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On cosets in Coxeter groups∗

Sarah B. Hart, Peter J. Rowley

Abstract

In this paper the notion of Coxeter length for a subset of a Coxeter group, as introduced in [9], is

investigated for various subsets of a Coxeter group. Mostly cosets of various subgroups are examined as well

as the associated idea of X -posets, which is a vast generalization of the Bruhat order.
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1. Introduction

In [9] the authors introduced the notion of length for a subset of a Coxeter group which generalizes the
well known length function on elements of a Coxeter group. A number of properties of this generalized length
function were obtained there. For a survey of results in this area see [6].

The purpose of the present paper is to investigate the lengths of cosets of various subgroups of the
Coxeter group W with particular emphasis on certain partial orders. These partial orders amount to an
extensive generalization of the Bruhat order [1], [3], [8] and, indeed, of the Bruhat order defined by Deodhar on

the cosets of a standard parabolic subgroup of W [5]. For W a Coxeter group and X a subset of W , we define

N(X) = {α ∈ Φ+|w · α ∈ Φ− for some w ∈ X },

where Φ+ and Φ− are, respectively, the positive and negative roots of the root system Φ of W . So N(X)

consists of all the positive roots taken negative by some element of X . Now, from [9], the Coxeter length of X ,

l(X), is defined to be the cardinality of N(X). If X = {w} , then l(X) is just the length of w in the traditional

sense. Let Ref(W ) be the set of reflections of W . For w, w′ ∈ W write w −→ w′ if w = w′t for some

t ∈ Ref(W ) and l(w′) < l(w). The Bruhat order on W , denoted by < , is defined as follows. For w, w′ ∈ W ,

w′ < w provided that there are elements w1, . . . , wm of W such that w −→ w1 −→ · · · −→ wm −→ w′ . There
is a related partial order on W , referred to as the weak Bruhat order, which is defined in the same way as the
Bruhat order but with Ref(W ) replaced by the set of fundamental reflections of W . We shall use <w to denote

the weak Bruhat order on W . In [5], Deodhar extended the Bruhat order to a partial order on the (right) cosets

of a standard parabolic subgroup X of W . The essential fact allowing this to be done is that every (right)
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coset of X has a unique element whose length is minimal in that coset. For cosets Xg, Xh , this partial order
is defined by Xg < Xh if g < h (where g and h are the elements of minimal length in their cosets). We shall

write B(X) for this partial order on the (right) cosets of X in W .

One of the early impetuses for introducing and studying the Bruhat order was its connection with in-
clusions among closures of Bruhat cells for a corresponding semisimple algebraic group. In recent times it has
become interwoven with other aspects of algebraic groups and groups of Lie type such as, for example, Kazdhan
Lusztig polynomials. For standard parabolic subgroups X of W , a further generalization of B(X), called a

generalized quotient, was given by Björner and Wachs [2]. This poset shares many of its properties with B(X).

For example the Möbius function of generalized quotients (and B(X)) takes values −1, 0 or 1 (see [Corollary

3.6; 2]). However the Möbius function for the posets to be introduced here does not necessarily take values in

{−1, 0, 1} (see [7]) and so these posets are different from generalized quotients.

Now we come to the poset which is the main subject of this paper. For a subset X of W we shall use
the notation X ≤ W to indicate that X is a subgroup of W .

Definition 1.1 Suppose that X ≤ W .

(i) For right cosets Xg and Xh of X , we write Xg ∼ Xh whenever Xgt = Xh for some t ∈ Ref(W ) and

l(Xg) = l(Xh) . Let ≈ be the equivalence relation generated by ∼ on the set of right cosets of X in W and let
X be the set of ≈ equivalence classes.

(ii) Let x, x′ ∈ X . We write x � x′ if there is a right coset Xg in x and a right coset Xh in x′ such that

Xgt = Xh for some t ∈ Ref(W ) and l(Xg) ≤ l(Xh) . The partial order � on X is defined by x � x′ if and

only if there exist x1, . . . ,xm ∈ X such that x � x1 � . . . � xm � x′ . We shall call X the X -poset (of W ).

(iii) If, in (i) and (ii), we use the set of fundamental reflections instead of Ref(W ) , we may define, analogously,

the weak X -poset (of W ) denoted by Xw with ordering �w .

There are two main reasons for studying X -posets. Firstly, as will be seen, they represent a generalization
of the Bruhat order on right cosets of standard parabolic subgroups [5]. Secondly, Theorem 1.5 will show that
certain X -posets are ranked and graded. We believe that many other X -posets may have similar properties,
and that they represent a source of new and interesting examples of posets.

For the coset Xg we use [Xg] , respectively [Xg]w , to denote the ≈ equivalence class, respectively the
≈w equivalence class containing Xg . We may now state our first result.

Theorem 1.2 Suppose X ≤ W and let X , respectively Xw , denote the X -poset, respectively weak X -poset.
Then both X and Xw have a unique minimal element, namely the ≈ (respectively, ≈w ) equivalence class
containing X .

Theorem 1.3 Suppose that W is finite, X ≤ W and let w0 be the unique longest element of W .

(i) For any g ∈ W , l(Xgw0) = l(w0) + l(X) − l(Xg) .

(ii) Let g ∈ W and s ∈ Ref(W ) . Then there exists t ∈ Ref(W ) for which l(t) = l(s) and l(Xgs) − l(Xg) =

l(Xgw0) − l(Xgw0t) .
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(iii) Both the weak X -poset and the X -poset are symmetric. That is, if [Xg] � [Xh] , respectively [Xg]w �w

[Xh]w , then [Xhw0] � [Xgw0] , respectively [Xhw0]w �w [Xgw0]w .

So when W is finite, for X ≤ W , X and Xw have a unique maximal and unique minimal element by
Theorems 1.2 and 1.3(iii). We remark that Theorems 1.2 and 1.3 were stated but not proved in the survey

paper [6]. A standard parabolic subgroup of W is a subgroup generated by some subset I of R and is denoted
by WI . Any conjugate of a standard parabolic subgroup is known simply as a parabolic subgroup of W . It is
well known that standard parabolic subgroups are Coxeter groups in their own right.

The following is a corollary to Theorem 3.8.

Corollary 1.4 Suppose that X ≤ Y ≤ W where X is finite and Y is a standard parabolic subgroup of W . If
N(X) = N(Y ) , then the X -poset X is poset isomorphic to B(Y ) .

As a consequence of Corollary 1.4, when X is a finite standard parabolic subgroup, we recover the Bruhat
order given in [5]. Recall that a ranked poset is a poset P such that for each p ∈ P all maximal chains in

{q ∈ P |q ≤ p} have the same finite length, called the rank of p . A graded poset is a ranked poset with a

minimum and a maximum element (see [1]). In Section 4 explicit descriptions of certain X -posets are given.
Among the results obtained there we single out this theorem

Theorem 1.5 Suppose that W is the Coxeter group of type An and X = 〈t〉 where t ∈ Ref(W ) is the longest
reflection in W . Then the X -poset X is a ranked, graded poset.

Before stating some further results, we recall certain basic facts and notation about Coxeter groups.
First, by definition, our Coxeter group W has presentation

W = 〈R | (rs)mrs = 1, r, s ∈ R〉,

where mrs ∈ N∪{∞} , mrr = 1 and for r, s ∈ R , r �= s , mrs = msr ≥ 2. The set R consists of the fundamental

reflections of W . Let V be a real vector space with basis Π = {αr|r ∈ R} and upon V define the symmetric

bilinear form ( , ) by

(αr, αs) =

{
− cos

(
π

mrs

)
if mrs �= ∞,

−1 otherwise,

where r, s ∈ R . For r, s ∈ R let
r · αs = αs − 2(αr, αs)αr.

Now this extends in the natural way to an action of W on V which is not only faithful but also respects ( , ).
The root system Φ which frequently goes hand in glove with W is the following subset of V :

Φ = {w · αr|r ∈ R, w ∈ W}.

Setting Φ+ = {
∑

r∈R λrαr ∈ Φ|λr ≥ 0 for all r ∈ R} and Φ− = −Φ+ gives us, respectively, the sets of positive

and negative roots of Φ. As is well-known, Φ = Φ+∪̇Φ− .

A fundamental, and often useful, fact about Coxeter groups is that, for r ∈ R and w ∈ W ,

l(wr) =
{

l(w) + 1 if w · αr ∈ Φ+;
l(w) − 1 if w · αr ∈ Φ−,
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where αr is the fundamental root corresponding to r . One of our results in Section 2 may be seen as a
generalization of this fact.

Proposition 1.6 If X is a finite subset of W and r ∈ R , then

l(Xr) =

⎧⎨
⎩

l(X) + 1 if αr /∈ N(X);
l(X) − 1 if αr ∈ N(x) for all x ∈ X ;
l(X) otherwise.

If, in addition, we demand that X be a subgroup of W then we have

Proposition 1.7 Let g = r1 · · ·rk ∈ W be a reduced expression for g and let X be a finite subgroup of W .
Then

l(X) ≤ l(Xr1) ≤ · · · ≤ l(Xr1 · · ·rk) = l(Xg).

In particular, for all g ∈ W , l(Xg) ≥ l(X) .

Remark 1.8 The ‘left handed’ analogues of Propositions 1.6 and 1.7 do not hold. Counterexamples will be
given in Section 2. This lack of symmetry is due to the fact that we are acting on the left of Φ.

The following proposition lists several well known facts which will be of use. For proofs of these see, for
example, [8].

Proposition 1.9 (i) For w ∈ W , |N(w)| = l(w) .

(ii) For w, v ∈ W , N(wv) = N(v)\(−v−1N(w)) ∪̇ v−1(N(w)\N(v−1)) .

(iii) Let s ∈ Ref(W ) and w ∈ W . Then l(ws) > l(w) if w · αs ∈ Φ+ and l(ws) < l(w) if w · αs ∈ Φ− .

(iv) The Exchange Condition: Let w = r1 · · ·rk , ri ∈ R , be a not necessarily reduced expression for w . Suppose

that s ∈ Ref(W ) satisfies l(ws) < l(w) . Then there is an index i for which ws = r1 · · · r̂i · · ·rk (omitting ri ).
If the expression for w is reduced, then i is unique.

Our next proposition gives some properties of the Bruhat order ≤ . Let I ⊆ R . We write DI for the set
of distinguished coset representatives of minimal length for WI (the standard parabolic subgroup generated by

I ). We have

Proposition 1.10 (i) If W is finite and w0 is the longest element of W , then g ≤ h if and only if hw0 ≤ gw0 .

(ii) Let g = r1 · · ·rk be any reduced expression for g . Then h ≤ g if and only if h can be written as a
subexpression of r1 · · ·rk .

(iii) Suppose g < h . Then there exists a sequence g = g0 < g1 < · · · < gn = h such that l(gi) = l(gi−1) + 1 for
1 ≤ i ≤ n .

(iv) If I ⊆ R , then the Bruhat ordering of the Coxeter group WI agrees with the restriction to WI of the
Bruhat ordering of W .

(v) Let I ⊆ R . Suppose that g, h ∈ WI and w, v in DI are such that gw < hv . Then w ≤ v .
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Part (i) of Proposition 1.10 is mirrored in Theorem 1.3(iii). The analogue of Proposition 1.10 (iv) is our

next result. For I ⊆ R and X a subgroup of WI , the ordering � of the X -poset (of WI ) will be denoted by
�I .

Proposition 1.11 Let I ⊆ R , and X ≤ WI . Then �I agrees with the restriction to WI of �.

Proposition 1.12 ([9], Proposition 1.1) Let X be a finite standard parabolic subgroup of W and Y be a

conjugate of X . Then l(X) ≤ l(Y ) , with equality if and only if Y is also a standard parabolic subgroup of W .

2. Lengths of Cosets

Lemma 2.1 Let I ⊆ R . Then N(DI )∪̇N(WI ) = Φ+ .

Proof. Suppose α /∈ N(WI). Let w ∈ W have minimal length subject to w · α ∈ Φ−\ΦI . (Such a w

certainly exists, because sα · α = −α ∈ Φ−\ΦI .) Now suppose, for a contradiction, that there is some s ∈ I

such that l(sw) < l(w). If sw · α ∈ ΦI , then, as ΦI is s-invariant, we get w · α ∈ ΦI , a contradiction. So

sw · α /∈ ΦI . Consequently, by the minimal choice of w , sw · α ∈ Φ+ . From s · (w · α) ∈ Φ+ , as w · α ∈ Φ− ,
we deduce that w · α = −αs ∈ ΦI , a contradiction. Hence w ∈ DI , as required. �

Proof of Proposition 1.6 By definition, N(Xr) =
⋃

x∈X N(xr). It is a special case of Proposition 1.9(ii)

that if αr /∈ N(x), then N(xr) = rN(x)∪̇{αr} and if αr ∈ N(x), then N(xr) = r(N(x)\{αr}). Suppose

αr /∈ N(X). Then for all x ∈ X , αr /∈ N(x). Hence

N(Xr) =
⋃

x∈X

N(xr) =
⋃

x∈X

rN(x)∪̇{αr}

= rN(X)∪̇{αr}.

Thus l(Xr) = l(X) + 1. Now assume that αr ∈ N(x) for all x ∈ X . Then

N(Xr) =
⋃

x∈X

r(N(x)\{αr})

= r(N(X)\{αr}),

and so l(Xr) = l(X) − 1. Finally, if αr ∈ N(X) and for some x ∈ X we have αr /∈ N(x) then we see that

N(Xr) = r(N(X)\{αr})∪̇{αr} , hence l(Xr) = l(X). �

Proof of Proposition 1.7 At each stage (0 ≤ i < k ), r1 · · ·ri ∈ Xr1 · · ·ri . Also, r1 · · ·riri+1 is a reduced

expression and thus αri+1 /∈ N(r1 · · ·ri). Thus it is not the case that αri+1 ∈ N(x) for all x ∈ Xr1 · · ·ri .

Therefore, by Proposition 1.6, l(Xr1 · · ·ri+1) ≥ l(Xr1 · · ·ri). �

It is sometimes useful to know N(Xg) explicitly and this is the content of the next lemma.
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Lemma 2.2 Suppose that X is a subgroup of W . Then for g ∈ W ,

N(Xg) = N(g)∪̇g−1(N(X)\N(g−1))

and hence
l(Xg) = l(g) + l(X) − |N(X) ∩ N(g−1)|.

Proof. Let X ≤ W and g ∈ W . Again we use Proposition 1.9(ii) to calculate N(Xg) as follows.

N(Xg) =
⋃

x∈X

N(xg) = N(g) ∪

⎛
⎝ ⋃

1 �=x∈X

N(xg)

⎞
⎠

= N(g) ∪

⎛
⎝ ⋃

1 �=x∈X

N(g)\(−g−1N(x)) ∪̇ g−1(N(x)\N(g−1))

⎞
⎠

= N(g) ∪

⎛
⎝ ⋃

1 �=x∈X

g−1(N(x)\N(g−1))

⎞
⎠

= N(g) ∪ g−1(N(X)\N(g−1)).

Now if α ∈ N(g) ∩ g−1(N(X)\N(g−1)), then g · α ∈ gN(g) ∩N(X) ⊆ Φ− ∩Φ+ , which is empty. Thus N(Xg)

really is the disjoint union of N(g) and g−1(N(X)\N(g−1)). �

Remark 2.3 The analogous statements comparing the length of gX with X are not true. For example, let
W be the Coxeter group of type A4 (so W ∼= Sym(5)). Then if r = (12) and X = {(132), (12)(34)} we have

N(X) = {α(12), α(23), α(34), α(13)} , thus l(X) = 4 but l(rX) = 2 < l(X) − 1. If we take X to be the parabolic

subgroup generated by (13) and (45), then l(X) = 4 but l((12)X) = 3 < l(X). However, if X is a standard
parabolic subgroup, the next lemma, which follows from Proposition 1.12, does give such an analogue.

Lemma 2.4 Let X be a standard parabolic subgroup of W and let g ∈ W . Then l(gX) ≥ l(X) .

Proof. We have
l(gX) = l((gXg−1)g) ≥ l(gXg−1)

by Proposition 1.7, and then l(gXg−1) ≥ l(X) by Proposition 1.12. �

3. X -posets of W

Proof of Theorem 1.2 Let g ∈ W have a reduced expression g = r1r2 · · · rk where ri ∈ R . From Proposition
1.7

[X] � [Xr1] � · · · � [Xr1 · · · rk] = [Xg],

and so x � x′ where x and x′ are, respectively, the ≈ equivalence class of X and the ≈ equivalence class of
Xg . Therefore x is the unique minimal element of X , and by a similar argument of Xw . �
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Proof of Theorem 1.3

(i) By Lemma 2.2,

l(Xg) = l(g) + l(X) − |N(X) ∩ N(g−1)|

and

N(Xgw0) = N(gw0)∪̇w0g
−1(N(X)\N(w0g

−1)).

Now it follows from Proposition 1.9 (ii) and the fact that N(w0) = Φ+ that l(gw0) = l(w0) − l(g) and that

N(w0g
−1) = Φ+\N(g−1). Hence

N(X)\N(w0g
−1) = N(X)\(Φ+\N(g−1)) = N(X) ∩ N(g−1).

So

l(Xgw0) = l(gw0) + |N(X)\N(w0g
−1)|

= l(w0) − l(g) + |N(X) ∩ N(g−1)|

= l(w0) − l(g) + (l(g) + l(X) − l(Xg))

= l(w0) + l(X) − l(Xg).

(ii) Let s ∈ Ref(W ). Then set t = sw0 , so that w0t = sw0 . A quick calculation shows that l(t) = l(w0sw0) =

l(w0) − l(sw0) = l(w0) − (l(w0) − l(s)) = l(s). Furthermore, by (i),

l(Xgw0) − l(Xgw0t) = l(Xgw0) − l(Xgsw0)

= l(w0) + l(X) − l(Xg) − (l(w0) + l(X) − l(Xgs))

= l(Xgs) − l(Xg).

(iii) Follows immediately from part (ii).

�

Lemma 3.1 Let w ∈ W , s ∈ Ref(W ) and α ∈ N(s) . If {α,−s · α} ⊆ N(w) , then αs ∈ N(w) .

Proof. Since α ∈ N(s), s · α = α − 2(α, αs)αs ∈ Φ− . Set λ = 2(α, αs). Then λ > 0 and

αs =
1
λ

((−s · α) + α) .

Hence

w · αs =
1
λ

(w · (−s · α) + w · α) ,

which, as a positive linear combination of negative roots, must also be a negative root. Therefore αs ∈ N(w),
and the lemma holds. �
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Lemma 3.2 Suppose that X is a finite subset of W and that s ∈ Ref(W ) . Then

l(Xs) − l(X) = l(s) − |N(s) ∩
( ⋂

x∈X

N(x)

)
| − |N(s) ∩ N(X)|.

Proof. By definition, and using Proposition 1.9(ii), we have

N(Xs) =
⋃

x∈X

N(xs)

=
⋃

x∈X

[N(s)\(−sN(x)) ∪̇ s(N(x)\N(s))] .

Note that for x �= x′ ∈ X , we have N(s)\(−sN(x)) ∩ s(N(x′)\N(s)) = ∅ , because N(s) ∩ sΦ+ is empty. So

N(Xs) =

[
N(s)\ − s

( ⋂
x∈X

N(x)

)] �⋃
[s (N(X)\N(s))]

and hence

l(Xs) = l(s) − |N(s) ∩
( ⋂

x∈X

N(x)

)
| + |N(X)| − |N(s) ∩ N(X)|.

Thus

l(Xs) − l(X) = l(s) − |N(s) ∩
( ⋂

x∈X

N(x)

)
| − |N(s) ∩ N(X)|,

so verifying the lemma. �

Our next proposition, which makes use of Lemma 3.2, reveals a connection between the partial order �
and the Bruhat order.

Proposition 3.3 Let X be a finite subset of W and let s ∈ Ref(W ) . If l(Xs) ≤ l(X) , then there exists x ∈ X

such that l(xs) < l(x) .

Proof. Suppose, for a contradiction, that for each x ∈ X , l(xs) > l(x). Then, by Proposition 1.9(iii),

x · αs ∈ Φ+ for all x ∈ X .

(3.3.1) For all x ∈ X and α ∈ N(s), |{α,−s · α} ∩ N(x)| ≤ 1.

If (3.3.1) is false, then {α,−s · α} ⊆ N(x) for some x ∈ X . Hence αs ∈ N(x) by Lemma 3.1 and thus

x · αs ∈ Φ− . But x · αs ∈ Φ+ , a contradiction. So (3.3.1) holds.

Suppose that α ∈ N(s) ∩
(⋂

x∈X N(x)
)
. Then, by (3.3.1), for each x ∈ X , −s · α /∈ N(x). In particular

−s · α /∈ N(s) ∩ N(X). Also note that αs is not in N(x) for any x ∈ X . Therefore

|N(s) ∩ N(X)| + |N(s) ∩
( ⋂

x∈X

N(x)

)
| ≤ l(s) − 1.
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Combining this with Lemma 3.2 we get

l(Xs) − l(X) = l(s) − |N(s) ∩
( ⋂

x∈X

N(x)

)
| − |N(s) ∩ N(X)|

≥ l(s) − (l(s) − 1) = 1,

which contradicts the hypothesis that l(Xs) ≤ l(X). The result now follows. �

We will mainly make use of Proposition 3.3 in the case when X is a right coset of some subgroup of W .

Our next result is a generalization of Proposition 1.9(iii).

Proposition 3.4 Let X be a finite subset of W and s = sα ∈ Ref(W ) . If α /∈ N(X) , then l(Xs) > l(X) . If

α ∈ N(x) for all x ∈ X , then l(Xs) < l(X) . Otherwise

l(X) − l(s)−1
2 ≤ l(Xs) ≤ l(X) + l(s)−1

2 .

Proof. Suppose that α /∈ N(X). Then for each x ∈ X , l(xs) > l(x) by Proposition 1.9(iii). Hence, by

Proposition 3.3, l(Xs) > l(X). Suppose that α ∈ N(x) for all x ∈ X . Then for each xs ∈ Xs , l((xs)s) > l(xs),

so by Proposition 3.3 again, l(X) > l(Xs). So assume that there exist x, x′ ∈ X such that α ∈ N(x)\N(x′).

Now for any g ∈ W , by Proposition 1.9(ii), l(gs) = l(g) + l(s)− 2|N(g)∩N(s)| . Thus, by Proposition 1.9(iii),
l(s)+1

2
≤ |N(x) ∩ N(s)| ≤ l(s) and 0 ≤ |N(x′) ∩ N(s)| ≤ l(s)−1

2
. From Proposition 3.2,

l(Xs) − l(X) = l(s) − |N(s) ∩
( ⋂

x∈X

N(x)

)
| − |N(s) ∩ N(X)|.

Hence

l(X) + l(s) − l(s)−1
2 − l(s) ≤ l(Xs) ≤ l(X) + l(s) − 0 − l(s)+1

2 ,

so giving

l(X) − l(s)−1
2 ≤ l(Xs) ≤ l(X) + l(s)−1

2 .

�

Let I ⊆ R . For X and Y subgroups of WI , we write X ≈I Y if X ≈ Y and the equivalence is achieved
via a sequence of reflections in WI .

Lemma 3.5 Suppose that X ≤ WI for some I ⊆ R . Then each coset of X is of the form Xgw for some
g ∈ WI and unique w ∈ DI . We have

N(Xgw) = N(w)∪̇w−1N(Xg)

and hence l(Xgw) = l(Xg) + l(w) .
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Proof. By Lemma 2.2, N(Xgw) = N(gw)∪̇(gw)−1(N(X)\N((gw)−1)). Now, using Lemma 2.1 and

Proposition 1.9 (ii), we see that

N(gw) = N(w)∪̇w−1N(g) and

N((gw)−1) = N(g−1)∪̇gN(w−1).

Also note that N(w−1) ∩ ΦI = ∅ . So

N(Xgw) = N(w)∪̇w−1N(g)∪̇w−1g−1(N(X)\
(
N(g−1)∪̇gN(w−1)

)
= N(w)∪̇w−1

(
N(g)∪̇g−1(N(X)\(N(g−1)∪̇gN(w−1))

)
= N(w)∪̇w−1

(
N(Xg)\gN(w−1)

)
.

Because g ∈ WI , clearly g−1N(Xg) ⊆ ΦI . Hence N(w−1) ∩ g−1N(Xg) = ∅ and so gN(w−1) ∩ N(Xg) = ∅ .

Thus N(Xgw) = N(w)∪̇w−1N(Xg) and l(Xgw) = l(Xg) + l(w). �

Proposition 3.6 Suppose that X ≤ WI and let g, h ∈ WI , w, v ∈ DI . Then Xgw ≈ Xhv if and only if
Xg ≈I Xh and w = v .

Proof. Suppose that Xg ≈I Xh where g, h ∈ WI . It is enough to consider the case Xgs = Xh

for some s ∈ Ref(WI ), noting that l(Xg) = l(Xh). Define t = w−1sw . Then Xgwt = Xgsw . Since

l(Xgwt) = l(Xgs) + l(w) = l(Xh) + l(w) by Lemma 3.5, Xgw ≈ Xhw . For the reverse implication, suppose
that Xgw ≈ Xhv where g, h ∈ WI , w, v ∈ DI . Again, it suffices to consider the case Xgwt = Xhv for some
t ∈ Ref(W ), where we may assume that gwt = hv . Then, by Proposition 3.3, there exist some x, y ∈ X such

that l(xgw) < l(xhv) and l(ygw) > l(yhv). Therefore xgw < xhv and ygw > yhv . Applying Proposition

1.10(v) twice, we see that w ≤ v and v ≤ w , whence w = v . Now we have Xgwt = Xhw . Let s = wtw−1 .

Then Xgs = Xh and s ∈ g−1Xh ⊆ WI . Therefore Xg ≈I Xh , which completes the proof of Proposition 3.6. �

We require a technical lemma before giving the proof of Theorem 3.8.

Lemma 3.7 Suppose that X ≤ Y ≤ W , where X and Y are finite, Y is a reflection subgroup of W and
N(X) = N(Y ) . For any y ∈ Y, g ∈ W , if N(Xg) = N(Xyg) then Xg ≈ Xyg .

Proof. Since Y is generated by reflections, it suffices to show that for any reflection s in Y , and for
any g ∈ W , if N(Xg) = N(Xsg) then Xg ≈ Xsg . But this is obvious because l(Xg) = l(Xsg) and

Xsg = Xg(g−1sg). �

Theorem 3.8 Let X ≤ Y ≤ W where X and Y are finite and Y is a reflection subgroup of W . Let X and
Y denote, respectively, the X -poset and the Y -poset of W . If N(X) = N(Y ) then X is poset isomorphic to

Y . If W is finite and X is poset isomorphic to Y then N(X) = N(Y ) .
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Proof. Suppose that N(X) = N(Y ). Let g ∈ W . Then by Lemma 2.2,

N(Y g) = N(g)∪̇g−1
(
N(Y )\N(g−1)

)
= N(g)∪̇g−1

(
N(X)\N(g−1)

)
= N(Xg).

Thus, for all g ∈ W , l(Xg) = l(Y g). Let g ∈ W , s ∈ Ref(W ) and h = gs with [Y g] � [Y gs] = [Y h] .

Since Y is a union of X -cosets, there exists y ∈ Y with the property that Xgs = Xyh . Now N(Xyh) =

N(Y yh) = N(Y h) = N(Xh). Therefore, by Lemma 3.7, Xh ≈ Xgs . Hence [Xg] � [Xgs] . It is easy to deduce
from this that the posets X and Y are isomorphic. Suppose now that W is finite and X is poset isomorphic to
Y . Since the posets are isomorphic, the maximal length k of a path x1, . . . ,xk in X with l(xi) + 1 = l(xi+1)
is the same as the maximal length of such a path in Y . Let w0 be the longest element of W . The coset Y w0

has length |Φ+| . It is clear that k ≤ |Φ+| − l(Y ). Let r1 · · ·rm be a reduced expression for w0 . Then, by

Proposition 1.7, l(X) ≤ l(Xr1) ≤ · · · ≤ l(Xr1 · · ·rm) = |Φ+| . So k ≥ |Φ+| − l(X). Combining the two bounds

for k we see that l(Y ) ≤ l(X). And since X ≤ Y it must be the case that N(X) ⊆ N(Y ), whence l(X) ≤ l(Y )

with equality precisely when N(X) = N(Y ). This completes the proof of Theorem 3.8. �

We now give the

Proof of Proposition 1.11 We must show that if X ≤ WI for some I ⊆ R , and g, h ∈ WI , then [Xg] � [Xh]

if and only if [Xg] �I [Xh] . It is obvious that if [Xg] �I [Xh] then [Xg] � [Xh] . Suppose that [Xg] � [Xh] .

Then there is a sequence g1w1, . . . , gmwm with gi ∈ WI and wi ∈ DI , and a set s1, . . . , sm−1 , si ∈ Ref(W ) such

that g = g1w1, h = gmwm , giwisi = gi+1wi+1 and [Xgiwi] � [Xgi+1wi+1] . This implies that w1 ≤ . . . ≤ wm .

But h ∈ WI , so that wm = 1, whence wi = 1 for each 1 ≤ i ≤ m . Thus si = g−1
i gi+1 ∈ WI for 1 ≤ i ≤ m− 1

and therefore [Xg] �I [Xh] , as required. �

4. Some examples of X -posets

In this section we examine in detail some specific X -posets when W is of type An , also giving a couple
of examples of weak X -posets. Before doing this we note the following general result.

Proposition 4.1 Suppose X is a finite subgroup of W which is not contained in any proper parabolic subgroup
of W . Then X consists of one element.

Proof. By a result of Tits, any finite subgroup of a Coxeter group W is contained in a finite parabolic
subgroup of W (see Proposition 1.3 of [4]). By hypothesis, X is finite and not contained in a proper parabolic

subgroup of W , and so W must be finite. Suppose for a contradiction that there exists α ∈ Φ+ such that

α /∈ N(X). Then in particular x · α ∈ Φ+ for each x ∈ X . Set β =
∑

x∈X x · α . Then β �= 0 and X is

contained in the stabilizer of β . Now W is finite, which implies that the form ( , ) is positive definite. Thus
the radical of W is trivial and therefore the stabilizer of β cannot be the whole of W . It is well known that
the stabilizer of any non-zero vector in V is a parabolic subgroup of W . Because the stabilizer of β cannot be
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W , it must be a proper parabolic subgroup of W , whereas X is not contained in a proper parabolic subgroup.

Therefore N(X) = Φ+ . Now, since l(Xg) ≥ l(X) for all g ∈ W , we see that l(Xg) = l(X) = |Φ+| for each

coset Xg . Hence X = {[X]} and this completes the proof of Proposition 4.1. �

4.1. X generated by a reflection

We now consider the case when X = 〈t〉 is generated by some t ∈ Ref(W ). We need the following lemma
about reflections.

Lemma 4.2 Suppose W is irreducible and that t is the longest reflection in W .

(i) Let α ∈ Φ+ . Then t · α ∈ Φ+ if and only if t · α = α .

(ii) Let I = {r ∈ R | t · αr = αr} . Then Φ+ = N(t)∪̇Φ+
I .

Proof. Let α̃ be the (positive) root corresponding to t , and let α ∈ Φ+\N(t). Thus t·α = α−2(α̃, α)α̃ ∈ Φ+ .

If (α̃, α) > 0 then (α̃, α) ≥ 1/2. But α̃ is the highest root, so we must have t · α ∈ Φ− , a contradiction. So

(α̃, α) ≤ 0. We have rα · α̃ = α̃ + 2|(α, α̃)|α . Now, since α̃ is the highest root in Φ, we deduce that

(α̃, α) = 0. This shows that for α ∈ Φ+ , (α̃, α) = 0 precisely when α /∈ N(t) and (i) follows immediately.

For (ii), note that Φ+ = N(t)∪̇{α ∈ Φ+ : t · α = α} , so that clearly Φ+
I ⊆ Φ+\N(t). For the converse,

suppose that t · α = α where α ∈ Φ+ . Then α =
∑

r∈I λrαr +
∑

r∈R−I λrαr for some non-negative λr , and

α − 2
∑

r∈R−I λr(α̃, αr)α̃ = t · α = α . Hence
∑

r∈R−I λr(α̃, αr)α̃ = 0. But for each r ∈ R − I , t · αr ∈ Φ− by

definition of I , and so we must have (α̃, αr) > 0. Therefore λr = 0 for every r ∈ R − I and thus α ∈ Φ+
I .

This proves (ii). �

For the rest of this subsection let t ∈ Ref(W ), and further assume that there exists I ⊆ R such that t

is the longest reflection in WI . (This assumption certainly holds for any reflection in W ∼= An .) By Lemma

4.2 there exists J ⊆ I such that Φ+
I = N(t)∪̇Φ+

J and J is given by J = {r ∈ I | t · αr = αr} . We fix t, I and

J for the rest of the subsection, and write DI
J for the set of minimal coset representatives of WJ in WI .

Lemma 4.3 Let g ∈ W . Then

(i) there exist unique u ∈ WJ , v ∈ DJ
I and w ∈ DI such that g = uvw and l(g) = l(u) + l(v) + l(w) ; and

(ii) N(Xg) = N(w)∪̇w−1N(v)∪̇(vw)−1N(u)∪̇(uvw)−1[N(t)\uN(v−1)] and

l(Xg) = l(X) + l(u) + l(w).

Proof. Part (i) is clear. For part (ii) Lemma 3.5 gives

N(Xg) = N(w)∪̇w−1N(Xuv).

Now we invoke Proposition 1.9(ii) to get

N(Xuv) = N(uv) ∪ N(tuv)

= N(uv) ∪
[
N(uv)\ − (uv)−1N(t)

]
∪̇(uv)−1

[
N(t)\N((uv)−1)

]
= N(uv)∪̇(uv)−1

(
N(t)\N((uv)−1)

)
. (1)
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It is easy to check that N((uv)−1) = N(u−1)∪̇uN(v−1). We claim that uN(v−1) ⊆ Φ+
I \Φ

+
J = N(t). For,

suppose that α ∈ N(v−1) with u · α ∈ Φ+
J . Then there exists u′ ∈ WJ with u′(u · α) ∈ Φ− . But this can only

happen if α ∈ Φ+
J , which contradicts the fact that v ∈ DI

J . So the claim is true. Therefore

N(t)\N((uv)−1) = N(t)\(N(u−1)∪̇uN(v−1)) = N(t)\uN(v−1),

and |N(t)\N((uv)−1)| = l(t) − l(v). Using (1) we find

N(Xg) = N(w)∪̇w−1
(
N(v)∪̇v−1N(u)

)
∪̇(uvw)−1

(
N(t)\uN(v−1)

)
= N(w)∪̇w−1N(v)∪̇(vw)−1N(u)∪̇(uvw)−1[N(t)\uN(v−1)]

and l(Xg) = l(X) + l(u) + l(w), completing the proof of Lemma 4.3 �

We now restrict ourselves to the case when W is of type An . So W ∼= Sym(n + 1). Set R =

{(12), . . . , (n n+1)} . Then t = (ij) for some 1 ≤ i < j ≤ n+1, giving I = {(i i+1), (i+1 i+2), . . . , (j−1 j)}
and J = {(i + 1 i + 2), . . . , (j − 2 j − 1)}. Set wi = (i i + 1) for 1 ≤ i ≤ n . It is easily seen that elements of

DI
J are of the form xy where x is a minimal length coset representative of WJ in WJ∪{wi} and y is a minimal

length coset representative of WJ∪{wj−1} in WI . Moreover, there exist k , j with i − 1 ≤ k ≤ j − 2, i ≤ l ≤ j

such that x = wiwi+1 · · ·wk and y = wj−1wj−2 · · ·wl .

Proposition 4.4 Suppose that W is of type An . Let s ∈ Ref(W ) , u1, u2 ∈ WJ , v1, v2 ∈ DI
J and z1, z2 ∈ DI .

Then Xu1v1z1 ≈ Xu1v1z1s = Xu2v2z2 if and only if z1 = z2 , l(u1) = l(u2) and u−1
2 u1 is a subinterval of

some v ∈ DI
J = DJ .

Proof. By Proposition 3.6, Xu1v1z1 ≈ Xu2v2z2 if and only if z1 = z2 and Xu1v1 ≈I Xu2v2 . So it
suffices to prove the result in the case WI = W (so we must show that Xu1v1 ≈ Xu1v1s = Xu2v2 if and only if

l(u1) = l(u2) and u−1
2 u1 is a subinterval of some v ∈ DI

J = DJ ). Suppose first that Xu1v1 ≈ Xu1v1s = Xu2v2 .

Then, without loss of generality, u1v1 = u2v2s and l(u1v1) < l(u2v2). Certainly l(u1) = l(u2) because, using

Lemma 2.2, l(X) + l(u1) = l(Xu1v1) = l(Xu2v2) = l(X) + l(u2). Now u2v2s is obtained from u2v2 by

removing one element from a reduced expression for u2v2 (and then cancelling using the deletion condition if

necessary). Suppose for a contradiction that the element is removed from u2 so that u1v1 = û2v2 . Then,
because minimal coset representatives are unique and û2 ∈ WJ , it follows that u1 = û2 and v1 = v2 .
Therefore l(X) + l(û2) = l(Xu1v1). But by assumption l(Xu1v1) = l(Xu2v2) = l(X) + l(u2), implying

that l(û2) = l(u2), which is impossible. Therefore u1v1 = u2v2s is obtained from u2v2 by removing an element

from v2 , so that u1v1 = u2v̂2 . Let u3 = u−1
2 u1 . Then u3v1 = v̂2 . Now v2 = xy with x = wiwi+1 · · ·wk and

y = wj−1wj−2 · · ·wl as described above, so v̂2 is either x̂y or xŷ . Suppose that v̂2 = x̂y . Then there exists m

such that u3v1 = v̂2 = wi · · ·wm−1wm+1 · · ·wky = (wm+1 · · ·wk)wi · · ·wm−1y . Observe that wm+1 · · ·wk ∈ WJ

and wi · · ·wm−1y ∈ DI
J , so that u3 = wm+1 · · ·wk (and v1 = wi · · ·wm−1y ). Therefore u3 = u−1

2 u1 is a

subinterval of some v ∈ DI
J (namely v2 ). If v̂2 = xŷ , then a similar calculation shows that again u3 is a

subinterval of v2 ∈ DI
J .

It remains to show the reverse implication. So we assume that u3 = u−1
2 u1 is a subinterval of some

v ∈ DI
J and that l(u1) = l(u2). Write v = xy as before. If x is non-trivial it begins with wi , and if y is
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non-trivial it begins with wj−1 , neither of which can appear in u3 . Thus u3 must be a proper subinterval

either of some x �= 1 or some y �= 1. Suppose the former. Now, since every right truncation of minimal left
coset representative is still a minimal left coset representative, we may write x = wi · · ·wku3 where k ≥ i . Set
g = wi · · ·wk−1 and r = wm . Note that gu3 = u3g . If u3 is a proper subinterval of some y �= 1, then again
we may write y = wj−1 · · ·wlu3 where l ≤ j − 1. This time set g = wj−1 · · ·wl+1 , r = wl , and again note

that g commutes with u3 . Now we let v1 = g , v2 = gru3 and s = u−1
3 ru3 . Since g is a (right) truncation

of v , g ∈ DI
J and also, by construction, gru3 ∈ DI

J . We have u1v1s = u1gu−1
3 ru3 = u1u

−1
3 gru3 = u2v2 and

l(Xu1v1) = l(X) + l(u1) = l(X) + l(u2) = l(Xu2v2). Hence Xu1v1 ≈ Xu2v2 , and we have proved Proposition
4.4. �

We may now give the

Proof of Theorem 1.5 Since t is the longest reflection, I = R and each coset may be written Xuv where

u ∈ WJ , v ∈ DJ = DI
J . Suppose then that Xuv ≺ Xuvs = Xu′v′ for some s ∈ Ref(W ). Then without

loss of generality uv < u′v′ . So either uv = û′v′ or uv = u′v̂′ . Note also that l(u) = l(Xuv) − l(X) <

l(Xu′v′) − l(X) = l(u′). Now if uv = û′v′ , then u = û′ and v = v′ . Therefore u < u′ in the usual Bruhat

order, and so there exist s1, . . . , sd ∈ Ref(W ) with l(us1 · · ·si) = l(us1 · · · si−1) + 1 for each 1 ≤ i ≤ d and

us1 · · ·sd = u′ . Moreover,

Xuv ≈ Xu ≺ Xus1 ≺ · · · ≺ Xu′ ≈ Xu′v′

with l(Xus1 · · · si) − l(Xus1 · · ·si−1) = 1 for 1 ≤ i ≤ d . Hence Theorem 1.5 holds in the case uv = û′v′ .

Assume now that uv = u′v̂′ . Let v′ = xy where x = wiwi+1 · · ·wk and y = wj−1wj−2 · · ·wl as before. If

v̂′ = x̂y , then there is an m such that

v′ = wi · · ·wm−1wm+1 · · ·wky = (wm+1 · · ·wk)(wi · · ·wm−1y).

If v̂′ = xŷ , then suppose wm is removed from the expression for y . Simple calculations show that

v̂′ =

⎧⎨
⎩

wm−1 · · ·wl(wiwi+1 · · ·wkwjwj−1wm+1) if k + 1 < l
wm−1 · · ·wl+1(wiwi+1 · · ·wk+1wjwj−1wm+1) if l ≤ k + 1 < m
wm · · ·wl+1(wiwi+1 · · ·wkwjwj−1wm+1) if m ≤ k + 1.

In each case we may write v̂′ = hv∗ where h ∈ WJ , v∗ ∈ DI
J and

h ∈ {wm+1 · · ·wk, wm−1 · · ·wl, wm−1 · · ·wl+1, wm · · ·wl+1}.

Note that each possibility for h is a subinterval of some element of DI
J , and each subinterval of h also has this

property. We have uv = u′v̂′ = (u′h)v∗ and so v = v∗ and u = u′h . Write h = r1 · · ·rM where r1, · · · , rM ∈ R .

Now set u0 = u′ , u1 = u′r1 , . . ., uM = u′r1 · · · rM = u . Also define λ0 = 0 and λk to be the least λ such that
λ > λk−1 and l(uλ) ≤ min{l(uλl) : 0 ≤ l ≤ k} . Because l(u) < l(u′) we know that u = uM = uλk for some k .
Now for each k either

(i) l(uλk) = l(uλk−1 ) − 1 (and λk = λk−1 + 1) with uλk = uλk−1rλk . Thus Xuλk ≺ Xuλk−1 and l(Xuλk ) =

l(Xuλk−1 ) − 1; or
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(ii) l(uλk) = l(uλk−1). In this case uλk = uλk−1 (rλk−1+1 · · ·rλk) where rλk−1+1 · · ·rλk is a subinterval of some

element of DI
J . Therefore, by Proposition 4.4, Xuλk ≈ Xuλk−1 .

So at each stage the length decreases by at most 1. This completes the proof of Theorem 1.5. �

4.2. Two weak X -posets

Here we describe two examples by giving their Hasse diagrams. The numbers given on the right are the
lengths of the elements x in Xw on that level. By definition l(x) is l(Xg) for any Xg in x .

For W ∼= Sym(4) (so of type A3 ) and X = 〈(24)〉 , Xw is given in Figure 1.

5

6

4

3

1

12

2

3

3

Figure 1. W ∼= Sym(4), X = 〈(24)〉.

The numbers next to a node indicate the number of right cosets of X in that particular element of Xw .

For W ∼= Sym(5) and X = 〈(13)(45)〉 we have |Xw| = 25. Its Hasse diagram is displayed in Figure
2. The white circled elements consist of four right X -cosets, the squared ones of six right X -cosets while the
remaining elements of Xw consist of two right X -cosets. For comparison, see [7] for the Hasse diagram of the

X -poset X which has |X| = 10.

4.3. Three examples of X -posets

In these three examples we take W ∼= Sym(7) and X to be a subgroup of order four generated by two
reflections. So there are 1260 right X -cosets. As we shall see there is quite a diversity of behaviour in relation
to the number of X -cosets in elements of X and the length distribution of the elements of X .

(i) X = 〈(14), (57)〉 . Then |X| = 70 with length distribution

81 · 92 · 103 · 115 · 127 · 138 · 149 · 159 · 168 · 177 · 185 · 193 · 202 · 211.

Each element of X consists of 18 X -cosets.

(ii) X = 〈(15), (23)〉 . Then |X| = 126 with length distribution

81 · 93 · 106 · 119 · 1212 · 1315 · 1417 · 1517 · 1615 · 1712 · 189 · 196 · 203 · 211.

Each element of X consists of 10 X -cosets.
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10

9
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7

6

5

4

Figure 2. W ∼= Sym(5), X = 〈(13)(45)〉.

(iii) X = 〈(15), (47)〉 . Then |X| = 10.

Length of x 12 13 14 15 16 17 18 19 20 21
Number of X-cosets in x 31 81 131 176 211 211 176 131 81 31
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