)b)(Oa V2 —VU1,...,Un — Ul)'
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We verify that b satisfy the wanted conditions. The crucial point is that the map w is a map of V-modules,
as we now show. Indeed,

w(T(UO)b)(Ula V2, .. '7vn) = U(S(T(*UI)T(Uo)b))(O, V2 —V1,...,Un — Ul)

= u(s(7(—v1 + v0)b))(0,v2 — v1, ..., v, — V1),

while
(T(vo)w(b))(v1,vay ..., vn) = w(b)(v1 — Vo, V2 — Vo, . -+, Up — Vo)

u(T(vg — v1))byu(s(r(vg — v1)).

a

We now apply this lemma to define G inductively. Consider the injective map deduced from § from
Fm/§(Fn—1) to FmtL,

Recall our linear map s : F™*! — F™ given by equation (1). We may take as linear inverse (that we still
call s) the map s: F™*! — F™ followed by the projection F™ — F™/§(Fn~1).

We define G! = 0 and inductively G™*! as the map extending

H" —6G": F" — F"

to F"*1 constructed in Lemma 2.2. Indeed, (H" — 6G™)§ = 6H" ! — §(—0G"~' + H"!) = 0 so that the
map H™ — 6G™ produces a map from F"/§(F"~1) — F™ and we use the fact that F/§(F"~1) is embedded
in F**! via § with inverse s.

More precisely, given v; and f € F**!, we define the function ¢ of n variables given by
d(wr, wa, ..., wy) = f(vr,v1 +wi,...,01 + wy)

and define

(G" ) (w1, 02, vn) = (H" = 6G™)$)(0,v2 = 1, ..., v — v1).

For example, this leads to the following formulae for the first elements G*.

We have G =0,G? = 0.

1
d
(G?’f)(vl,vg) = f(vl, V1, 1)2) — / £|0f(1)1,1)1 —+ t(UQ — Ul), U1 —+ t(vg — Ul) + 6(1)2 — Ul))dt.
0
(G*f)(v1,v2,v3) = Gg + G + G
with
(Géf)(vhw,v?,) = f(vhvhvz,v?,) - f(U1,U2,02,U3) + f(vhvl,vl,v?,) - f(Ul,Ul,Ul,W),

1
d
£|of(vl, Vg, V2 + t(vg — v2),v2 + (t + €)(v3 — v2))

(G%f)(vl,v% v3) = /

t=0
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1

d

*/ E|0f(vlavlavl +t(vs —v1),v1 + (t+€)(vs —v1))
t=0

1
d
[ Splof (o1, o101+t = o2), 01+ (E+ ez = ).
t=0

@D ws) == [ Llofou VOV +a), VE+ )

tes, de

N /tGA %|0f(01, V() V(T +e), V(L +€r)).

Here t = [t1,t2], t + €1 = [t1 + €1,t2], t + €2 = [t1,t2 + €], V(t) = v1 + t1(va — v1) + ta(vs — v1), and
Ag = {[t1,t2],t1 > 0,2 > 051 +t2 < 1}.
Let us now consider the action of V' by translations on the complex F'™. The differential § induces a

differential d4 : F} — F% on the subspaces of invariants. We identify the space F} with F"~! by the map
R:F" ' — F%
given by
(Rf)(vlﬂUQa .. .,'Un) = f(UQ —V1,V3 —V2,...,Un 7vn71)~
Then the differential 4 induced by § becomes the Eilenberg-MacLane differential
(baf)(v1,ve, ..., 0n-1)
= f(UQ,Ug, c . '7’07171) - f(vl +U2,U3,U4, .. ~7'Un71) +f(vlgv2 +U3; . -7vn—1) -+
+(71)n72f(1}1,1}2, ceeyUn—2+ Unfl) + (71)n71f(7)1,’02, N 'Unfl).

The map P : F™ — F" also commutes with translations.

Lemma 2.3 We have PR = RAnt where Ant is the anti-symmetrization operator of F™~! on the space of
A"V of antisymmetric functions f(vi,va, ..., Un_1).

Proof.
To compute P, we have to compute

v(t) =vi +ti(ve —v1) + -+t (Vno1 — V1)

and
f(taUI;UQa .- '7vn71)

i|0 Z E(O')f(v(t), U(t) + e (00(2) - Ul)a SERR) ’U(t) + E7172(1)0'(7171) - Ul))'
c€X[2,...,n—1]

Now, if f is invariant by translation, we see that

d
f(ta V1, V2. .., vnfl) = £|0 Z E(J)f(oa €1 (00(2) - Ul)a SERR) E7172(1)0'(7171) - Ul))~
c€X[2,...,n—1]
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We obtain the lemma.

a

The homotopy G commutes with translations and gives an operator G4 on the complex of invariants.

It follows that we obtain on the complex d4 the relation
Gaba +04G4 =1d — Ant.

We thus obtain that the cohomology of the operator §4 is isomorphic in degree n to A"~1V*.

3. Free variables

Let T,, be the free associative algebra in n variables. We consider L,, C T,, as the free Lie algebra in n
variables. An element f of T, is written as f(z1,z2,...,Ty).
Define

(6nf)(x1a c '7xn+1) = Z(f]—)zf(xla L2y ..y Ti—1, L%i; Tit1, - - '7xn)~

=1

Consider T),(y) the free associative algebra generated by (x1,xa,...,Zn,y). An operator h on T, is

extended by an operator still denoted by h on T, (y) where we do not operate on y.
We may consider the application 7 : T,, — T,,(y) defined by

(Tnf)(ﬂfl,...,l'n):f(xl +yax2+ya7x1+yaaxn+y)

The application 7 commutes with é. Thus the kernel of 7 is a subcomplex of T,,. We may identify it
with T,,_1 by (Rf)(x1,22,...,2n) = f(x2 — 21,23 — T2,..., Ty — Zp—1) and we obtain on 7}, the complex 4

considered by Alekseev-Torossian. Here,
(Oaf)(wr, 20, ., Tp 1)
= f(z2,x3,...,@Tn-1) — f(x1 + 22,23, T4,...,Tn—1) + f(X1, 22+ X3, ..., Tp_1) + -
H(=1)"2f (21,22 -y Tz + 1) + (1) (@1, 22, . Ta).
It is clear that the complex § : 0 — Ty — 17 — T5 - - - is acyclic. Indeed we can define
(s)(z1,29,...,2n) = f(0, 21,22, ..., 2p)

and it is immediate to verify that
sd +ds = 1d.

If feT,, we define a function f(¢,x) € R[t] ® T}, by the same formula as Formula (2):

Definition 3.1 Let
z(t) =1+ ti(z2 — 1) + -+ tp-1(zn — 21).
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Define

d
f(taxlax%"wxn) = &|0 Z E(J)f(x(t)ax(t)+el(xa(2) 7271),...,35@)4’671,1(1‘0(”) 7271))
c€x([2,...,n])

Define

(Pof)(z1,22,...,2n) = / flt,x1, 20, .., xn)dtrdts - - - dty—q.
Ap_q

The following lemma is immediate.

Lemma 3.2 We have §P,, = P,¢.

We define G' = 0 and inductively G**! by the same formula as before. More precisely, given f € T"*1,
we define the function ¢ of T™(x1) given by

d(wr, wa, ..., wy) = f(z1, 21 +w1,..., 21 +wy)

and define

(G ) (w1, 22, .. 20) = (H" — 6G™)$)(0, 29 — 21, .., 2y — 21).
Then we conclude as before that Gé + G = Id — P. Restricting to the invariants, we obtain a map G 4
such that Id — Ant = Gada + Gada. Here Ant is the anti-symmetrization operator ) _€(0)2q(1) " Ton).-
The subspace L, of T, is stable under the differential. The operator Ant is equal to 0 on L, , except

in degree 1,2, as there are no totally antisymmetric elements in L,, for n > 3. Thus we obtain

Theorem 3.3 o The cohomology groups H™(T,,04) of the complex 64 : T,, — T,, are of dimension 1 and are
generated by Y €(0)Ty(1) " To(n)-
e The cohomology groups H™(L,,,d4) of the complex 64 : L,, — L, are of dimension 0 if n > 2. For
n=12,
HY(L1,04) = Ray, H?*(L2,04) = Rlzy, 2]

Remark: The Guichardet construction also provides an explicit homotopy.
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