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On F;-supplemented primary subgroups of finite groups

Lugin Zhu and Long Miao

Abstract

Let G be a finite group and F a formation of finite groups. A subgroup H of G is called F;-
supplemented in G if there exists a subnormal subgroup T' of G such that G = HT and (HNT)Hg/He
is contained in the F-hypercenter ZZ(G/Hg) of G/Hg. In this paper, we study the structure of finite
groups by using F,-supplemented subgroups.
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1. Introduction

Throughout this paper, all groups are finite. Recall that a subgroup H of a group G is said to be
supplemented in G if there exists a subgroup K of G such that HK = G. Here, the subgroup K is called a
supplement of H in G.

The relationship between the properties of subgroups of G and the structure of G has been investigated
extensively by many scholars. Particularly, Srinivasan [10] proved that a finite group is supersolvable if every
maximal subgroup of every Sylow subgroup is normal. Asaad [1] extended this result using formation theory
and proved the following: Let F be a saturated formation containing &/ and let G be a solvable group. Then
G € F if there is a normal solvable subgroup H of G such that G/H € F and the maximal subgroups of the
Fitting subgroup F(H) are w-quasinormal in G. Wang[12] generalized Srinivasan’s result as follows: Suppose
G is a group with a normal subgroup H such that G/H is supersolvable. If every maximal subgroup of every
Sylow subgroup of H is c-supplemented in G, then G is supersolvable.

Recently, Miao and Guo [7] proved that G is supersolvable if and only if every maximal subgroup of a
Sylow subgroup of G is supersolvable s-supplemented in G. More recently, Guo in [4] proposed the conception
of F-supplemented subgroups and proved the following: Let F be a S-closed saturated formation containing
all supersolvable groups and H be a normal subgroup of G such that G/H € F. If every maximal subgroup

of a non-cyclic Sylow subgroup of H having no supersolvable supplement in G is F-supplemented in G, then
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G € F. As a continuation of these works, in the present paper, we will analyze the structure of finite groups

with F-supplemented primary subgroups.

Definition 1.1 Let G be a finite group and F a formation of finite groups. A subgroup H of G is called
Fs-supplemented in G if there exists a subnormal subgroup T of G such that G = HT and (HNT)Hg/Hg
is contained in the F -hypercenter Z2 (G/Hg) of G/Hg.

Recall that, for a class F of groups, a chief factor H/K of a group G is called F-central ([3, Definition
2.4.3)) if the semidirect product [H/K](G/Cg(H/K)) € F. The symbol ZZ(G) denotes the F-hypercenter of
a group G, that is, the product of all such normal subgroups H of G whose G-chief factors are F-central. A
subgroup H of G is said to be F-hypercentral in G if H < ZZ (G).

Most of the notation is standard and can be found in [5-6] and [8].We denote by F(G) the Fitting
subgroup of G; by F,(G) the maximal p-nilpotent normal subgroup of G; by O,(G) the maximal normal
p-subgroup of G; by ®(G) the intersection of all maximal subgroups of G. |G| denotes the order of a group
G; M < -G means M is a maximal subgroup of G.

Let F be a class of groups. A formation F is said to be S-closed (.S, -closed ) if it contains all subgroups
(all normal subgroups, respectively) of all its group. F is said to be a formation provided that (1) if G € F
and H < G, then G/H € F, and (2) if G/M and G/N are in F, then G/M N N isin F. A formation F
is said to be saturated if G € F whenever G/®(G) € F. It is well known that the class of all supersolvable

groups and the class of all p-nilpotent groups are saturated formations (cf. [3]).

2. Preliminaries
For the sake of convenience, we first list here some known results which will be useful in the sequel.

Lemma 2.1 [4, Lemma 2.1] Let G be a group and A < G. Let F be a non-empty saturated formation and
Z =277 (G). Then

(1) If A is normal in G, then AZJA < ZLZ(G/A).

(2) If F is S-closed, then ZN A< ZZ(A).

(3) If F is Sy, -closed and A is normal in G, then ZNA < ZZ(A).

(4) If G € F, then Z=G.

Lemma 2.2 Let G be a group and H < K < G. Then

(1) H is Fs-supplemented in G if and only if G has a subnormal subgroup T such that G = HT, Hg < T
and (H/Hg)N(T/Hg) < Z1,(G/Hg).

(2) Suppose that H is normal in G. Then K/H is Fs-supplemented in G/H if and only if K is Fg-
supplemented in G .

(3) Suppose that H is normal in G. Then, for every Fs-supplemented subgroup E in G satisfying (|H|,|E|) =
1, HE/H is Fq-supplemented in G/H .

(4) If H is Fs-supplemented in G and F is S-closed, then H is Fs-supplemented in K .

(5) If H is Fs-supplemented in G, K is normal in G and F is Sy, -closed, then H is Fs-supplemented in K .
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(6) If G € F, then every subgroup of G is Fs-supplemented in G.
Proof. A slight modification of the proof of [4, Lemma 2.2] gives the result. (I

Lemma 2.3 (/3, Theorem 1.8.17]) Let N be a nontrivial solvable normal subgroup of a group G. If NN®(G) =
1, then the Fitting subgroup F(N) of N is the direct product of minimal normal subgroups of G which is

contained in N .

Lemma 2.4 [3, Lemma 1.8.19] If G is a p-solvable group where p is a prime divisor of |G|, then Cq(Fp(G)) <
Fy(G).

Lemma 2.5 [9,Lemma 1.9] Let F be a saturated formation containing all supersolvable groups and G be a

group with a normal subgroup E such that G/E € F. If E is cyclic, then G € F.

Lemma 2.6 [3, Lemma 3.6.10] Let K be a normal subgroup of G and P a p-subgroup of G where p is a
prime divisor of |G|. Then Ng/x(PK/K) = Ng(P1)K/K, here Py is a Sylow p-subgroup of PK .

Lemma 2.7 If L is a subnormal p-subgroup of G where p is a prime divisor of |G|, then L < Op(G).

Proof. Since L is subnormal in G, there exists a subnormal series

It is easy to know that L < O,(N;) char Ny < Ny. This induces that O,(N;) < N, and hence
Op(N1) < Op(N2). So L < Op(N3). Analogously, we can obtain that L < O,(G). O

3. Main results

Theorem 3.1 Let G be a finite group and P a Sylow p-subgroup of G where p is the smallest prime divisor
of |G|. Then G is p-nilpotent if and only if every maximal subgroup of P is Fs-supplemented in G where F
is a class of all p-nilpotent groups.
Proof. If G is p-nilpotent, then by Lemma 2.2(6) every subgroup of G is Fs-supplemented in G and so is
every maximal subgroup of P.

Conversely, let G be a counterexample of smallest order. By hypotheses, every maximal subgroup P; of

P is Fs-supplemented in G. Furthermore, we have

1) O,(G)=1.

If O,(G) # 1, Lemma 2.2(3) guarantees that G/O,,(G) satisfies the hypotheses of the theorem. Thus
G/O,(G) is p-nilpotent by the choice of G. Then G is p-nilpotent, a contradiction.

2) 0,(G) # 1.

If O,(G) =1, then (P;)g =1 for any maximal subgroup P; of P and there exists a subnormal subgroup
B of G such that G = P1B and PN B < ZZ(G). If ZZ(G) # 1, then we know that every minimal normal
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subgroup N of G contained in ZZ (G) is F-central in G. Since F is the class of all p-nilpotent groups, we
have [N|=p or N is a p -group. By 1), we have |N| = p. By a similar discussion as in 1), we have G/N
is p-nilpotent and hence G is p-nilpotent, a contradiction. So we have ZZ (G) = 1 and this is equivalent to
every maximal subgroup P; of P is complemented in G. By the definition of Fs-supplemented subgroup,
there exists a subnormal subgroup of K such that G = PiK and PN K = 1. Clearly, |K|, = p and K is
p-nilpotent by Burnside p-nilpotent Theorem. It follows that G is p-nilpotent, a contradiction.

3) O,(G) is the unique minimal normal subgroup of G and ®(G) = 1.

In fact, G/O,(G) satisfies the condition of the theorem by Lemma 2.2(2). Thus the minimality of G
implies that G/O,(G) is p-nilpotent and hence G is p-solvable. It follows that every minimal normal subgroup
of G is either an elementary abelian p-group or a p -group. By (1), O, (G) = 1. Then every minimal normal
subgroup N of G is an elementary abelian p-group and hence contained in O,(G). Let N be a minimal normal
subgroup of G. Clearly, G/N satisfies the condition of our hypotheses by Lemma 2.2. The minimal choice of
G implies that G/N is p-nilpotent. Similarly, if L is another minimal normal subgroup of G, then we may get
G/L is p-nilpotent. It follows that G/N N L = G is p-nilpotent, a contradiction. Therefore G has a unique
minimal normal subgroup N. Furthermore, since the class of all p-nilpotent groups is a saturated formation,
we have ®(G) = 1. By Lemma 2.3, we have O,(G) = F(G) = N. Hence O,(G) is a unique minimal normal
subgroup of G.

(4) The final contradiction.

By (3), there exists a maximal subgroup M of G such that G = NM and NNM =1. Since G/N = M
is p-nilpotent, we know that M has a normal Hall p/ -subgroup M, . It is clear that G=NM = NNg (Mp/) =
PNg(M, ). Now we let 1 be a maximal subgroup of P containing PN Ng(M,/). By the hypotheses of the
theorem, P; is Fg-supplemented in G and there exists a subnormal subgroup T of G such that G = P,T
and PyNT < ZZ(G) since (P;)g = 1. Based on the discussion of 2), we have the P; is complemented in G.
Clearly, |T'|, = p and we know T is p-nilpotent by the Burnside p-nilpotent Theorem. Therefore we have G
is p-nilpotent since T' has a normal p-complement.

Final contradiction completes our proof. ([l

Theorem 3.2 Let p be an odd prime divisor of |G| and P be a Sylow p-subgroup of G. Then G is p-nilpotent
if and only if Ng(P) is p-nilpotent and every mazimal subgroup of P is Fg-supplemented in G ,where F is
the class of all p-nilpotent groups.
Proof. Necessity part is obvious. So we only need to prove the sufficiency part.

Assume that the assertion is false and choose G to be a counterexample of minimal order. We will divide
the proof into the following steps.

1) 0,(G)=1.

In fact, if O,/ (G) # 1, then we consider the quotient group G/O,/(G). By Lemma 2.2(3) and Lemma
2.6, G/O,/ (G) satisfies the condition of the theorem, and so the minimal choice of G implies that G/O,(G)

p

is p-nilpotent. Hence G is p-nilpotent, a contradiction.

2) If S is a proper subgroup of G containing P, then S is p-nilpotent.
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Clearly, Ng(P) < Ng(P) and hence Ng(P) is p-nilpotent. Applying Lemma 2.2(4), we find that S
satisfies the hypotheses of our theorem. Now, the minimal choice of G implies that S is p-nilpotent.

3) G = PQ, where @ is the Sylow g-subgroup of G with ¢ # p.

Since G is not p-nilpotent, by Thompson ([11], Corollary), there exists a characteristic subgroup H of P
such that Ng(H) is not p-nilpotent. Since Ng(P) is p-nilpotent, we may choose a characteristic subgroup H
of P such that Ng(H) is not p-nilpotent, but Ng(K) is p-nilpotent for any characteristic subgroup K of P
with H < K < P. Since P < Ng(H) and Ng(H) is not p-nilpotent, we have Ng(H) = G by 2). This leads
to Op(G) # 1 and N¢(K) is p-nilpotent for any characteristic subgroup K of P such that O,(G) < K < P.
Now by Lemma 2.6 and Thompson ([11], Corollary), we see that G/O,(G) is p-nilpotent and therefore, G is
p-solvable. Since G is p-solvable, for any ¢ € 7(G) with ¢ # p, there exists a Sylow g-subgroup @ of G such
that PQ = QP is a subgroup of G by ([2],Theorem 6.3.5). If PQ < G, then PQ is p-nilpotent by 2). This
leads to @ < Cg(0y(G)) < O,(G) by Robinson([8], Theorem 9.3.1) since O,/ (G) = 1, a contradiction. Thus
we have proven that G = PQ.

4) Conclusion.

Since O,(G) # 1, we may choose a minimal normal subgroup L of G with L < O,(G). Clearly, G/L
satisfies the condition of the theorem. Now, the minimality of G implies that G/L is p-nilpotent. Since the class
of all p-nilpotent groups is a saturated formation, we may assume L is the unique minimal normal subgroup of
G contained in O,(G) and L £ ®(G). So ®(G) = 1. Thus, by Lemma 2.3, we have F(G) = O,(G) = L is an
elementary abelian p-group. Furthermore, there exists a maximal subgroup M of G such that G = LM and
LNM =1. Hence we have P = PNLM = L(PNM) and PNM = P* is a Sylow p-subgroup of M. If P* =1,
then P = L, and therefore G = Ng(L) = Ng(P) is p-nilpotent, which is a contradiction. So we may assume
P* # 1. Pick a maximal subgroup P; of P with P* < P;. By hypotheses, P; is Fs-supplemented in G, that
is, there exists a subnormal subgroup K of G such that G = PiK and P N K < ZZ(G) since (P1)g = 1. If
ZZ(G) # 1, then we have ZZ (G) < F(G) and hence ZZ (G) = O,(G) = L. On the other hand, we know that

every minimal normal subgroup of G contained in ZZ (G) is a subgroup of order p or a p/ -group. Hence we
have |L| =p by 1) and so P N K < L. Furthermore, if Py N K = L, then we have L < P;, a contradiction.
Thus ZZ(G) =1,andso PPN K = 1.

If LNK # 1, then [LN K| = p. If p < g, then K is p-nilpotent and therefore ¢ char K.
Moreover, as K is subnormal in G, we have < G and hence G is p-nilpotent, a contradiction. On
the other hand, if ¢ < p, then since LN K 4 K and Cx(LNK) = LN K by Lemma 2.4, we see that
K,=2K/LNK =Ng(LNK)/Ckg(LNK) is isomorphic to a subgroup of Aut(L N K) and therefore K, where
K, is a Sylow ¢-subgroup of K, and particularly K, is a cyclic group. Since K, is also a Sylow g-subgroup
of G and ¢ < p, we know that G is g¢-nilpotent and therefore P is normal in G. Hence Ng(P) = G is

p-nilpotent, a contradiction.

So we may assume L N K = 1. Since G is solvable, we have K is solvable. Let T be a minimal
normal subgroup of K. We know that T is an elementary abelian p-group or g-group. If T is a p-group,
then T < O,(G) = L by Lemma 2.7, a contradiction. So we may assume 7' is a g-group. By Lemma 2.7,
T < O4(G), this is contrary to 1).

The final contradiction completes our proof. O
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Theorem 3.3 Let G be a p-solvable group and P a Sylow p-subgroup of G. Then G is p-supersolvable if
and only if every maximal subgroup of P is Fs-supplemented in G, where F is the class of all p-supersolvable
groups.
Proof. Necessity part is obvious and we only need to prove the sufficiency part.

Assume that the assertion is false and choose G to be a counterexample of minimal order. Furthermore,

we have that

If L =0,(G)# 1, we consider G/L. Clearly, P\L/L is a maximal subgroup of Sylow p-subgroup
of G/L where P; is a maximal subgroup of P. Since P; is F-supplemented in G, we have P;L/L is also
Fs-supplemented in G/L by Lemma 2.2(3). Therefore G/L satisfies the condition of the theorem. The minimal
choice of G implies that G/L is p-supersolvable, and hence G is p-supersolvable, a contradiction

2) 0,(G) #1.

Since G is p-solvable and O, (G) = 1, we have that a minimal normal subgroup of G is an abelian
p-group and hence O,(G) # 1.

3) Final contradiction.

By 2), we may pick a minimal normal subgroup N of G contained in O,(G). By Lemma 2.2(3), we
know that G/N satisfies the condition of the theorem, and so the minimal choice of G implies that G/N is
p-supersolvable. On the other hand, since the class of all p-supersolvable groups is a saturated formation, we
have N is the unique minimal normal subgroup of G contained in O,(G) and O,(G) = N = F(G) £ ®(G) by
Lemma 2.3.

Clearly, there exists a maximal subgroup M of G such that G = NM with NNM =1 and P = NM,.
We may choose a maximal subgroup P; with M, < P;. By hypotheses, P; is Fs-supplemented in G'. Then
there exists a subnormal subgroup K of G such that G = PiK and PN K < ZZ(G) since (P1)g = 1. If
ZZ (G) # 1, then every minimal normal subgroup of G contained in ZZ (G) is either a cyclic group of order p
or a p -group since F is the class of all p-supersolvable groups, and so IN| =p by 1). It follows from G/N
is p-supersolvable that G is p-supersolvable by Lemma 2.5, a contradiction. So we have P, N K = 1 and
|Kp| =p.

If NN K #1, wehave [INNK| =p. If p is the smallest prime divisor of |G|, by Burnside Theorem, we
have K is p-nilpotent and K has a normal p-complement K, . Since K is subnormal, we get K, is also a
normal p-complement of G, a contradiction.

Next we may assume that p is not the smallest prime divisor of |G|. Since NN K < K and K is
p-solvable, we have Cx(N N K) = NN K by Lemma 2.4. Therefore K/NNK = Ng(NNK)/Cxg(NNK) is
isomorphic to a subgroup of Aut(NNK) and K/ is a cyclic group. Clearly, every Sylow subgroup of K is cyclic
and hence K is supersolvable. So K has a normal Sylow g-subgroup () where ¢ is the largest prime divisor of
|K|. If p < g, since K is subnormal in G, then we have @ < O4(G), contrary to 1). So we may assume that
p is the largest prime divisor of |G|. Since G has a cyclic Hall p/ -subgroup, G has a supersolvable type Sylow

tower. So we have P is a minimal normal subgroup of G. On the other hand, if P, is a maximal subgroup of
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P, by hypotheses, P» is Fs-supplemented in G. Thus here exists a subnormal subgroup H such that G = P, H
and P, N H < ZZ(G) since (P2)g = 1. If P, N H # 1, then we have PN ZZ(G) # 1. Since every minimal
normal subgroup of G contained in ZZ (G) is either a cyclic group of order p or a p/ -group, we get |P| = p,
a contradiction. So we have P, N H = 1. Since P is a minimal normal subgroup of G and G is p-solvable,
we have P is an elementary abelian p-group and PN H = 1. Therefore P = PN PyH = Po(PNH) = Ps, a
contradiction.

So we may assume N N K = 1. Since G is p-solvable, we have K is p-solvable. Let T be a minimal
normal subgroup of K. We know that T is an elementary abelian p-group or a p/ -group. If T is a p-group,
then T' < O,(G) = N by Lemma 2.7, a contradiction. So we may assume that T is a p/ -group. By Lemma
2.7, T <O, (G), contrary to 1).

The final contradiction completes our proof. O

Corollary 3.4 Let G be a group. Then G is supersolvable if and only if every maximal subgroup of a Sylow
subgroup of G is Us-supplemented in G.

Theorem 3.5 Let G be a p-solvable group and p a prime divisor of |G|. Then G is p-supersolvable if and
only if every mazimal subgroup of F,(G) containing O, (G) is Fs-supplemented in G, where F is the class of
all p-supersolvable groups.

Proof. Necessity part is obvious and we only need to prove the sufficiency part.

Assume that the assertion is false and choose G to be a counterexample of minimal order. Furthermore,

we have

1) 0,(G)=1.

If T=0,(G) # 1, we consider G/T'. Firstly, F},(G/T) = F(G)/T. Let M/T be a maximal subgroup
of F},(G/T). Then M is a maximal subgroup of F},(G) containing O,/ (G). Since M is Fs-supplemented in G,
then M/T is Fs-supplemented in G/T by Lemma 2.2(3). Thus G/T satisfies the hypotheses of the theorem.

The minimal choice of G implies that G/T is p-supersolvable and so is G, a contradiction.

2) ®(G) =1 and Fp(G) = F(GQ) = 0,(G).

If not, then L = ®(G) # 1. We consider G//L. Since O, (G) = 1, it is easy to show that F,(G) =
F(G) = O,(G). This implies that F,(G/L) = O,(G/L) = O,(G)/L = F,(G)/L. If P/L is a maximal
subgroup of F,,(G/L), then P; is a maximal subgroup of F,(G). Since P; is Fs-supplemented in G and hence
Py /L is Fs-supplemented in G/L by Lemma 2.2(3). Thus G/L satisfies the hypotheses of the theorem. The
minimal choice of G implies that G/L is p-supersolvable and so is G, since the class of all p-supersolvable
groups is a saturated formation, a contradiction.

3) Every minimal normal subgroup of G contained in F(G) is cyclic of order p.

By Lemma 2.3 and 2), F(G) is the direct product of minimal normal subgroups of G contained in F'(G).
Since G is p-solvable and O (G) = 1, we have C(O,(G)) < Op(G) by Lemma 2.4. Now ®(G) =1 implies
that F'(G) is a nontrivial elementary abelian p-group. Thus Cq(F(G)) = F(G). P=F(G) =Ry X ... X Ry,
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where R; is a minimal normal subgroup of G contained in F(G), i =1,2,---,t. Fix ¢, since ®(G) = 1, there
exists a maximal subgroup M of G such that R; £ M. Clearly, P, = R} R is a maximal subgroup of P where
R} is a maximal subgroup of R; and R =[] i R;. By hypotheses, P> is F,-supplemented in G. Evidently,
(P2)¢ = R. By Lemma 2.2(2), P,/R is also Fs-supplemented in G/R. There exists a subnormal subgroup
T/R such that G/R = (P,/R)(T/R) and (P,NT)/R < ZZ(G/R) since (P2/R)(¢/ry = 1. If (P,NT)/R=1,
then P/R=P/RN(P,T)/R= (PN PT)/R=(P:/R)(P/RNT/R) = P2/R since P/R is a minimal normal
subgroup of G/R, a contradiction. So we may assume (P, NT)/R # 1. Furthermore, since every minimal
normal subgroup of G/R contained in ZZ (G/R) is either a cyclic group of order p or a p/ -group, it follows
from (P/R)N ZL(G/R) # 1 that |P/R| = p and hence |R;| = p.

4) Final contradiction.

Thus P = F(G) = Ry X ... x Ry, where R; is a minimal normal subgroup of G of order p. For each i
the quotient G/Cq(R;) is a subgroup of Aut(R;) and hence is abelian. Since the class of all p-supersolvable
groups is a formation, we have G/(._,(Cc(R;)) is p-supersolvable, and thus G/F(G) is p-supersolvable
because ﬂle(CG (R;)) = Ce(F(G)) = F(G). But all chief factors of G below F(G) are cyclic groups of order
p and hence G is p-supersolvable.

The final contradiction completes our proof. O

Theorem 3.6 Let G be a p-solvable group and p a prime divisor of |G|. Then G is p-supersolvable if and
only if every mazimal subgroup of a noncyclic Sylow p-subgroup of Fp(G) is Fs-supplemented in G, where F
is the class of all p-supersolvable groups.

Proof. Necessity part is obvious and we only need to prove the sufficiency part.

Assume that the assertion is false and choose G to be a counterexample of minimal order. Let P be a
Sylow p-subgroup of F,(G). Furthermore, we have that

1) Oy (G)=1.

In fact, if O,/ (G) # 1, we may consider the factor group G/O,, (G). Since F,(G/O,; (GQ)) = F(G)/O, (G)
and Fp(G) = O, ,(G), we have F)(G)/O,(G) = PO, (G)/O, (G) and hence Fp(G)/O,(G) is a p-group.
Clearly, there exists a maximal subgroup P1 of P such that 1O, (G)/0, (G) = H/O,/(G) for any maximal
subgroup H/O,(G) of Fy(G)/O,(G). By hypotheses, every maximal subgroup of P is Fs-supplemented in
G, PO, (G)/0,(G) = H/O,(G) is also F,-supplemented in G/O,(G) by Lemma 2.2(3). Thus G/O0,(G)
satisfies the condition of the theorem, the minimal choice of G' implies that G/O,/(G) is p-supersolvable. It
follows that G is p-supersolvable, a contradiction.

2) o(G)=1.

Assume that ®(G) # 1. The p-solvability of G/®(G) implies that F,(G/®(G)) # 1. By 1), F,(G) =
P = F(G). Since F,(G/®(G)) = F,(G)/®(G), we see that P,/®(G) is Fs-supplemented in G/®(G) for any
maximal subgroup P;/®(G) of P/®(G). The minimal choice of G implies that G/®(G) is p-supersolvable and

hence G is p-supersolvable since the class of all p-supersolvable groups is a saturated formation, a contradiction.

3) Final contradiction.
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By Lemma 2.3 and 2), F(G) is the direct product of minimal normal subgroups of G contained in F'(G).
Since G is p-solvable and O, (G) = 1, we have Cg(0,(G)) < Op(G). Now ®(G) = 1 implies that F(G)
is a nontrivial elementary abelian p-group. Thus Cq(F(G)) = F(G). So we may assume that P = F(G) =
Ry x...X Ry, where R; is a minimal normal subgroup of G contained in F(G), : =1,2,---,t. Since ®(G) =1,
for each R;, there exists a maximal subgroup M of G such that R; £ M. Thus G = PM . Clearly, P, = R}R
is a maximal subgroup of P where R} is the maximal subgroup of R; and R = Hj £i R;. By hypotheses, P,

is Fs-supplemented in G. Evidently, (P2)¢ = R. By Lemma 2.2(3), P»/R is also F,-supplemented in G/R.
There exists a subnormal subgroup T/R such that G/R = (Py/R)(T/R) and (P NT)/R < ZZ(G/R) since
(P2/R)g/r) = 1. If (P,NT)/R =1, then P/R = P/RN(P,T)/R = (PNPT)/R = (P2/R)(P/RNT/R) = P2/R
since P/R is a minimal normal subgroup of G/R, a contradiction. So we may assume (P, NT)/R # 1.

Furthermore, since every minimal normal subgroup of G/R contained in ZZ (G/R) is either a cyclic group of
order p or a p -group, it follows from (P/R)N ZZ(G/R) # 1 that |P/R| = p and hence |R;| = p.

Thus P = F(G) = Ry X ... x Ry, where R; is a minimal normal subgroup of G of order p. For each i
the quotient G/Cq(R;) is a subgroup of Aut(R;) and hence is abelian. Since the class of all p-supersolvable

groups is a formation, we have G/(._,(Cc(R;)) is p-supersolvable, and thus G/F(G) is p-supersolvable
because ﬂle(CG (R;)) = Cq(F(Q)) = F(G). But all chief factors of G below F(G) are cyclic group of order

p and hence G is p-supersolvable, a contradiction.

The final contradiction completes our proof. O

Corollary 3.7 Let G be a solvable group. Then G is supersolvable if and only if every maximal subgroup of a
noncyclic Sylow subgroup of F(G) is U, -supplemented in G .
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