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Best simultaneous approximation in function and operator spaces

Eyad Abu-Sirhan

Abstract

Let Z be a Banach space and G be a closed subspace of Z . For f1, f2 ∈ Z, the distance from

f1, f2 to G is defined by d (f1, f2, G) = inf
f∈G

max {‖f1 − f‖ , ‖f2 − f‖} . An element g∗ ∈ G satisfying

max {‖f1 − g∗‖ , ‖f2 − g∗‖} = inf
f∈G

max {‖f1 − f‖ , ‖f2 − f‖}

is called a best simultaneous approximation for f1, f2 from G. In this paper, we study the problem of best

simultananeous approximation in the space of all continuous X -valued functions on a compact Hausdorff

space S ; C (S, X), and the space of all Bounded linear operators from a Banach space X into a Banach

space Y ; L (X,Y ) .
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1. Introduction

Let X be a Banach space and G be a closed subspace of X . For x ∈ X, we set

d (x, G) = inf {‖x − g‖ : g ∈ G} .

An element g0 ∈ G , satisfying ‖x − g0‖ = d (x, G) , is called a best approximant of x from G. If every
element of X admits a best approximation from G , then G is said to be proximinal in X. The problem of best
simultaneous approximation is a generalization of the the problem of best approximation and may be described
as follows:

For a bounded subset B ⊂ X, we set

d (B, G) = inf
g∈G

sup
b∈B

‖b − g‖ . (1)

An element g0 ∈ G is said a best simultaneous approximant for B if

sup
b∈B

‖b − g∗‖ = d (B, G) .

The problem of best simultaneous approximation to a finite set of fuctions has recently been a subject of
intensive study, see for example [1, 2, 6, 10, 11, 16] and for infite set see [17, 18]. The preveously metioned
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works, except [1,2], have dealt with characterizaton and uniqueness of best simultaneous approximation. In
contrast, studying subspaces of function spaces, which enjoy the property that any given finite set can be
approximated simultaneously from them, has recieved little intrest; see for example [1, 2]. Subspaces that enjoy

such properties are said to be simultaneously proximinal [14].

Let S be a compact Hausdorff space, Y a Banach space, and H be a closed subspace of Y. Let �∞ (S, Y )
denote the Banach space of all bounded functions from S into Y with norm defined by

‖f‖ = sup
s∈S

‖f (s)‖ ,

C (S, H) to denote the subset of �∞ (S, Y ) consists of all continuous functions, and L (X, Y ) to denote the

Banach space of all bounded linear operatos from a Banach space X into Y . In [13] it is shown that, if Y is

uniformly covex Banach space, then C (S, Y ) is simultaneously proximinal in �∞ (S, Y ) . In [2] it is shown that

C0(S, Y ), the subspace of C(S, Y ) that vanish at infinity, is simultaneously proximinal in C(S, Y ), also it is

shown that if K (X, Y ) is the M-ideal of compact operators in L (X, Y ) , then it is simultaneously proximinal

in L (X, Y ) .

The aim of this paper is to study simultaneous proximinality for other subspaces of the mentioned spaces.
In particular, subspaces of the form �∞ (S, H) , C(S, H), and L (X, H) in �∞ (S, Y ), C(S, Y ), and L (X, Y ) ,

respectively. In this paper we will consider the problem of approximating a set of two elements B = {f1, f2} ;

and using the same procedure, it is possible to study the problem where B = {f1, f2, ..., fn} for any n.

2. Simultaneous proximinal subspaces

Throughout this section Y is a Banach space and H is a closed subspace of Y .

We set Z = Y ⊕
∞

Y with ‖(x, y)‖ = max{‖x‖ , ‖y‖} , and, D (H) = {(h, h) : h ∈ H} with ‖(h, h)‖ =

‖h‖ . It is clear that Z is a Banach space and D (H) is a closed subspace of Z. We say that H is simultaneously
proximinal in Y if, for any pair y1, y2 ∈ Y, there exist h0 ∈ H such that

d (y1, y2, H) = inf
h∈H

max{‖x1 − h‖ , ‖x2 − h‖} = max {‖x1 − h0‖ , ‖x2 − h0‖} .

In this case, h0 is called a best simultaneous approximant of y1, y2 from H . It is clear that D (H) is proximinal
in Z if and only if H is simultaneously proximinal in Y .

Definition 2.1 Let H be simultaneously proximinal in Y. We say that H is simultaneously Chebyshev in
Y if for any pair y1, y2 ∈ Y, there exist a unique best simultaneous approximant of y1, y2 from H.

For x, y ∈ Y , we define

PH(x, y) = {h ∈ H : d (y1, y2, H) = max{‖y1 − h‖ , ‖y2 − h‖}} .

It is clear that if H is simultaneously proximinal in Y , then PH(x, y) is nonempty for every x, y ∈ Y.
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Definition 2.2 If H is simultaneously proximinal in Y, then a simultaneous proximity map ΠH : Y ⊕
∞

Y

→ H is a map that maps each element (x, y) ∈ Y ⊕
∞

Y to some element in PH(x, y).

From the a bove definition the following assertions are obvious:

If H is simultaneously proximinal in Y and ΠH : Y ⊕
∞

Y → H is a simultaneous proximity map, then

1. ΠH (ΠH (x, y) , ΠH (x, y)) = ΠH (x, y) for any x, y ∈ Y.

2. ΠH (x, y) ≤ 2 ‖(x, y)‖ for any x, y ∈ Y.

3. ΠH is contineous at (0, 0) .

4. ΠH ((x, y) + (h, h)) = ΠH (x, y) + h for any x, y ∈ Y and h ∈ H.

5. ΠH (α (x, y)) = αΠH (x, y) for any x, y ∈ Y and α is a scalar.

Form (2) it is clear that if ΠH is linear, then ΠH is contineous.

Definition 2.3 Y is said to be uniformly convex if for any ε > 0 , there exists δ > 0 such that, whenever
x, y ∈ Y, ‖x‖ ≤ 1, ‖y‖ ≤ 1,

‖x − y‖ ≥ ε =⇒
∥∥∥∥x + y

2

∥∥∥∥ ≤ 1 − δ. (2)

If, for fixed x ∈ Y, ‖x‖ ≤ 1, and ε > 0, there exists δ(ε, x) > 0 such that (2) satisfied, then Y is said to be
locally uniformly convex.

We present some classes of of simultaneous proximinal subspaces.

Proposition 2.4 [1] Let X be a Banach space and X∗ be the dual space of X . If G is a w∗ -closed
subspace of X∗ , then G is simultaneously proximinal in X∗.

Example 2.5 If Y is uniformly convex and H is a closed subspace of Y, then H is simultaneously
Chebyshev in Y. This is, because uniform convexity of Y implies it is reflexive, hence H is simultaneously
proximinal in Y by propositin 2.4. The uniqueness of a best simultaeous approximant from H of each pair in
Y follows from [6].

Proposition 2.6 If Y is locally uniformly convex and H is simultaneously proximinal in Y, then H is

simultaneously Chebyshev in Y .

Proof. Let x, y ∈ Y and h1, h2 ∈ PH(x, y). Let

d = max{‖x − h1‖ , ‖y − h1‖} = max{‖x − h2‖ , ‖y − h2‖} .
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Assume that ‖h1 − h2‖ = dε > 0, then

‖h1 − y − (h2 − y)‖ = ‖h1 − x − (h2 − x)‖ = dε,

and ∥∥∥∥h1 − y

d

∥∥∥∥ ,

∥∥∥∥h1 − x

d

∥∥∥∥ ≤ 1.

By local uniform covexity, there exist δ1, δ2 > 0 such that ‖h1 − y + (h2 − y)‖ ≤ 2d(1 − δ1) and

‖h1 − x + (h2 − x)‖ ≤ 2d(1 − δ2), then

max
{∥∥∥∥y − h1 + h2

2

∥∥∥∥ ,

∥∥∥∥x − h1 + h2

2

∥∥∥∥
}

≤ (1 − min{δ1 + δ2})d < d.

Which is a contradiction. Thus H is simultaneously Chebyshev in Y. �

Example 2.7 [8] Let Y be a strictly convex Bannach space and H be a finite- dimesional subspace, then
H is simultaneously Chebyshev in Y.

Definition 2.8 Let X be a Banach space. A linear projection P is called an M -projection if ‖x‖ =

max {‖P (x)‖ , ‖x − P (x)‖} for all x ∈ X. A closed subspace J ⊆ X is called an M -summand if it is the
range of an M -projection.

Proposition 2.9 Let H be an M -summand of Y . Then H is simultaneously proximinal in Y, moreover
H has a linear simultaneous proximity map.

Proof. Let x, y ∈ Y and let θ = P(x)+P(y)
2 . Then

‖x − θ‖ =
∥∥∥∥x − P (x) +

1
2

(P (x) − P (y))
∥∥∥∥

= max
{
‖x − P (x)‖ ,

1
2
‖P (x) − P (y)‖

}
.

Similarly,

‖y − θ‖ = max
{
‖y − P (y)‖ ,

1
2
‖P (x) − P (y)‖

}
.

Then,

max{‖x − θ‖ , ‖y − θ‖} ≤ max
{
‖x − P (x)‖ , ‖y − P (y)‖ ,

1
2
‖P (x) − P (y)‖

}
.

Now, let z ∈ H , then

1
2
‖P (x) − P (y)‖ ≤ 1

2
‖P (x) − z‖ +

1
2
‖P (y) − z‖

≤ max{‖P (x) − z‖ + ‖P (y) − z‖} .
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Thus, we have:

max {‖x − θ‖ , ‖y − θ‖} ≤ max
{

max{‖x − P (x)‖ , ‖P (x) − z‖} ,
max{‖y − P (y)‖ , ‖P (y) − z‖}

}

= max{‖x − z‖ , ‖y − z‖} .

Since z ∈ H was arbitrary, then

max{‖x − θ‖ , ‖y − θ‖} ≤ max{‖x − z‖ , ‖y − z‖} for all z ∈ H.

Hence, θ is a best simultaneous approximatnt of x, y and H is simultaneously proximinal in Y. Now,
define

π : Y ⊕
∞

Y → H, by π (x, y) =
P (x) + P (y)

2
.

It’s clear that π is a simultaneous proximity map. The linearity of π follows from the linearity of P. �

Corollary 2.10 If H is an M -summand of Y , then H has a continuous simultaneous proximity map.

Proof. The result follows directly from Proposition 2.9 and the fact that the linear simultaneous proximity
map is contineous. �

3. Main result

Let S be a compact Hausdorff space, X be a Banach space. we denote C (S, X) to the Banach space of

all X -valued contuous functions on S equipped with supremum norm, and �∞ (S, X) to the Banach space of
all X -valued bounded functions on S equipped with supremum norm.

Theorem 3.1 Let H be a closed subspace of a Banach space X, and S be a compact Hausdorff space. For
any f1, f2 ∈ C (S, X) , we have

d (f1, f2, C (S, H)) = d (f1, f2, �
∞ (S, H)) = sup

t∈S
d (f1 (t) , f2 (t) , H) .

Proof. Since C (S, H) ⊆ �∞ (S, X) , it is clear that

d (f1, f2, C (S, H)) ≥ d (f1, f2, �
∞ (S, H)) .

If g ∈ �∞ (S, H) , then

max{‖f1 (t) − g (t)‖ , ‖f2 (t) − g (t)‖} ≥ d (f1 (t) , f2 (t) , H) for all t ∈ S.

On applying sup to both sides, we get

max{‖f1 − g‖ , ‖f2 − g‖} ≥ sup d (f1 (t) , f2 (t) , H) .
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Since g ∈ �∞ (S, H) was arbitrary, then

d (f1, f2, �
∞ (S, H)) ≥ sup d (f1 (t) , f2 (t) , H) .

Now let λ > sup d (f1 (t) , f2 (t) , H) . For t ∈ S, define

Φ (t) = {h ∈ H : max{‖f1 (t) − h‖ , ‖f2 (t) − h‖} ≤ λ} .

The Φ is nonempty closed subset of H . We shall prove that Φ (t) is convex for every t ∈ S and Φ is

lower simicontinuous. Let t ∈ S, h1, h2 ∈ Φ (t) , and 0 ≤ α ≤ 1.

max{‖f1 (t) − αh1 − (1 − α)h2‖ , ‖f2 (t) − αh1 − (1 − α)h2‖}

≤ max{α ‖f1 (t) − h1‖ + (1− α) ‖f1 (t) − h2‖ , α ‖f2 (t) − h1‖ + (1 − α) ‖f2 (t) − h2‖}

≤ αmax{‖f1 (t) − h1‖ , ‖f2 (t) − h1‖} + (1 − α)max{‖f1 (t) − h2‖ , ‖f2 (t) − h2‖}

≤ αλ + (1 − α)λ = λ.

To show that Φ is lower simicontinuous, let � be an open set in H and put

�
∗ = {t ∈ S : Φ (t) ∩ � �= φ} .

It is to be shown that �∗ is open. Let σ ∈ �∗, then Φ (σ) ∩ � �= φ. Hence, there exists an h ∈ � such
that

max{‖f1 (σ) − h‖ , ‖f2 (σ) − h‖} ≤ λ.

By the definition of λ, λ > inf
y∈H

max{‖f1 (σ) − y‖ , ‖f2 (σ) − y‖} , there exists h
′ ∈ H such that

max
{∥∥∥f1 (σ) − h

′
∥∥∥ ,

∥∥∥f2 (σ) − h
′
∥∥∥}

< λ.

Now, h ∈ �, then there exists ε > 0 such that

B (h, ε) = {y ∈ H : ‖y − h‖ < ε} ⊆ �.

Let δ = {. ε

2 ‖h − h′‖ if
∥∥∥h − h

′
∥∥∥ ≥ 1

ε

2
if

∥∥∥h − h
′
∥∥∥ ≤ 1; it is clear that 0 ≤ δ ≤ 1. Let

h
′′

= (1 − δ)h + δh
′
, then

∥∥∥h
′′ − h

∥∥∥ = δ
∥∥∥h − h

′
∥∥∥ < ε, hence h

′′ ∈ �. By the covexity of Φ (σ) , h
′′ ∈ Φ (σ)

and

max
{∥∥∥f1 (σ) − h

′′
∥∥∥ ,

∥∥∥f2 (σ) − h
′′
∥∥∥}

< λ.

Now, let N be a neighbohood of σ such that

max{‖f1 (σ) − f1 (t)‖ , ‖f2 (σ) − f2 (t)‖} < λ − max
{∥∥∥f1 (σ) − h

′′ ∥∥∥ ,
∥∥∥f2 (σ) − h

′′
∥∥∥}

.

106



ABU-SIRHAN

For any t ∈ N we have

max
{∥∥∥f1 (t) − h

′′
∥∥∥ ,

∥∥∥f2 (t) − h
′′
∥∥∥}

≤ max
{
‖f1 (t) − f1 (σ)‖ +

∥∥∥f1 (σ) − h
′′
∥∥∥ , ‖f2 (t) − f2 (σ)‖ +

∥∥∥f2 (σ) − h
′′
∥∥∥}

≤ max{‖f1 (t) − f1 (σ)‖ , ‖f2 (t) − f2 (σ)‖} + max
{∥∥∥f1 (σ) − h

′′
∥∥∥ ,

∥∥∥f2 (σ) − h
′′
∥∥∥}

≤ λ.

Hence, h
′′ ∈ Φ (t) ∩ �, t ∈ �∗, N ⊆ �∗, and � is open. By Michael Selection Theorem there exists

g ∈ C (S, X) such that g (t) ∈ Φ (t) for all t ∈ S. Hence

max{‖f1 (t) − g (t)‖ , ‖f2 (t) − g (t)‖} ≤ λ for all t ∈ S,

and

max{‖f1 − g‖ , ‖f2 − g‖} ≤ λ.

Then
d (f1, f2, C (S, H)) ≤ λ,

thus
d (f1, f2, C (S, H)) ≤ sup d (f1 (t) , f2 (t) , H) .

�

Lemma 3.2 Let S be a compact Hausdorff space, Y be a Banach space, and H , G be closed subspaces of
Y . Then

C

(
S, H ⊕

∞
G

)
= C (S, H) ⊕

∞
C (S, G) .

Proof. Fof f ∈ C

(
S, H ⊕

∞
G

)
, let f1 : S → H and f2 : S → G be such that f (t) = (f1 (t) , f2 (t)) for all

t ∈ S. It is clear that f1 ∈ C (S, H) and , f2 ∈ C (S, G) . Define

ψ : C

(
S, H ⊕

∞
G

)
→ C (S, H) ⊕

∞
C (S, G) ,

by ψ (f) = (f1, f2) . It is clear that ψ is onto isometry, noting that

‖ψ (f)‖ = max{‖f1‖ , ‖f2‖} = sup max {‖f1 (t)‖ , ‖f2 (t)‖} = sup ‖f (t)‖ = ‖f‖ .

�
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Theorem 3.3 Let S be a compact Hausdorff and H be a closed subspace of a Banach space Y. Then

1. If C (S, H) is simultaneously proximinal in C (S, Y ) , then H is simultaneously proximinal Y.

2. If H has a continuous simultaneously proximity map, then C (S, H) is simultaneously proximinal in

C (S, Y ) and has a continuous simultaneously proximity map.

Proof.
(1) : Let x, y ∈ X. Define fy : S → Y and fx : S → Y by

fy (s) = y, fx (s) = x for all s ∈ S.

Since C (S, H) is simultaneously proximinal in C (S, Y ) , there exists g ∈ C (S, H) such that

max{‖fy − g‖ , ‖fx − g‖} = d (fy, fx, C (S, H))

= sup d (fy (s) , fx (s) , H) ( Theorem 3.1 )

≤ d (x, y, H) .

Then, for some s0 ∈ S, we have

max{‖fy (s0) − g (s0)‖ , ‖fx (s0) − g (s0)‖} ≤ d (x, y, H) .

Hence g (s0) is a best simultaneous approximation for x, y from H.

(2) Let A : Y ⊕
∞

Y → H be a continuous simultaneously proximity map for H. Define

A
′
: C

(
S, Y ⊕

∞
Y

)
→ C (S, H)

by A
′
(f) = A ◦ f. By lemma 3.2, A

′
can be redefined as

A
′
: C (S, Y ) ⊕

∞
C (S, Y ) → C (S, H) , and A

′
(f1, f2) (s) = A (f1 (s) , f2 (s)) for all s ∈ S.

It is clear that A
′
(f1, f2) ∈ C (S, H) . Let g ∈ C (S, H) , then

max{‖f1 (s) − A (f1 (s) , f2 (s))‖ , ‖f2 (s) − A (f1 (s) , f2 (s))‖}

≤ max{‖f1 (s) − g (s)‖ , ‖f2 (s) − g (s)‖} ,

for all s ∈ S, then

max{‖f1 − A (f1, f2)‖ , ‖f2 − A (f1, f2)‖} ≤ max{‖f1 − g‖ , ‖f2 − g‖} .

Thus, A (f1, f2) is a best simultaneous approximation for f1, f2 from C(S, H) and then C (S, H) is

simultaneously proximinal in C (S, Y ) . It is clear that

A
′
: C (S, Y ) ⊕

∞
C (S, Y ) → C (S, H)

is a continuous simultaneous proximity map. �
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Corollary 3.4 If H is an M -summand of a Banach space Y, then C (S, H) is simultaneously proximinal

in C (S, Y ) and has a continuous simultaneously proximity map.

Proof. The result follows from Corollary 2.10 and Theorem 3.3. �

Let X, Y be Banach spaces. L (X, Y ) is denoted to the space of all bounded linear operators from X

into Y.

Lemma 3.5 [2] Let X, Y be Banach spaces, then

L

(
X, Y ⊕

∞
Y

)
= L (X, Y ) ⊕

∞
L (X, Y ) .

Theorem 3.6 Let H be a simultaneous proximinal subspace of a Banach space Y. If H has a linear proximity
map, then L (X, H) is simultaneously proximinal in L (X, Y ) and has a linear simultaneous proximity map.

Proof. Let π : Y ⊕
∞

Y → H be a linear simultaneously proximity map for H. Define A : L

(
X, Y ⊕

∞
Y

)
→

L (X, H) by A (f) = π ◦ f . By lemma 3.5, we may write

A : L (X, Y ) ⊕
∞

L (X, Y ) → L (X, H) ,

define by A (f1, f2) = π ◦ (f1, f2), π (f1, f2) (x) = π (f1 (x) , f2 (x)) for all x ∈ X. It is clear that

A (α (f1, f2) + β (g1, g2)) = αA (f1, f2) + βA (g1, g2) ,

and A (f1, f2) is a linear simultaneously proximity map for L (X, H) . �

Corollary 3.7 If H is an M -summand of a Banach space Y, then L (X, H) is simultaneously proximinal

in L (X, Y ) and has a continuous simultaneous proximity map.

Proof. The result follows from Corollary 2.11 and Theorem 3.6. �

Let X be a Banach space. We denote X∗ to the dual space of X.

Theorem 3.8 Let H be a closed subspace of a Banach space Y. If L (X, H) is simultaneously proximinal

in L (X, Y ) , then H is simultaneously proximinal in Y.

Proof. Let y1, y2 ∈ Y and 0 �= x0 ∈ X. By Hanh-Banach theorem, there exists x∗ ∈ X∗ such that
x∗ (x0) = 1 = ‖x∗‖ . Consider the operators

x∗ ⊗ y1, x∗ ⊗ y2 : X → Y

defined by (x∗ ⊗ yi) (x) = x∗ (x) yi for all x ∈ X and for i = 1, 2. It is clear that x∗ ⊗ y1, x∗ ⊗ y2 ∈ L (X, Y ) .

Since L (X, H) is simultaneously proximinal in L (X, Y ) , there exists T ∈ L (X, H) such that

max{‖x∗ ⊗ y1 − T‖ , ‖x∗ ⊗ y2 − T‖} ≤ max{‖x∗ ⊗ y1 − B‖ , ‖x∗ ⊗ y2 − B‖}
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for all B ∈ L (X, H) . Let B runs over all operators of the form x∗ ⊗ h, h ∈ H. Then

max{‖x∗ ⊗ y1 − T‖ , ‖x∗ ⊗ y2 − T‖} ≤ max{‖x∗ ⊗ y1 − x∗ ⊗ h‖ , ‖x∗ ⊗ y2 − x∗ ⊗ h‖}

≤ ‖x∗‖max{‖y1 − h‖ , ‖y2 − h‖} ,

for all h ∈ H. Then,

max{‖(x∗ ⊗ y1) (x0) − T (x0)‖ , ‖(x∗ ⊗ y1) (x0) − T (x0)‖} ≤ max{‖y1 − h‖ , ‖y2 − h‖} ,

max{‖y1 − T (x0)‖ , ‖y1 − T (x0)‖} ≤ max{‖y1 − h‖ , ‖y2 − h‖} ,

for all h ∈ H. Then, T (x0) is a best simultaneous approximant for y1, y2 from H.

Let X be a Banach space and H be a closed subspace Y. for f, g ∈ Y, it has been shown in Theorem
3.1 that

d (f, g, �∞(S, H)) = sup
s∈S

d(f(s), g(s), H)

for any compact Hausdorff space S. In fact we have the following result for any nonempty set S. �

Lemma 3.9 Let X be a Banach space, H be a closed subspace of X, S be any nonempty set. For any

f, g ∈ �∞(S, Y ) we have

d (f, g, �∞(S, H)) = sup
s

d(f(s), g(s), H).

Proof. Let h ∈ �∞(S, H), then max{‖f (s) − h (s)‖ , ‖g (s) − h (s)‖} ≥ d(f(s), g(s), H), for all s ∈ S. Then

max{‖f − h‖ , ‖g − h‖} ≥ sup
n

(f(s), g(s), H).

Since h ∈ �∞(S, H) was arbitury, then

d(f, g, �∞(S, H) ) ≥ sup
s

d(f(s), g(s), H).

For the reverse inequality, let ε > 0, then for all s ∈ S , there exists k(s) ∈ H such that

max{‖f (s) − k (s)‖ , ‖ g (s) − k (s) ‖} < d(f(n), g(n), H) + ε.

Using Axiom of Choice, we may define h0 (s) = k (s) for all s ∈ S. It is clear that h0 ∈ �∞(S, H). Then

d(f, g, �∞(S, H) ) ≤ max{‖f − h0‖ , ‖ g − h0 ‖} < sup
s

d(f(s), g(s), H) + ε,

d(f, g, �∞(S, H) ) ≤ sup
s

d(f(s), g(s), H) + ε.

Since ε > 0 was arbitury, then d(f, g, �∞(S, H) ) ≤ sup d(f(s), g(s), H). �
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Theorem 3.10 Let Y be a Banach space, H be a closed subspace of Y , and S be any nonempty subset .
Then the following are equivalent:

1. H is simultaneously proximinal in Y.

2. �∞(S, H) is simultaneously proximinal in �∞(S, Y ).

Proof. (1) → (2)

Let f, g ∈ �∞(S, Y ). Since H is simultaneously proximinal in Y , then for any s ∈ S there exists

k(s) ∈ H such that

max{‖f (s) − k (s)‖ , ‖ g (s) − k (s) ‖} ≤ max{‖f (s) − z‖ , ‖ g (s) − z ‖} , (3)

for all z ∈ G. In particular it holds for any z(s) ∈ G, z ∈ �∞(S, H). By Axiom of Choice, there exists

k ∈ �∞(S, H) satisfying (3) . Hence

max{‖f − k‖ , ‖ g − k ‖} ≤ max{‖f − z‖ , ‖ g − z ‖} ,

for all z ∈ �∞(S, H). Then

max{‖f − k‖ , ‖ g − k ‖} = d(f, g, �∞(S, H)),

which implies that �∞(S, H) is simultaneously proximinal in �∞(S, Y ). �

(2) → (1). Let x, y ∈ X. Set fx : S → Y, fy : S → Y, defined by fx (s) = x, fy (s) = y for all s ∈ S.

By Lemma 3.9,
d(fy, fx, �∞(S, H)) = sup

s
d(fy (s) , fx (s) , H) = d(x, y, H).

Since �∞(S, H) is simultaneuosly proximinal in �∞(S, Y ), then there exists h ∈ �∞(S, H) such that

max{‖fx − h‖ , ‖ fy − h ‖} = d(x, y, H).

Choose s0 ∈ S such that

max{‖x − h (s0)‖ , ‖ y − h (s0) ‖} ≤ d(x, y, G).

Then h (s0) is a best simultaneous approximation for x and y form H.
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