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On Fs-supplemented primary subgroups of finite groups

Lujin Zhu and Long Miao

Abstract

Let G be a finite group and F a formation of finite groups. A subgroup H of G is called Fs -

supplemented in G if there exists a subnormal subgroup T of G such that G = HT and (H ∩ T )HG/HG

is contained in the F -hypercenter ZF
∞(G/HG) of G/HG . In this paper, we study the structure of finite

groups by using Fs -supplemented subgroups.
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1. Introduction

Throughout this paper, all groups are finite. Recall that a subgroup H of a group G is said to be

supplemented in G if there exists a subgroup K of G such that HK = G . Here, the subgroup K is called a

supplement of H in G .

The relationship between the properties of subgroups of G and the structure of G has been investigated

extensively by many scholars. Particularly, Srinivasan [10] proved that a finite group is supersolvable if every

maximal subgroup of every Sylow subgroup is normal. Asaad [1] extended this result using formation theory

and proved the following: Let F be a saturated formation containing U and let G be a solvable group. Then

G ∈ F if there is a normal solvable subgroup H of G such that G/H ∈ F and the maximal subgroups of the

Fitting subgroup F (H) are π -quasinormal in G . Wang[12] generalized Srinivasan’s result as follows: Suppose

G is a group with a normal subgroup H such that G/H is supersolvable. If every maximal subgroup of every

Sylow subgroup of H is c-supplemented in G , then G is supersolvable.

Recently, Miao and Guo [7] proved that G is supersolvable if and only if every maximal subgroup of a

Sylow subgroup of G is supersolvable s-supplemented in G . More recently, Guo in [4] proposed the conception

of F -supplemented subgroups and proved the following: Let F be a S -closed saturated formation containing

all supersolvable groups and H be a normal subgroup of G such that G/H ∈ F . If every maximal subgroup

of a non-cyclic Sylow subgroup of H having no supersolvable supplement in G is F -supplemented in G , then
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G ∈ F . As a continuation of these works, in the present paper, we will analyze the structure of finite groups

with Fs -supplemented primary subgroups.

Definition 1.1 Let G be a finite group and F a formation of finite groups. A subgroup H of G is called

Fs -supplemented in G if there exists a subnormal subgroup T of G such that G = HT and (H ∩ T )HG/HG

is contained in the F -hypercenter ZF
∞(G/HG) of G/HG .

Recall that, for a class F of groups, a chief factor H/K of a group G is called F -central ([3, Definition

2.4.3]) if the semidirect product [H/K](G/CG(H/K)) ∈ F . The symbol ZF
∞(G) denotes the F -hypercenter of

a group G , that is, the product of all such normal subgroups H of G whose G -chief factors are F -central. A

subgroup H of G is said to be F -hypercentral in G if H ≤ ZF
∞(G).

Most of the notation is standard and can be found in [5–6] and [8].We denote by F (G) the Fitting

subgroup of G ; by Fp(G) the maximal p-nilpotent normal subgroup of G ; by Op(G) the maximal normal

p-subgroup of G ; by Φ(G) the intersection of all maximal subgroups of G . |G| denotes the order of a group

G ; M < ·G means M is a maximal subgroup of G .

Let F be a class of groups. A formation F is said to be S -closed (Sn -closed ) if it contains all subgroups

(all normal subgroups, respectively) of all its group. F is said to be a formation provided that (1) if G ∈ F
and H � G , then G/H ∈ F , and (2) if G/M and G/N are in F , then G/M ∩ N is in F . A formation F
is said to be saturated if G ∈ F whenever G/Φ(G) ∈ F . It is well known that the class of all supersolvable

groups and the class of all p-nilpotent groups are saturated formations (cf. [3]).

2. Preliminaries

For the sake of convenience, we first list here some known results which will be useful in the sequel.

Lemma 2.1 [4, Lemma 2.1] Let G be a group and A ≤ G . Let F be a non-empty saturated formation and

Z = ZF
∞(G) . Then

(1) If A is normal in G , then AZ/A ≤ ZF
∞(G/A) .

(2) If F is S -closed, then Z ∩ A ≤ ZF
∞(A) .

(3) If F is Sn -closed and A is normal in G , then Z ∩ A ≤ ZF
∞(A) .

(4) If G ∈ F , then Z = G .

Lemma 2.2 Let G be a group and H ≤ K ≤ G . Then

(1) H is Fs -supplemented in G if and only if G has a subnormal subgroup T such that G = HT , HG ≤ T

and (H/HG) ∩ (T/HG) ≤ ZF
∞(G/HG) .

(2) Suppose that H is normal in G . Then K/H is Fs -supplemented in G/H if and only if K is Fs -

supplemented in G .

(3) Suppose that H is normal in G . Then, for every Fs -supplemented subgroup E in G satisfying (|H |, |E|) =

1 , HE/H is Fs -supplemented in G/H .

(4) If H is Fs -supplemented in G and F is S -closed, then H is Fs -supplemented in K .

(5) If H is Fs -supplemented in G , K is normal in G and F is Sn -closed, then H is Fs -supplemented in K .
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(6) If G ∈ F , then every subgroup of G is Fs -supplemented in G .

Proof. A slight modification of the proof of [4, Lemma 2.2] gives the result. �

Lemma 2.3 ([3, Theorem 1.8.17]) Let N be a nontrivial solvable normal subgroup of a group G . If N∩Φ(G) =

1 , then the Fitting subgroup F (N) of N is the direct product of minimal normal subgroups of G which is

contained in N .

Lemma 2.4 [3, Lemma 1.8.19] If G is a p-solvable group where p is a prime divisor of |G| , then CG(Fp(G)) ≤
Fp(G) .

Lemma 2.5 [9,Lemma 1.9] Let F be a saturated formation containing all supersolvable groups and G be a

group with a normal subgroup E such that G/E ∈ F . If E is cyclic, then G ∈ F .

Lemma 2.6 [3, Lemma 3.6.10] Let K be a normal subgroup of G and P a p-subgroup of G where p is a

prime divisor of |G| . Then NG/K(PK/K) = NG(P1)K/K , here P1 is a Sylow p-subgroup of PK .

Lemma 2.7 If L is a subnormal p-subgroup of G where p is a prime divisor of |G| , then L ≤ Op(G) .

Proof. Since L is subnormal in G , there exists a subnormal series

L � N1 � N2 � . . . . . . � Nt = G.

It is easy to know that L ≤ Op(N1) char N1 � N2 . This induces that Op(N1) � N2 , and hence

Op(N1) ≤ Op(N2). So L ≤ Op(N2). Analogously, we can obtain that L ≤ Op(G). �

3. Main results

Theorem 3.1 Let G be a finite group and P a Sylow p-subgroup of G where p is the smallest prime divisor

of |G| . Then G is p-nilpotent if and only if every maximal subgroup of P is Fs -supplemented in G where F
is a class of all p-nilpotent groups.

Proof. If G is p-nilpotent, then by Lemma 2.2(6) every subgroup of G is Fs -supplemented in G and so is

every maximal subgroup of P .

Conversely, let G be a counterexample of smallest order. By hypotheses, every maximal subgroup P1 of

P is Fs -supplemented in G . Furthermore, we have

1) Op′ (G) = 1.

If Op
′ (G) �= 1, Lemma 2.2(3) guarantees that G/Op

′ (G) satisfies the hypotheses of the theorem. Thus

G/Op
′ (G) is p-nilpotent by the choice of G . Then G is p-nilpotent, a contradiction.

2) Op(G) �= 1.

If Op(G) = 1, then (P1)G = 1 for any maximal subgroup P1 of P and there exists a subnormal subgroup

B of G such that G = P1B and P1 ∩ B ≤ ZF
∞(G). If ZF

∞(G) �= 1, then we know that every minimal normal
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subgroup N of G contained in ZF
∞(G) is F -central in G . Since F is the class of all p-nilpotent groups, we

have |N | = p or N is a p
′
-group. By 1), we have |N | = p . By a similar discussion as in 1), we have G/N

is p-nilpotent and hence G is p-nilpotent, a contradiction. So we have ZF
∞(G) = 1 and this is equivalent to

every maximal subgroup P1 of P is complemented in G . By the definition of Fs -supplemented subgroup,

there exists a subnormal subgroup of K such that G = P1K and P1 ∩ K = 1. Clearly, |K|p = p and K is

p-nilpotent by Burnside p-nilpotent Theorem. It follows that G is p-nilpotent, a contradiction.

3) Op(G) is the unique minimal normal subgroup of G and Φ(G) = 1.

In fact, G/Op(G) satisfies the condition of the theorem by Lemma 2.2(2). Thus the minimality of G

implies that G/Op(G) is p-nilpotent and hence G is p-solvable. It follows that every minimal normal subgroup

of G is either an elementary abelian p-group or a p
′
-group. By (1), Op

′ (G) = 1. Then every minimal normal

subgroup N of G is an elementary abelian p-group and hence contained in Op(G). Let N be a minimal normal

subgroup of G . Clearly, G/N satisfies the condition of our hypotheses by Lemma 2.2. The minimal choice of

G implies that G/N is p-nilpotent. Similarly, if L is another minimal normal subgroup of G , then we may get

G/L is p-nilpotent. It follows that G/N ∩ L ∼= G is p-nilpotent, a contradiction. Therefore G has a unique

minimal normal subgroup N . Furthermore, since the class of all p-nilpotent groups is a saturated formation,

we have Φ(G) = 1. By Lemma 2.3, we have Op(G) = F (G) = N . Hence Op(G) is a unique minimal normal

subgroup of G .

(4) The final contradiction.

By (3), there exists a maximal subgroup M of G such that G = NM and N ∩M = 1. Since G/N ∼= M

is p-nilpotent, we know that M has a normal Hall p
′
-subgroup Mp

′ . It is clear that G = NM = NNG(Mp
′ ) =

PNG(Mp′ ). Now we let P1 be a maximal subgroup of P containing P ∩ NG(Mp′ ). By the hypotheses of the

theorem, P1 is Fs -supplemented in G and there exists a subnormal subgroup T of G such that G = P1T

and P1 ∩ T ≤ ZF
∞(G) since (P1)G = 1. Based on the discussion of 2), we have the P1 is complemented in G .

Clearly, |T |p = p and we know T is p-nilpotent by the Burnside p-nilpotent Theorem. Therefore we have G

is p-nilpotent since T has a normal p-complement.

Final contradiction completes our proof. �

Theorem 3.2 Let p be an odd prime divisor of |G| and P be a Sylow p-subgroup of G . Then G is p-nilpotent

if and only if NG(P ) is p-nilpotent and every maximal subgroup of P is Fs -supplemented in G ,where F is

the class of all p-nilpotent groups.

Proof. Necessity part is obvious. So we only need to prove the sufficiency part.

Assume that the assertion is false and choose G to be a counterexample of minimal order. We will divide

the proof into the following steps.

1) Op′ (G) = 1.

In fact, if Op′ (G) �= 1, then we consider the quotient group G/Op′ (G). By Lemma 2.2(3) and Lemma

2.6, G/Op′ (G) satisfies the condition of the theorem, and so the minimal choice of G implies that G/Op′ (G)

is p-nilpotent. Hence G is p-nilpotent, a contradiction.

2) If S is a proper subgroup of G containing P , then S is p-nilpotent.

70



ZHU, MIAO

Clearly, NS(P ) ≤ NG(P ) and hence NS(P ) is p-nilpotent. Applying Lemma 2.2(4), we find that S

satisfies the hypotheses of our theorem. Now, the minimal choice of G implies that S is p-nilpotent.

3) G = PQ , where Q is the Sylow q -subgroup of G with q �= p .

Since G is not p-nilpotent, by Thompson ([11], Corollary), there exists a characteristic subgroup H of P

such that NG(H) is not p-nilpotent. Since NG(P ) is p-nilpotent, we may choose a characteristic subgroup H

of P such that NG(H) is not p-nilpotent, but NG(K) is p-nilpotent for any characteristic subgroup K of P

with H < K ≤ P . Since P ≤ NG(H) and NG(H) is not p-nilpotent, we have NG(H) = G by 2). This leads

to Op(G) �= 1 and NG(K) is p-nilpotent for any characteristic subgroup K of P such that Op(G) < K ≤ P .

Now by Lemma 2.6 and Thompson ([11], Corollary), we see that G/Op(G) is p-nilpotent and therefore, G is

p-solvable. Since G is p-solvable, for any q ∈ π(G) with q �= p , there exists a Sylow q -subgroup Q of G such

that PQ = QP is a subgroup of G by ([2],Theorem 6.3.5). If PQ < G , then PQ is p-nilpotent by 2). This

leads to Q ≤ CG(Op(G)) ≤ Op(G) by Robinson([8], Theorem 9.3.1) since Op′ (G) = 1, a contradiction. Thus

we have proven that G = PQ .

4) Conclusion.

Since Op(G) �= 1, we may choose a minimal normal subgroup L of G with L ≤ Op(G). Clearly, G/L

satisfies the condition of the theorem. Now, the minimality of G implies that G/L is p-nilpotent. Since the class

of all p-nilpotent groups is a saturated formation, we may assume L is the unique minimal normal subgroup of

G contained in Op(G) and L � Φ(G). So Φ(G) = 1. Thus, by Lemma 2.3, we have F (G) = Op(G) = L is an

elementary abelian p-group. Furthermore, there exists a maximal subgroup M of G such that G = LM and

L∩M = 1. Hence we have P = P ∩LM = L(P ∩M) and P ∩M = P ∗ is a Sylow p-subgroup of M . If P ∗ = 1,

then P = L , and therefore G = NG(L) = NG(P ) is p-nilpotent, which is a contradiction. So we may assume

P ∗ �= 1. Pick a maximal subgroup P1 of P with P ∗ ≤ P1 . By hypotheses, P1 is Fs -supplemented in G , that

is, there exists a subnormal subgroup K of G such that G = P1K and P1 ∩ K ≤ ZF
∞(G) since (P1)G = 1. If

ZF
∞(G) �= 1, then we have ZF

∞(G) ≤ F (G) and hence ZF
∞(G) = Op(G) = L . On the other hand, we know that

every minimal normal subgroup of G contained in ZF
∞(G) is a subgroup of order p or a p

′
-group. Hence we

have |L| = p by 1) and so P1 ∩ K ≤ L . Furthermore, if P1 ∩ K = L , then we have L ≤ P1 , a contradiction.

Thus ZF
∞(G) = 1, and so P1 ∩ K = 1.

If L ∩ K �= 1, then |L ∩ K| = p . If p < q , then K is p-nilpotent and therefore Q char K .

Moreover, as K is subnormal in G , we have Q � G and hence G is p-nilpotent, a contradiction. On

the other hand, if q < p , then since L ∩ K � K and CK(L ∩ K) = L ∩ K by Lemma 2.4, we see that

Kq
∼= K/L∩K = NK(L∩K)/CK(L∩K) is isomorphic to a subgroup of Aut(L∩K) and therefore Kq where

Kq is a Sylow q -subgroup of K , and particularly Kq is a cyclic group. Since Kq is also a Sylow q -subgroup

of G and q < p , we know that G is q -nilpotent and therefore P is normal in G . Hence NG(P ) = G is

p-nilpotent, a contradiction.

So we may assume L ∩ K = 1. Since G is solvable, we have K is solvable. Let T be a minimal

normal subgroup of K . We know that T is an elementary abelian p-group or q -group. If T is a p-group,

then T ≤ Op(G) = L by Lemma 2.7, a contradiction. So we may assume T is a q -group. By Lemma 2.7,

T ≤ Oq(G), this is contrary to 1).

The final contradiction completes our proof. �
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Theorem 3.3 Let G be a p-solvable group and P a Sylow p-subgroup of G . Then G is p-supersolvable if

and only if every maximal subgroup of P is Fs -supplemented in G , where F is the class of all p-supersolvable

groups.

Proof. Necessity part is obvious and we only need to prove the sufficiency part.

Assume that the assertion is false and choose G to be a counterexample of minimal order. Furthermore,

we have that

1) Op
′ (G) = 1.

If L = Op
′ (G) �= 1, we consider G/L . Clearly, P1L/L is a maximal subgroup of Sylow p-subgroup

of G/L where P1 is a maximal subgroup of P . Since P1 is Fs -supplemented in G , we have P1L/L is also

Fs -supplemented in G/L by Lemma 2.2(3). Therefore G/L satisfies the condition of the theorem. The minimal

choice of G implies that G/L is p-supersolvable, and hence G is p-supersolvable, a contradiction

2) Op(G) �= 1.

Since G is p-solvable and Op′ (G) = 1, we have that a minimal normal subgroup of G is an abelian

p-group and hence Op(G) �= 1.

3) Final contradiction.

By 2), we may pick a minimal normal subgroup N of G contained in Op(G). By Lemma 2.2(3), we

know that G/N satisfies the condition of the theorem, and so the minimal choice of G implies that G/N is

p-supersolvable. On the other hand, since the class of all p-supersolvable groups is a saturated formation, we

have N is the unique minimal normal subgroup of G contained in Op(G) and Op(G) = N = F (G) � Φ(G) by

Lemma 2.3.

Clearly, there exists a maximal subgroup M of G such that G = NM with N ∩M = 1 and P = NMp .

We may choose a maximal subgroup P1 with Mp ≤ P1 . By hypotheses, P1 is Fs -supplemented in G . Then

there exists a subnormal subgroup K of G such that G = P1K and P1 ∩ K ≤ ZF
∞(G) since (P1)G = 1. If

ZF
∞(G) �= 1, then every minimal normal subgroup of G contained in ZF

∞(G) is either a cyclic group of order p

or a p
′
-group since F is the class of all p-supersolvable groups, and so |N | = p by 1). It follows from G/N

is p-supersolvable that G is p-supersolvable by Lemma 2.5, a contradiction. So we have P1 ∩ K = 1 and

|Kp| = p .

If N ∩K �= 1, we have |N ∩K| = p . If p is the smallest prime divisor of |G| , by Burnside Theorem, we

have K is p-nilpotent and K has a normal p-complement Kp′ . Since K is subnormal, we get Kp′ is also a

normal p-complement of G , a contradiction.

Next we may assume that p is not the smallest prime divisor of |G| . Since N ∩ K � K and K is

p-solvable, we have CK(N ∩ K) = N ∩ K by Lemma 2.4. Therefore K/N ∩ K = NK(N ∩ K)/CK(N ∩ K) is

isomorphic to a subgroup of Aut(N∩K) and Kp′ is a cyclic group. Clearly, every Sylow subgroup of K is cyclic

and hence K is supersolvable. So K has a normal Sylow q -subgroup Q where q is the largest prime divisor of

|K| . If p < q , since K is subnormal in G , then we have Q ≤ Oq(G), contrary to 1). So we may assume that

p is the largest prime divisor of |G| . Since G has a cyclic Hall p
′
-subgroup, G has a supersolvable type Sylow

tower. So we have P is a minimal normal subgroup of G . On the other hand, if P2 is a maximal subgroup of
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P , by hypotheses, P2 is Fs -supplemented in G . Thus here exists a subnormal subgroup H such that G = P2H

and P2 ∩ H ≤ ZF
∞(G) since (P2)G = 1. If P2 ∩ H �= 1, then we have P ∩ ZF

∞(G) �= 1. Since every minimal

normal subgroup of G contained in ZF
∞(G) is either a cyclic group of order p or a p

′
-group, we get |P | = p ,

a contradiction. So we have P2 ∩ H = 1. Since P is a minimal normal subgroup of G and G is p-solvable,

we have P is an elementary abelian p-group and P ∩ H = 1. Therefore P = P ∩ P2H = P2(P ∩ H) = P2 , a

contradiction.

So we may assume N ∩ K = 1. Since G is p-solvable, we have K is p-solvable. Let T be a minimal

normal subgroup of K . We know that T is an elementary abelian p-group or a p
′
-group. If T is a p-group,

then T ≤ Op(G) = N by Lemma 2.7, a contradiction. So we may assume that T is a p
′
-group. By Lemma

2.7, T ≤ Op
′ (G), contrary to 1).

The final contradiction completes our proof. �

Corollary 3.4 Let G be a group. Then G is supersolvable if and only if every maximal subgroup of a Sylow

subgroup of G is Us -supplemented in G .

Theorem 3.5 Let G be a p-solvable group and p a prime divisor of |G| . Then G is p-supersolvable if and

only if every maximal subgroup of Fp(G) containing Op
′ (G) is Fs -supplemented in G , where F is the class of

all p-supersolvable groups.

Proof. Necessity part is obvious and we only need to prove the sufficiency part.

Assume that the assertion is false and choose G to be a counterexample of minimal order. Furthermore,

we have

1) Op′ (G) = 1.

If T = Op
′ (G) �= 1, we consider G/T . Firstly, Fp(G/T ) = Fp(G)/T . Let M/T be a maximal subgroup

of Fp(G/T ). Then M is a maximal subgroup of Fp(G) containing Op
′ (G). Since M is Fs -supplemented in G ,

then M/T is Fs -supplemented in G/T by Lemma 2.2(3). Thus G/T satisfies the hypotheses of the theorem.

The minimal choice of G implies that G/T is p-supersolvable and so is G , a contradiction.

2) Φ(G) = 1 and Fp(G) = F (G) = Op(G).

If not, then L = Φ(G) �= 1. We consider G/L . Since Op′ (G) = 1, it is easy to show that Fp(G) =

F (G) = Op(G). This implies that Fp(G/L) = Op(G/L) = Op(G)/L = Fp(G)/L . If P1/L is a maximal

subgroup of Fp(G/L), then P1 is a maximal subgroup of Fp(G). Since P1 is Fs -supplemented in G and hence

P1/L is Fs -supplemented in G/L by Lemma 2.2(3). Thus G/L satisfies the hypotheses of the theorem. The

minimal choice of G implies that G/L is p-supersolvable and so is G , since the class of all p-supersolvable

groups is a saturated formation, a contradiction.

3) Every minimal normal subgroup of G contained in F (G) is cyclic of order p .

By Lemma 2.3 and 2), F (G) is the direct product of minimal normal subgroups of G contained in F (G).

Since G is p-solvable and Op
′ (G) = 1, we have CG(Op(G)) ≤ Op(G) by Lemma 2.4. Now Φ(G) = 1 implies

that F (G) is a nontrivial elementary abelian p-group. Thus CG(F (G)) = F (G). P = F (G) = R1 × . . .× Rt ,
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where Ri is a minimal normal subgroup of G contained in F (G), i = 1, 2, · · · , t . Fix i , since Φ(G) = 1, there

exists a maximal subgroup M of G such that Ri � M . Clearly, P2 = R∗
i R is a maximal subgroup of P where

R∗
i is a maximal subgroup of Ri and R =

∏
j �=i Rj . By hypotheses, P2 is Fs -supplemented in G . Evidently,

(P2)G = R . By Lemma 2.2(2), P2/R is also Fs -supplemented in G/R . There exists a subnormal subgroup

T/R such that G/R = (P2/R)(T/R) and (P2 ∩ T )/R ≤ ZF
∞(G/R) since (P2/R)(G/R) = 1. If (P2 ∩ T )/R = 1,

then P/R = P/R ∩ (P2T )/R = (P ∩ P2T )/R = (P2/R)(P/R ∩ T/R) = P2/R since P/R is a minimal normal

subgroup of G/R , a contradiction. So we may assume (P2 ∩ T )/R �= 1. Furthermore, since every minimal

normal subgroup of G/R contained in ZF
∞(G/R) is either a cyclic group of order p or a p

′
-group, it follows

from (P/R) ∩ ZF
∞(G/R) �= 1 that |P/R| = p and hence |Ri| = p .

4) Final contradiction.

Thus P = F (G) = R1 × . . .× Rt , where Ri is a minimal normal subgroup of G of order p . For each i

the quotient G/CG(Ri) is a subgroup of Aut(Ri) and hence is abelian. Since the class of all p-supersolvable

groups is a formation, we have G/
⋂t

i=1(CG(Ri)) is p-supersolvable, and thus G/F (G) is p-supersolvable

because
⋂t

i=1(CG(Ri)) = CG(F (G)) = F (G). But all chief factors of G below F (G) are cyclic groups of order

p and hence G is p-supersolvable.

The final contradiction completes our proof. �

Theorem 3.6 Let G be a p-solvable group and p a prime divisor of |G| . Then G is p-supersolvable if and

only if every maximal subgroup of a noncyclic Sylow p-subgroup of Fp(G) is Fs -supplemented in G , where F
is the class of all p-supersolvable groups.

Proof. Necessity part is obvious and we only need to prove the sufficiency part.

Assume that the assertion is false and choose G to be a counterexample of minimal order. Let P be a

Sylow p-subgroup of Fp(G). Furthermore, we have that

1) Op
′ (G) = 1.

In fact, if Op′ (G) �= 1, we may consider the factor group G/Op′ (G). Since Fp(G/Op′ (G)) = Fp(G)/Op′ (G)

and Fp(G) = Op
′
p(G), we have Fp(G)/Op

′ (G) = POp
′ (G)/Op

′ (G) and hence Fp(G)/Op
′ (G) is a p-group.

Clearly, there exists a maximal subgroup P1 of P such that P1Op′ (G)/Op′ (G) = H/Op′ (G) for any maximal

subgroup H/Op′ (G) of Fp(G)/Op′ (G). By hypotheses, every maximal subgroup of P is Fs -supplemented in

G , P1Op
′ (G)/Op

′ (G) = H/Op
′ (G) is also Fs -supplemented in G/Op

′ (G) by Lemma 2.2(3). Thus G/Op
′ (G)

satisfies the condition of the theorem, the minimal choice of G implies that G/Op′ (G) is p-supersolvable. It

follows that G is p-supersolvable, a contradiction.

2) Φ(G) = 1.

Assume that Φ(G) �= 1. The p-solvability of G/Φ(G) implies that Fp(G/Φ(G)) �= 1. By 1), Fp(G) =

P = F (G). Since Fp(G/Φ(G)) = Fp(G)/Φ(G), we see that P1/Φ(G) is Fs -supplemented in G/Φ(G) for any

maximal subgroup P1/Φ(G) of P/Φ(G). The minimal choice of G implies that G/Φ(G) is p-supersolvable and

hence G is p-supersolvable since the class of all p-supersolvable groups is a saturated formation, a contradiction.

3) Final contradiction.
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By Lemma 2.3 and 2), F (G) is the direct product of minimal normal subgroups of G contained in F (G).

Since G is p-solvable and Op′ (G) = 1, we have CG(Op(G)) ≤ Op(G). Now Φ(G) = 1 implies that F (G)

is a nontrivial elementary abelian p-group. Thus CG(F (G)) = F (G). So we may assume that P = F (G) =

R1×. . .×Rt , where Ri is a minimal normal subgroup of G contained in F (G), i = 1, 2, · · · , t . Since Φ(G) = 1,

for each Ri , there exists a maximal subgroup M of G such that Ri � M . Thus G = PM . Clearly, P2 = R∗
i R

is a maximal subgroup of P where R∗
i is the maximal subgroup of Ri and R =

∏
j �=i Rj . By hypotheses, P2

is Fs -supplemented in G . Evidently, (P2)G = R . By Lemma 2.2(3), P2/R is also Fs -supplemented in G/R .

There exists a subnormal subgroup T/R such that G/R = (P2/R)(T/R) and (P2 ∩ T )/R ≤ ZF
∞(G/R) since

(P2/R)(G/R) = 1. If (P2∩T )/R = 1, then P/R = P/R∩(P2T )/R = (P∩P2T )/R = (P2/R)(P/R∩T/R) = P2/R

since P/R is a minimal normal subgroup of G/R , a contradiction. So we may assume (P2 ∩ T )/R �= 1.

Furthermore, since every minimal normal subgroup of G/R contained in ZF
∞(G/R) is either a cyclic group of

order p or a p
′
-group, it follows from (P/R) ∩ ZF

∞(G/R) �= 1 that |P/R| = p and hence |Ri| = p .

Thus P = F (G) = R1 × . . .× Rt , where Ri is a minimal normal subgroup of G of order p . For each i

the quotient G/CG(Ri) is a subgroup of Aut(Ri) and hence is abelian. Since the class of all p-supersolvable

groups is a formation, we have G/
⋂t

i=1(CG(Ri)) is p-supersolvable, and thus G/F (G) is p-supersolvable

because
⋂t

i=1(CG(Ri)) = CG(F (G)) = F (G). But all chief factors of G below F (G) are cyclic group of order

p and hence G is p-supersolvable, a contradiction.

The final contradiction completes our proof. �

Corollary 3.7 Let G be a solvable group. Then G is supersolvable if and only if every maximal subgroup of a

noncyclic Sylow subgroup of F (G) is Us -supplemented in G .
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