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A homotopy for a complex of free Lie algebras

Michèle Vergne

Abstract

Using the Guichardet construction, we compute the cohomology groups of a complex of free Lie algebras

introduced by Alekseev and Torossian.

1. Introduction

In their study of the relation between the KV-conjecture and Drinfeld’s associators, Alekseev and
Torossian [1] studied the Eilenberg-MacLane differential δA : Ln → Ln+1 , where Ln is the free Lie algebra
in n variables, and computed the cohomology groups of δA in dimensions 1, 2. Following the construction of
Guichardet [2] (see also [3]), we remark that the complex δA is acyclic, except in dimensions 1, 2, where the
cohomology is of dimension 1. We also identify the cohomology groups of a similar complex δA : Tn → Tn+1 ,
where Tn is the free associative algebra in n variables: the cohomology is of dimension 1 in any degree. The
Guichardet construction provides an explicit homotopy.

Alekseev and Torossian used the computations in dimension 2 to deduce the existence of a solution to the
KV problem from the existence of an associator. A simple by-product of their computation is the existence and
the uniqueness of the Campbell-Hausdorff formula. We do not have any other application of the computations
of higher cohomologies.

In this note, we start with a review of the construction of Guichardet. Then we adapt it to free associative
algebras and free Lie algebras.

I am thankful to the referee for his careful reading.

2. The Guichardet construction

Let V be a finite dimensional real vector space. Let F n be the space of polynomial functions f on
V ⊕ V ⊕ · · · ⊕ V . An element f of F n is written as f(v1, v2, . . . , vn).

Define

(δnf)(v1 , . . . , vn+1) =
n∑

i=1

(−1)if(v1 , v2, . . . , vi−1, v̂i, vi+1, . . . , vn).

For example:

(δ1f)(v1 , v2) = −f(v2) + f(v1)
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(δ2f)(v1 , v2, v3) = −f(v2 , v3) + f(v1, v3) − f(v1 , v2).

We define F 0 = R , and embed F 0 → F 1 as the constant functions.

The complex 0 → F 0 → F 1 → · · · is acyclic except in degree 0. Indeed, s : F n → F n−1 given by

(sf)(v1 , v2, . . . , vn−1) = f(0, v1, v2, . . . , vn−1) (1)

satisfies Id := sδ + δs .
Now the additive group V operates on F n by translations: if α ∈ V , we write

(τ (α)f)(v1, . . . , vn) = f(v1 − α, . . . , vn − α).

The differential δ commutes with translations, so that it induces a differential δA on the subspace of translation
invariant functions.

It is well known that the cohomology of the complex δA is isomorphic with Λn−1V ∗ . Here, we recall
Guichardet’s explicit construction of the isomorphism as we will adapt it to the “universal case” considered by
Alekseev-Torossian.

Let Ωn−1 be the space of differential forms of exterior degree n − 1 on V , with polynomial coefficients,
equipped with the de Rham differential.

Consider the simplex S := Sv1,v2,...,vn in V with vertices (v1, v2, . . . , vn). Thus the map Ωn−1 → F n

defined by ω →
∫
S ω induces a map from Ωn−1 to F n . This map commutes with the differentials (as follows

from Stokes formula) and with the natural action by translations.

Conversely, associate to f ∈ F n a differential form ω(f) of degree (n− 1) by setting for v1, v2, . . . , vn−1

vectors in V , identified with tangent vectors at v ∈ V :

〈ω(f)(v), v1 ∧ v2 ∧ · · · ∧ vn−1〉 =
∑

σ∈Σn−1

ε(σ)
d

dε
|0f(v, v + ε1vσ(1), . . . , v + εn−1vσ(n−1)).

Here if φ is a polynomial function of ε1, . . . , εn−1 , we employ the notation d
dε
|0φ(ε) for the coefficient of

ε1 · · · εn−1 in φ .

The map ω commutes with the differential, and with the action of V by translations. Thus the map
Pn : F n → F n defined by

Pn(f) =
∫

S

ω(f)

produces a map from F n → F n , commuting with the action of V . This map is the identity on F 1 .

Let us give the formulae for Pn so that we see that the map Pn is “universal”.

Given v := (v1, v2, . . . , vn) ∈ V , consider the map pv : R
n−1 → V given by

pv(t1, t2, . . . , tn−1) = v1 + t1(v2 − v1) + · · ·+ tn−1(vn − v1).

This map sends the standard simplex Δn−1 defined by

ti ≥ 0,
n−1∑
i=1

ti ≤ 1
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to the simplex S in V with vertices v1, v2, . . . , vn .

Let us consider the form
p∗vω(f) = f(t, v)dt1 ∧ · · · ∧ dtn−1.

The map Pn is given by

(Pnf)(v) =
∫

Δn−1

f(t, v)dt,

where f(t, v) is the element of Fn depending on t described as follows.

Lemma 2.1 Let
v(t) = v1 + t1(v2 − v1) + · · ·+ tn−1(vn − v1).

Define

f(t, v1, v2, . . . , vn) =
d

dε
|0

∑
σ∈Σ[2,...,n]

ε(σ)f(v(t), v(t) + ε1(vσ(2) − v1), . . . , v(t) + εn−1(vσ(n) − v1)). (2)

Here t = (t1, t2, . . . , tn−1) and Σ([2, . . . , n]) is the group of permutations of the set with (n−1) elements

[2, . . . , n] .

Then we have the formula

(Pnf)(v1 , v2, . . . , vn) =
∫

Δn−1

f(t, v)dt1dt2 · · ·dtn−1.

Let H := Id − P . Using the injectivity of the vector spaces F n in the category of V -modules, as it is
standard, and we will review the procedure below, to produce a homotopy

G : F n → F n−1

commuting with the action of V by translations such that

H = Gδ + δG.

We first use the following injectivity lemma.

Lemma 2.2 Let A, B be two real vector spaces provided with a structure of V -modules. Let u : A → F n be
a V -module map from A to F n . Let v : A → B be an injective map of V -modules. Then there exists a map
w : B → F n of V -modules extending u .

The formula for a map w (depending on a choice of retraction) is given below in the proof.

Proof. Denote by τ the action of V on B . Let s be a linear map from B to A such that sv = Id. Let
b ∈ B : we define the map w (depending on our choice of linear retraction s) by

w(b)(v1, v2, . . . , vn) = u(sτ (−v1)b)(0, v2 − v1, . . . , vn − v1).

61



VERGNE

We verify that b satisfy the wanted conditions. The crucial point is that the map w is a map of V -modules,
as we now show. Indeed,

w(τ (v0)b)(v1, v2, . . . , vn) = u(s(τ (−v1)τ (v0)b))(0, v2 − v1, . . . , vn − v1)

= u(s(τ (−v1 + v0)b))(0, v2 − v1, . . . , vn − v1),

while
(τ (v0)w(b))(v1, v2, . . . , vn) = w(b)(v1 − v0, v2 − v0, . . . , vn − v0)

u(τ (v0 − v1))byu(s(τ (v0 − v1)).

�

We now apply this lemma to define G inductively. Consider the injective map deduced from δ from

F n/δ(F n−1) to F n+1 .

Recall our linear map s : F n+1 → F n given by equation (1). We may take as linear inverse (that we still

call s) the map s : F n+1 → F n followed by the projection F n → F n/δ(F n−1).

We define G1 = 0 and inductively Gn+1 as the map extending

Hn − δGn : F n → F n

to F n+1 constructed in Lemma 2.2. Indeed, (Hn − δGn)δ = δHn−1 − δ(−δGn−1 + Hn−1) = 0 so that the

map Hn − δGn produces a map from F n/δ(F n−1) → F n and we use the fact that F n/δ(F n−1) is embedded

in F n+1 via δ with inverse s .
More precisely, given v1 and f ∈ F n+1 , we define the function φ of n variables given by

φ(w1, w2, . . . , wn) = f(v1 , v1 + w1, . . . , v1 + wn)

and define

(Gn+1f)(v1, v2, . . . , vn) = ((Hn − δGn)φ)(0, v2 − v1, . . . , vn − v1).

For example, this leads to the following formulae for the first elements Gi .

We have G1 = 0, G2 = 0.

(G3f)(v1 , v2) = f(v1, v1, v2) −
∫ 1

0

d

dε
|0f(v1 , v1 + t(v2 − v1), v1 + t(v2 − v1) + ε(v2 − v1))dt.

(G4f)(v1, v2, v3) = G4
0 + G4

1 + G4
2

with
(G4

0f)(v1 , v2, v3) = f(v1 , v1, v2, v3) − f(v1 , v2, v2, v3) + f(v1 , v1, v1, v3) − f(v1, v1, v1, v2),

(G4
1f)(v1 , v2, v3) =

∫ 1

t=0

d

dε
|0f(v1, v2, v2 + t(v3 − v2), v2 + (t + ε)(v3 − v2))
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−
∫ 1

t=0

d

dε
|0f(v1, v1, v1 + t(v3 − v1), v1 + (t + ε)(v3 − v1))

+
∫ 1

t=0

d

dε
|0f(v1 , v1, v1 + t(v2 − v1), v1 + (t + ε)(v2 − v1)).

(G4
2f)(v1, v2, v3) = −

∫
t∈S2

d

dε
|0f(v1, V (t), V (t + ε1), V (t + ε2))

−
∫

t∈Δ2

d

dε
|0f(v1, V (t), V (t + ε2), V (t + ε1)).

Here t = [t1, t2] , t + ε1 = [t1 + ε1, t2] , t + ε2 = [t1, t2 + ε2] , V (t) = v1 + t1(v2 − v1) + t2(v3 − v1), and

Δ2 := {[t1, t2], t1 ≥ 0, t2 ≥ 0; t1 + t2 ≤ 1} .

Let us now consider the action of V by translations on the complex F n . The differential δ induces a

differential δA : F n
A → F n

A on the subspaces of invariants. We identify the space F n
A with F n−1 by the map

R : F n−1 → F n
A

given by

(Rf)(v1 , v2, . . . , vn) = f(v2 − v1, v3 − v2, . . . , vn − vn−1).

Then the differential δA induced by δ becomes the Eilenberg-MacLane differential

(δAf)(v1 , v2, . . . , vn−1)

= f(v2, v3, . . . , vn−1) − f(v1 + v2, v3, v4, . . . , vn−1) + f(v1, v2 + v3, . . . , vn−1) + · · ·

+(−1)n−2f(v1 , v2, . . . , vn−2 + vn−1) + (−1)n−1f(v1 , v2, . . . , vn−1).

The map P : F n → F n also commutes with translations.

Lemma 2.3 We have PR = RAnt where Ant is the anti-symmetrization operator of F n−1 on the space of

Λn−1V ∗ of antisymmetric functions f(v1 , v2, . . . , vn−1) .

Proof.
To compute P , we have to compute

v(t) = v1 + t1(v2 − v1) + · · ·+ tn−1(vn−1 − v1)

and

f(t, v1, v2, . . . , vn−1)

=
d

dε
|0

∑
σ∈Σ[2,...,n−1]

ε(σ)f(v(t), v(t) + ε1(vσ(2) − v1), . . . , v(t) + εn−2(vσ(n−1) − v1)).

Now, if f is invariant by translation, we see that

f(t, v1, v2, . . . , vn−1) =
d

dε
|0

∑
σ∈Σ[2,...,n−1]

ε(σ)f(0, ε1(vσ(2) − v1), . . . , εn−2(vσ(n−1) − v1)).
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We obtain the lemma.

�

The homotopy G commutes with translations and gives an operator GA on the complex of invariants.
It follows that we obtain on the complex δA the relation

GAδA + δAGA = Id − Ant.

We thus obtain that the cohomology of the operator δA is isomorphic in degree n to Λn−1V ∗ .

3. Free variables

Let Tn be the free associative algebra in n variables. We consider Ln ⊂ Tn as the free Lie algebra in n

variables. An element f of Tn is written as f(x1, x2, . . . , xn).

Define

(δnf)(x1 , . . . , xn+1) =
n∑

i=1

(−1)if(x1, x2, . . . , xi−1, x̂i, xi+1, . . . , xn).

Consider Tn(y) the free associative algebra generated by (x1, x2, . . . , xn, y). An operator h on Tn is

extended by an operator still denoted by h on Tn(y) where we do not operate on y .

We may consider the application τ : Tn → Tn(y) defined by

(τnf)(x1, . . . , xn) = f(x1 + y, x2 + y, . . . , xi + y, . . . , xn + y).

The application τ commutes with δ . Thus the kernel of τ is a subcomplex of Tn . We may identify it
with Tn−1 by (Rf)(x1, x2, . . . , xn) = f(x2 − x1, x3 − x2, . . . , xn − xn−1) and we obtain on Tn the complex δA

considered by Alekseev-Torossian. Here,

(δAf)(x1 , x2, . . . , xn−1)

= f(x2, x3, . . . , xn−1) − f(x1 + x2, x3, x4, . . . , xn−1) + f(x1, x2 + x3, . . . , xn−1) + · · ·

+(−1)n−2f(x1 , x2, . . . , xn−2 + xn−1) + (−1)n−1f(x1 , x2, . . . , xn−1).

It is clear that the complex δ : 0 → T0 → T1 → T2 · · · is acyclic. Indeed we can define

(sf)(x1 , x2, . . . , xn) = f(0, x1, x2, . . . , xn)

and it is immediate to verify that

sδ + δs = Id.

If f ∈ Tn , we define a function f(t, x) ∈ R[t] ⊗ Tk by the same formula as Formula (2):

Definition 3.1 Let
x(t) = x1 + t1(x2 − x1) + · · ·+ tn−1(xn − x1).
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Define

f(t, x1, x2, . . . , xn) =
d

dε
|0

∑
σ∈Σ([2,...,n])

ε(σ)f(x(t), x(t) + ε1(xσ(2) − x1), . . . , x(t) + εn−1(xσ(n) − x1)).

Define

(Pnf)(x1, x2, . . . , xn) =
∫

Δn−1

f(t, x1, x2, . . . , xn)dt1dt2 · · ·dtn−1.

The following lemma is immediate.

Lemma 3.2 We have δPn = Pnδ.

We define G1 = 0 and inductively Gn+1 by the same formula as before. More precisely, given f ∈ Tn+1 ,
we define the function φ of Tn(x1) given by

φ(w1, w2, . . . , wn) = f(x1, x1 + w1, . . . , x1 + wn)

and define

(Gn+1f)(x1, x2, . . . , xn) = ((Hn − δGn)φ)(0, x2 − x1, . . . , xn − x1).

Then we conclude as before that Gδ + δG = Id − P . Restricting to the invariants, we obtain a map GA

such that Id − Ant = GAδA + GAδA . Here Ant is the anti-symmetrization operator
∑

σ ε(σ)xσ(1) · · ·xσ(n).

The subspace Ln of Tn is stable under the differential. The operator Ant is equal to 0 on Ln , except
in degree 1, 2, as there are no totally antisymmetric elements in Ln for n ≥ 3. Thus we obtain

Theorem 3.3 • The cohomology groups Hn(Tn, δA) of the complex δA : Tn → Tn are of dimension 1 and are

generated by
∑

σ ε(σ)xσ(1) · · ·xσ(n).

• The cohomology groups Hn(Ln, δA) of the complex δA : Ln → Ln are of dimension 0 if n > 2 . For
n = 1, 2 ,

H1(L1, δA) = Rx1, H2(L2 , δA) = R[x1, x2].

Remark: The Guichardet construction also provides an explicit homotopy.
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Théorie des Groupes, Case 7012, 2 Place Jussieu,
75251 Paris Cedex 05, FRANCE
e-mail: vergne@math.jussieu.fr

Received: 20.01.2011

65


