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Groupoids, imaginaries and internal covers

Ehud Hrushovski

Abstract

Let T be a first-order theory. A correspondence is established between internal covers of models of T

and definable groupoids within T . We also consider amalgamations of independent diagrams of algebraically

closed substructures, and find strong relation between covers, uniqueness for 3-amalgamation, existence of

4-amalgamation, imaginaries of Tσ , and definable groupoids. As a corollary, we describe the imaginary

elements of families of finite-dimensional vector spaces over pseudo-finite fields.

Key words and phrases: Internal cover, groupoid, higher amalgamation, elimination of imaginaries,

pseudo-finite fields

The questions this manuscript addresses arose in the course of an investigation of the imaginary sorts
in ultraproducts of p-adic fields. These were shown to be understandable given the imaginary sorts of certain
finite-dimensional vector spaces over the residue field. The residue field is pseudo-finite, and the imaginary
elements there were previously studied, and shown in fact to be eliminable over an appropriate base. It remains
therefore to describe the imaginaries of finite-dimensional vector spaces over a field F , given those of F . I
expected this step to be rather easy; but it turned out to become easy only after a number of issues, of interest
in themselves, are made clear.

Let T be a first-order theory. A correspondence is established between internal covers of models of T

and definable groupoids within T . Internal covers were recognized as central in the study of totally categorical
structures, but nevertheless remained mysterious; it was not clear how to describe the possible T ′ from the
point of view of T . We give an account of this here, in terms of groupoids in place of equivalence relations.
This description permits the view of the cover as a generalized imaginary sort.

This seems to be a useful language even for finite covers, though there the situation is rather well-
understood; cf. [9],[11]. We concentrate on finite generalized imaginaries, and describe a a connection between
elimination of imaginaries and higher amalgamation principles within the algebraic closure of an independent
n-tuple. The familiar imaginaries of T eq correspond to 3-amalgamation, as was understood for some time for
stable and simple theories, and finite generalized imaginaries correspond to 4-amalgamation. This brings out
ideas present in some form in [8], [5], [10], [9]. In particular, 4-amalgamation always holds for stable theory T ,
if “algebraic closure” is taken to include generalized imaginaries. We also relate uniqueness of n-amalgamation
to existence of n + 1-amalgamation; using “all” finite imaginaries (not necessarily arising from groupoids) we
show that n-amalgamation exists and is unique for all n .

Thanks to Yad Hanadiv, and to the Israel Science Foundation, grant 1048/07. Thanks to the referee for many comments. MSC
03c99, 18B40.
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Adding an automorphism to the language to obtain a Robinson theory Tσ has the effect of shifting the
amalgamation dimension by one; n-amalgamation in the expanded language corresponds to n+1-amalgamation
for T . Thus ordinary imaginaries of Tσ can be understood, given generalized imaginaries of T .

We thus find a strong relation between four things: covers, failure of uniqueness for 3-amalgamation,
imaginaries of Tσ , and definable groupoids. A clear continuation to n = 4 would be interesting.

Returning to the original motivation, we use these ideas to determine the imaginaries for systems of
finite-dimensional vector spaces over fields, and especially over pseudo-finite fields (Theorem 5.10).

1. Preliminaries

Let T be a first-order theory, with universal domain U . Def(U) is the category of U-definable sets (with

parameters) and maps between them.1

Let A, B be small subsets of U . For each b ∈ B , we provide a new constant symbol cb ; and for each
a ∈ A , a new variable xa . We write tp(A/B) for the set of all formulas with these new variables and constants,
true in U under the eponymous interpretation of constant symbols and assignment of variables. This is useful
in expressions such as tp(A/B) |= tp(A/B′).

An ∞ -definable set is the solution set of a partial type (of bounded size; say bounded by the cardinality

of the language.) Morphisms between ∞ -definable sets are still induced by ordinary definable maps. If the
partial type is allowed to have infinitely many variables, the set is called � -definable instead. � -definable sets
can also be viewed as projective systems of definable sets and maps.

Dually, a
∨

-definable set is the complement of an ∞ -definable set.

When we say a set P is definable, we mean: without parameters. If we wish to speak about a set
definable with parameters a , we will exhibit these parameters in the notation: Pa .

We will often consider two languages L ⊂ L′ . The language L′ may have more sorts than L . Let T ′ be
a complete theory for L′ , T = T ′|L . We say T is embedded if any relation of L is T ′ -equivalent to a formula of

L′ . We say the sorts of L are stably embedded if in any model M ′ |= T ′ , any M ′ -definable subset of S1 ××Sk

(where the Si are L-sorts) is also definable with parameters from ∪Si(M ′). This basic notion has various

equivalent forms, see appendix to [6] and also [1].

Let D be a definable set of L′ . We say D is internal to L if in some (or any) model M ′ of T ′ , there
exist sorts S1, . . . , Sk of L and an M -definable map f whose domain is a subset of S1 × ×Sk , and whose
image is D . See [15], appendix, where it is shown that internality is associated with definable automorphism

groups; indeed, assuming T is embedded and stably embedded in T ′ , and L′ \ L is finite for simplicity, and

letting M denote the L′ -sorts of M ′ , there exists a definable group G such that G(M ′) can be identified

with Aut(D(M ′)/M). G is called the liaison group, a term due to Poizat. It is also shown in [15] that G is
M -isomorphic to an M -definable group. In §2 we will prove a more precise, parameter-free version, using the
notion of a definable groupoid.

We can immediately introduce one of the main notions of the paper.

1More generally we can work with a “Robinson theory”, a universal theory with the amalgamation property for substructure;
one then works with substructures of a universal domain, and takes “definable” to mean: quantifier-free definable. This was one of
the “contexts” of [21]; I dubbed it “Robinson” when unaware of this reference, and the name stuck.
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Definition 1.1 Let N be a structure, M the union of some of the sorts of N . N is a finite internal cover of
M if M is stably embedded in N , and Aut(N/M) is finite (uniformly in elementary extensions.) Equivalently,

N ⊆ dcl(M, b) for some finite b ∈ acl(M) .

A finite internal cover is a special case of an internal cover, where we demand that N/M is internal in

place of Aut(N/M) finite, and that Aut(N/M) is definable. In general, Aut(N/M) is an ∞ -definable group

of N , isomorphic over N to an ∞ -definable group of M . cf. [15].

While there is no difficulty in treating the general case, we will assume for simplicity of language that
Aut(N/M) is in fact definable in the internal covers considered in this paper. (Only the case of internal covers

with finite automorphism groups is needed for our applications.)

Remark 1.2 Let T ′′ be a many-sorted expansion of T . For any M ′′ |= T ′′ , let M be the restriction to the

language of T , and let Aut(M ′′) → Aut(M) be the natural group homomorphism; let K(M ′′, M) denote the
kernel.

1. If Aut(M ′′) → Aut(M) is always surjective, then T is stably embedded in T ′′ .

2. If in addition the kernel K(M ′′, M) = Ker(Aut(M ′′) → Aut(M)) always has cardinality bounded in

terms of M , then T ′′ is internal to T , i.e. all sorts of T ′′ are internal to the T -sorts.

3. If K(M ′′, M) has cardinality bounded independently of M and M ′′ , then T ′′ is T -internal with an

∞ -definable liaison group which is bounded, hence finite. (Cf. [15], Appendix B.) Thus in this case each

sort of T ′′ is a finitely imaginary sort of T .

4. If Aut(M ′′) → Aut(M) is always bijective, then M ′′ ⊂ dclT ′′(M).

The surjectivity implies that T ′ induces no new structure on the sorts of T , and also that T is stably
embedded in T ′ , cf. [6], Appendix. Injectivity of Aut(M ′) → Aut(M), implies that M ′ ⊆ dcl(M); for suppose

c ∈ M ′ and c /∈ dcl(M). We may take M, M ′ to be sufficiently saturated and homogeneous. By stable

embeddedness there exists a small subset A of M such that tp(c/A) implies tp(c/M). As c /∈ dcl(M), there

exists c′ �= c with tp(c′/A) = tp(c/A). So tp(c/M) = tp(c′/M), and by stable embeddedness again there

exists σ ∈ Aut(M ′/M) with σ(c′) = c ; the restriction of σ to M is the identity, but σ is not, contradicting

injectivity. For the rest see [15], Appendix B.

Lemma 1.3 Let T ′ be a theory, T the restriction of T ′ to a subset of the sorts of T ′ , T ′′ an expansion of
T ′ on the same sorts as T ′ . Assume T is stably embedded in T ′ , and for any N ′′ |= T ′′ , if N ′, N are the

restrictions to T ′, T respectively, the natural map Aut(N ′′/N) → Aut(N ′/N) is surjective. Then T ′, T ′′ have
the same definable relations.

Proof. By the proof of Beth’s implicit definability theorem, it suffices to show that Aut(N ′′) = Aut(N ′) for

any N ′′ . This is clear from the exact sequences 1 → Aut(N ′/N) → Aut(N ′) → Aut(N), 1 → Aut(N ′′/N) →
Aut(N ′′) → Aut(N), and the equality Aut(N ′/N) = Aut(N ′′/N). �
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2. Definable groupoids

A category is a 2-sorted structure with sorts O, M , with maps i0, i1 : M → O (the morphism m ∈ M

goes from i0(m) to i1(m)), and a partial composition ◦ : M ×i1,i0 M → M , and an identity map Id : O → M

(so that Id(x) : x → x is the identity map), satisfying the usual associative laws. The language of categories is
thus 2-sorted, with relation symbols i1, i1, Id, ◦ .

A (Grothendieck) groupoid is a category G = (ObG, MorG) where every morphism has a 2-sided inverse.

For a groupoid G , let IsoG be the equivalence relation on ObG : MorG(c, c′) �= ∅ . On the other hand, for any

a ∈ ObG , we have a group Ga = MorG(a, a). These groups are isomorphic for (a, b) ∈ IsoG : : if h ∈ MorG(a, b),

then x �→ h−1xh is an isomorphism Gb → Ga . This isomorphism is well-defined up to conjugation. Thus
groupoids generalize, at different extremes, both groups and equivalence relations: an equivalence relation is a
groupoid with trivial groups, and a group is a groupoid with a single object.

We will assume in this section that G has a unique isomorphism type. (I.e. ObG �= ∅ , and MorG(a, b) �= ∅
for all a, b ∈ ObG . ) Without this assumption, one obtains relative versions of the results, fibered over the set of

objects; for instance in 2.1, the conclusion becomes that one can interpret a set S and a map h : S → T = G/ ≡ ,

such that for t ∈ T , for any representative b ∈ ObG of t , F (b) is definably isomorphic to St = h−1(t).

If Xa is a conjugation-invariant subset of some Ga , let Xb = h−1Xah , where h ∈ MorG(b, a); the choice
of h does not matter.

In particular, if Na�Ga is a normal subgroup, we obtain a system of normal subgroups Nb�Gb . Moreover,
we can define an equivalence relation N on MorG(a, b):

(f, g) ∈ N ↔ g−1f ∈ Na ↔ fg−1 ∈ Nb

This gives rise to a quotient groupoid with the same set of objects, and with MorG′(a, b) = MorG(a, b)/N .

It makes sense to speak of Abelian or solvable groupoids (meaning each Ga is that).

If ObG and MorG are defined by formulas in some structure U , as well as the domain and range maps
MorG → ObG and the composition, we say that G is a definable groupoid in U .

A sub-groupoid is full if it consists of a subset of the objects, with all morphisms between them.

Let F : G → Def(U) be a functor. We say that F is definable if {(a, d) : a ∈ ObG, d ∈ F (a)} is definable,

as well as {(a, b, c, d, e) : a, b ∈ ObG, c ∈ MorG(a, b), d ∈ F (a), e ∈ F (b), F (c)(d) = e} .

Similarly for � -definable (= Pro-definable) or
∨

-definable (see §1). But if there exist a definable relation

F1 and definable function F2 such that for a ∈ ObG , F (a) = F1(a), and for a, b ∈ ObG , c ∈ MorG(a, b),

F (c) = F2(c), we will say that F is a (relatively) definable functor (even if if G is only � -definable.)

Example 2.1 Suppose each Ga is trivial. Then for each a, b ∈ ObG MorG(a, b) consists of a unique morphism.

In this case if F : G → Def(U) is a definable functor, one can interpret without parameters a set S , definably

isomorphic to each F (a) .

Let

ES = {(a, b, a′, b′) : a, a′ ∈ ObG, b ∈ F (a), b′ ∈ F (a′), ∃c ∈ MorG(a, a′). F (c)(b) = b′}

S = {(a, b) : a ∈ ObG, b ∈ F (a)}/ES

176



HRUSHOVSKI

Example 2.2 If G is Abelian, then the Ga are all canonically isomorphic, and one can interpret without
parameters a single group, isomorphic to all Ga .

Proof. As in 2.1: the maps Ga → Gb , being unique up to conjugacy, are in this case in fact unique. �

From �-definable to definable groupoids.

Lemma 2.3 Let G0 be a groupoid, with a distinguished element ∗ ∈ ObG0 . Suppose G0
∗ = MorG0(∗, ∗) is

a subgroup of a group G . Then G0 extends canonically to a groupoid G with the same objects, and with
MorG(∗, ∗) = G .

Proof. In other words, the natural map G �→ MorG(∗, ∗), from supergroupoids G of G0 with the same object

set, to supergroups G of G0
∗ , is surjective. If G0, G are � -definable, so is G .

Construction: Let
(MorG(a, b) = MorG0(∗, b)× G × MorG0(a, ∗))/ ∼,

where (f, g, h) ∼ (f ′, g′, h′) iff ((f ′)−1f)g = g′(h′h−1). Note that the expression makes sense, since ((f ′)−1f), (h′h−1) ∈
MorG0(∗, ∗) ≤ G . It defines an equivalence relation: for instance, transitivity: if ((f ′)−1f)g = g′(h′h−1) and

((f ′′)−1f ′)g′ = g′′(h′′(h′)−1)), then

((f ′′)−1f)g = ((f ′′)−1f ′)((f ′)−1f)g = ((f ′′)−1f ′)g′(h′h−1) = g′′(h′′(h′)−1))(h′h−1) = g′′(h′′h−1).

Define composition
MorG(b, c)× MorG(a, b) → MorG(a, c)

by: (j′, g′, f ′)/ ∼) ◦ ((f, g, h)/ ∼) = (j′, g′(f ′f)g, h)/ ∼ .

The verifications are left to the reader. �

Lemma 2.4 Let G0 be a �-definable groupoid, with G0
a definable. Then G0 extends to a definable groupoid G ,

with MorG(a, b) = MorG0(a, b) for a, b ∈ ObG0 .

If ∼ an
∨

-definable equivalence relation, and all a, b ∈ ObG0 are ∼-equivalent, we can obtain the same
for G .

Proof. The hypothesis is intended to read: G0
a is definable uniformly in a (or equivalently, that the statement

is true in any model.) It follows that MorG0(a, b) is definable, for any a, b ∈ ObG0 . (This set is a torsor over

G0
a , so it is definable with parameters; being � -definable with parameters a, b , it must be definable uniformly in

these parameters.) The definition of MorG0(a, b) must extend over all a, b in some definable set S0 containing

ObG0 . The groupoid properties are certain universal axioms holding for all a, b, c ∈ ObG0 ; by compactness

they must hold for all a, b, c ∈ S1 (some definable S1 , with ObG0 ⊂ S1 ⊂ S0 .) Let ObG = S1 , and use the
definable function above to define G .

The two additional statements are also immediate consequences of compactness. �

Some theories, notably stable ones (cf. [16]), theories of finite S1 rank ([14]), and more generally

supersimple theories ([25]), have the property that every � -definable group is a projective limit lim←n Gn ,
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where G1 ← G2 ← · · · is a sequence of definable groups and maps. As soon as this holds for one of the groups
Ga , we can use the two lemmas above to pass from an � -definable groupoid to a definable one.

The liaison groupoid. Let U be a universal domain for a theory admitting elimination of quantifiers and
elimination of imaginaries.

Let V be a union of sorts of U , closed under images of definable maps. So V also admits elimination
of imaginaries . We will obtain a � -definable groupoid; the set of objects will be � -definable, and the image of
an ∞ -definable set of U ; the sets of morphisms ∞ -definable. In the situation of 2.4, this will be the limit of
definable groupoids.

Proposition 2.5 Assume V is stably embedded in U .

Let Q be a definable set of U , internal to V .

There exists �-definable groupoids G in U and GV in V , and definable functors F : G → Def(U) and

FV : GV → Def(V) , such that GV is a full subgroupoid of G , FV = F |GV , ObG = ObGV ∪ {∗} , and F (∗) = Q .

We have F (G∗) = Aut(Q/V) .

Proof. By internality of Q , and using elimination of imaginaries in V , there exists Qb definable over b in
V , and a U-definable bijection fc : Q → Qb . Since V is stably embedded, tp(c/b′) � tp(c/V) for some b′ ;

increasing b , we may assume b = b′ . (It is here that we must allow b′ to be a tuple with an infinite index set.)

Let ObGV be the set of solutions of tp(b), and let ObG = ObGV ∪ {∗} (a formal element.) Let

MorG(∗, b′) = {c′ : tp(bc) = tp(b′c′)} (the morphism is viewed as identical with the map fc′ : Q → Qb′ .)

Let MorG(b′, ∗) be the same set of codes, but each code viewed now as coding the inverse map Qb′ → Q . Let

MorG(∗, ∗) = Aut(Q/V).

Observe the coherence of what has been defined so far: if c, d ∈ MorG(∗, b′), then tp(c/b′) = tp(d/b′).

Thus tp(c/V) = tp(d/V). Since V is stably embedded, there exists σ ∈ Aut(U/V) with σ(c) = d . Let g = σ|Q .

If a ∈ Q , then σ(fc(a)) = fc(a) (since σ fixes V) but also σ(fc(a)) = fσ(c)(σ(a)) = fd(g(a)). Thus fc = fd ◦g .

Conversely, if τ ∈ Aut(U/V) is arbitrary, h = τ |Q , then fd ◦ h = fσ−1(d) .

For b′, b′′ ∈ ObGV , let MorG(b′, b′′) be the set of maps Qb′ → Qb′′ of the form fc′′ ◦ fc′
−1 , where

c′ ∈ MorG(∗, b′), c′′ ∈ MorG(∗, b′′).
Note that if σ(c′′) = d′′ , g = σ|Q , then fc′′ = fd′′ ◦ g , fc′ = fd′ ◦ g for some d′ (=σ(c′)), so

fc′′ ◦ fc′
−1 = fd′′ ◦ fd′

−1 . Since Aut(Q/V) is transitive on MorG(∗, b′′), fixing some d′′ ∈ MorG(∗, b′′), an

arbitrary element of MorG(b′, b′′) can be written fd′′ ◦ fd′
−1 . Similarly, an arbitrary element of MorG(b′′, b′′′)

can be written fd′′′ ◦fd′′
−1 . So the composition of an arbitrary element of MorG(b′, b′′) with one of MorG(b′′, b′′′)

is an element of MorG(b′, b′′′). It follows that we have indeed a groupoid.

Also, by expressing MorG(∗, ∗) as MorG(b, ∗) ◦ MorG(∗, b) for some b , it follows that MorG(∗, ∗) is an

∞ -definable set of permutations of Q (over b , but a posteriori over ∅ , since at all events it is invariant.)

Define the functor F by F (∗) = Q , F (b′) = Qb′ , and define F on morphisms tautologically.

Let GV be the restriction of G to ObGV , and FV = F |GV . All the properties are then clear. �

Remark 2.6 1. There exist definable maps fi : Q → V (i ∈ I ) such that F (G∗) is transitive on each fiber

of f = (fi)i∈I .
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2. Assume G∗ = ∩nGn where G1 ≥ G2 ≥ · · · are definable groups. Then one can find a definable groupoid
G and a finite I satisfying Theorem 2.5 except the last statement and (1) above. (And we still have

F (G∗) ⊃ Aut(Q/V)).

Proof.

1. Let f = (fi)i∈I enumerate all definable maps Q → V . Then c, d ∈ Q are Aut(Q/V)-conjugate iff

tp(c/V) = tp(d/V) (by stable embeddedness) iff f(c) = f(d).

2. By 2.3, 2.4.

�

3. Generalized imaginaries

The notion of an imaginary sort for a theory T can be described as follows. Let T ′ be an extension
of T in a language containing the language of T , and having an additional sort S . A universal domain U

′

for T ′ thus has the form U, S(U′). S is an imaginary sort of T if every model M |= T expands to a model

M ′ = (M, SM ′ ) of T ′ with SM ′ ⊆ dcl(M); equivalently (as noted above), for any such M ′ ,

Aut(M ′) → Aut(M)

is a group isomorphism.

We will now consider a slight generalization. A finite generalized imaginary sort is defined as above,
except that the homomorphism

Aut(M ′) → Aut(M)

is allowed to have finite kernel. It is still assumed to be surjective. More generally, S is called an internal
generalized imaginary sort if the language of T ′ is finite relative to the language of T (i.e finitely many relation

symbols are added), and T ′ is internal to T . In this case, Aut(SM ′/M) is isomorphic to G(M) for some
definable group G . It makes sense to consider generalized sorts S relative to a sort D of T , meaning that a

definable map S → S̄ is given, and each fiber is an internal imaginary sort. But in this paper we will consider
internal generalized imaginary sorts almost exclusively, and will omit the adjective “internal”.

An equivalent, more concrete definition of (ordinary) imaginaries can be given in terms of equivalence

relations (cf. [22]). Let E be a definable equivalence relation on a set S ; then S/E is added as a new sort,

together with the canonical map S → S/E .

This is used to find canonical parameters for definable families. For s ∈ S , let δ(s) be a definable set;

such that δ(s) = δ(s′) iff (s, s′) ∈ E . Then the image of s in s/E serves as a canonical parameter for δ(s).

More generally, in place of equality, one often has a definable bijection fs,s′ : δ(s) → δ(s′), forming

a commuting system. Then for s̄ ∈ S/E one introduces δ(s̄) as the quotient of the (δ(s) : s/E = s̄) by

the system fs,s′ , obtaining a canonical family δ(s̄) : s̄ ∈ S/E). This can still be treated using equivalence-

relation imaginaries, by an appropriate equivalence relation on
•⋃

sδ(s). However, if the system has more than

one definable bijection δ(s) → δ(s′), this fails. We now generalize the above construction to more general
groupoids.
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A concrete definable category of T is a triple G = (ObG, MorG, δG) with (ObG, MorG) a category

interpretable in T , and δG : ObG → Def(U) a faithful definable functor.

An embedding of G1 into G2 is a 0-definable fully faithful functor h : ObG1 → ObG2 , together with a
0-definable system of definable bijections hc : δ1(c) → δ2(h(c)) for c ∈ ObG1 , such that hc′ ◦ MorG1(c, c′) =

MorG2(h(c), h(c′))◦hc . In particular, conjugation by hc induces a group isomorphism MorG1(c, c) → MorG2(h(c),

h(c)).

A concrete groupoid is a concrete category that is a groupoid.

A groupoid G is canonical if IsoG is the identity, i.e. two isomorphic objects of G are equal. A (concrete)

groupoid G is a group (action) if ObG has a single element.

Two concrete groupoids G1, G2 of T are equivalent if there exist 0-definable embeddings hi : Gi → G
for some concrete groupoid G , such that the image of hi meets every isomorphism class of G (thus hi is an

equivalence of categories.) In this case, ObG may be taken to be ObG1

•⋃
ObG2 , and the embeddings may

be taken to be the identity maps. If G1, G2 and G2, G3 are equivalent, via concrete groupoid structures on

G1

•⋃
G2 and on G2

•⋃
G3 , one may take the concrete groupoid generated by the union of these (with objects

ObG1

•⋃
ObG2

•⋃
ObG3 ) to see that G1, G3 are equivalent.

The cover associated to a definable groupoid. We describe a canonical cover of a theory T , associated
with a definable groupoid G . The new theory adds a distinguished object to each isomorphism class of G . The
cover will be internal if the groupoid has a single isomorphism class. A general groupoid G can be viewed as
a disjoint union over ν ∈ ObG/IsoG of the full sub-groupoid G(ν) whose objects are those of the isomorphism

class ν . The cover T ′
G will then be the the free union of the covers T ′

G(ν) . The construction extends to the case

of concrete groupoids.

Let T be a theory, G a definable groupoid, and δ : G → Def(T ) a definable functor. We construct a

theory T ′ = T ′
G,δ extending T . The sorts of T ′ are those of T , along with three new sorts O, M, D . The

language of T ′ is the language of T expanded by relations i′0, i
′
1, ◦′, Id′ for the language of categories on O, M

(with O the objects, M the morphisms), and maps r : D → O , d : D ×r,i0 M → D . We will make (O, M)

into a concrete groupoid G′ with functor δ′ by letting δ′(x) = r−1(x), and δ′(f) be the restriction of d to

r−1(x) × {f} . Finally the language has function symbols j for a functor (G, δ) → (O, M, δ′) of concrete
categories.

The axioms of T ′ are those of T , together with the statement that (O, M, δ′) is a concrete groupoid, j

is an embedding of concrete categories G → (O, M, δ′); and O has a unique element outside the image of j , in
each isomorphism class.

As usual, we will write HomG′ (a, b) for {m ∈: i0(m) = a, i1(m) = b} . In particular HomG′(a, a) forms

a group, denoted AutG′(a).

Lemma 3.1 T ′ is complete (relative to T ). T ′ induced no new structure on the sorts of T . Each model M

of T extends to a unique model M ′ of T ′ , up to isomorphism over M . For any a ∈ O(M ′) , δ′(a) is internal

to the sorts of T , and Aut(δ′(a)/T ) = AutG′(a) .

Proof. Given M |= T , choose a representative rν of each isomorphism class ν of ObG(M). Let O0 be a

copy of ObG , with j : ObG → O a bijection; ∗ν be a new element, O = O0 ∪ {∗ν : ν} , and define a groupoid
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structure in such a way that j is an isomorphism of categories from G the the sub-groupoid with objects O0 ,
and each ∗ν is isomorphic to each element of ν . It is easy to see that this can be done, and uniquely so up
to M -isomorphism. In effect to construct O one adds to each isomorphism class a new copy ∗ν of rν , and
let Mor(∗ν , y) be a copy of Mor(rν , y) for any y ∈ ObG , and Mor(∗ν, ∗η) = Mor(rν, rη). Similarly δ′(∗ν) is

a copy of δ(rν). For uniqueness, given two versions O, O′ , for any ν pick an isomorphism fν ∈ Mor(rν , ∗ν),

f ′
ν ∈ Mor(rν , ∗′ν), and conjugate using f from ∗ν to rν , then using f ′ from rν to ∗′ν , to obtain isomorphisms

Iso(∗ν ) → Iso(∗′ν); compose δ′(f ′) with δ′(f)−1 to obtain maps δ′(∗ν) → δ′(∗′ν); etc.

Completeness of T ′ follows from the uniqueness of M ′ .

Any element of AutG′(a) acts on δ′(a), and also acts on any nonempty MorG′(a, b) by conjugation; these
combine to give a concrete groupoid automorphism fixing the image of j , hence an automorphism fixing the
T -sorts. Given any automorphism σ ∈ Aut(T ′/T ), let a ∈ M ′ \M and pick b ∈ ObG(M) with a, b isomorphic

in G . we have σ(a) = a since σ(b) = b and a is the unique element outside the image of j and isomorphic to

j(b). Pick an isomorphism r ∈ Mor(a, b), Then σ(r)−1r is an G′ -isomorphism of a , σ coincides on δ′(a) and

on any Mor(a, c) with the action of and conjugation by this element.

�

Remark The cover constructed above is 1-analyzable, i.e. relatively internal over a set interpretable in T ,
namely the set IsoG of isomorphism classes of G ; moreover and has no relations among the fibers over IsoG .
In general, a 1-analyzable cover f : C → D may have relations among fibers of f , not sensed by the associated
groupoid. However any relation concerns finitely many fibers, so between them the groupoids associated to
the induced covers fn : Cn → Dn for each n do capture the information, and the cover may by coded by a
definable simplicial groupoid.

Remark Assume G has a single isomorphism class. if one fixes a parameter b ∈ ObG , one may interpret the
new element of O by doubling b . (Add one new object b′ , and let Mor(b′, c) be a copy of Mor(b, c), etc.,

with the obvious rules.) In this case, the corresponding groupoid imaginary is interpretable with parameters.
However, unlike the groupoid imaginary sort, this interpretation is incompatible with the automorphism group
of the original structure.

Internal covers and concrete groupoids. Two generalized imaginary sorts S′, S′′ of T (with theories

T ′, T ′′ ) are equivalent if they are bijectively bi-interpretable over T , i.e. whenever N ′ |= T ′, N ′′ |= T ′′ are two
models with the same restriction M to the T -sorts, there exists a bijection f : SN → SN′ such that f ∪ IdM

preserves the class of 0-definable relations.

Theorem 3.2 There is a bijective correspondence between internal imaginary sorts of T and definable concrete
groupoids with a single isomorphism class (both up to equivalence.)

Proof. Given the concrete definable groupoid G with functor F , let T ′
G be the theory described in Lemma 3.1.

Since G has a single isomorphism class, there is a single element ∗ of O outside the image of ObG . The sort

SG is taken to be δ′(∗), with the structure induced from T ′ . (Note that the rest of T ′ is definable over the

sorts of T and SG , using stable embeddedness.)

Conversely, given an internal cover N , we obtain a *-definable concrete groupoid by Proposition 2.5.
(The liaison groupoid of N .) Since the number of sorts and generating relations is finite, it is clear that
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Aut(SN/M) is definable rather than ∗ -definable. By Lemma 2.4 we can take the groupoid G definable. It is
clearly a concrete groupoid of M , well-defined up to equivalence.

By Lemma 3.1, the liaison groupoid of SG is (equivalent to) G . Conversely, if we begin with N and let
G be the liaison groupoid of N , then SG can be identified with N , though a priori N may have more relations;
but by construction SG , N have the same automorphism group over N , so by Lemma 1.3 their definable sets
coincide. �

In particular, a finite internal cover of N may be realized as a generalized imaginary sort, where the
groupoid has a single isomorphism class, and finite isomorphism group at each point.

Example 3.3 Let M be a finite structure, i.e. finitely generated, with finitely many elements of each sort.

Then any finite extension 1 → K → G̃ → G → 1 of G = Aut(M) is the automorphism group of some finite

internal extension M̃ of M . The same holds in the ℵ0 -categorical setting, if the topology on G is taken into
account; see [1] for proofs and [2] for good examples.

.

Lemma 3.4 Let N be a finite internal cover of M , whose corresponding concrete groupoid is equivalent to a
(0-definable) group action. Then the sequence

1 → Aut(N/M) → Aut(N) → Aut(M) → 1

is split.

Proof. In this case, the construction beginning with G yields a structure interpretable in M : if ObG = {1} ,

the new structure has new sorts δ(∗) and δ(Mor(∗, 1)); by choosing a point of δ(Mor(∗, 1)) one obtains M

together with a copy δ(∗) of δ(1) and a copy δ(Mor(∗, 1)) of δ(Mor(1, 1)). This interpretation yields a group

homomorphism Aut(M) → Aut(N) splitting the sequence.

This provides examples of structures that do not eliminate groupoid imaginaries. �

Lemma 3.5 Conversely, let N be a finite internal extension of M , with associated concrete groupoid G ; and
suppose the exact sequence of automorphism groups is split functorially. Then G is equivalent to a group action.

Proof. By assumption, there exists a subgroup H ≤ Aut(N), varying functorially when (M, N) is replaced

by an elementary extension, such that H → Aut(M) is an isomorphism. Let N be the expansion of N by all
H -invariant relations. Then N is bi-interpretable with M . It follows that the concrete groupoid corresponding
to N is equivalent to a group action. �

Definition 3.6 A finite internal cover T ′ of T is almost split if whenever N ′ |= T ′ , with N the restriction

to the sorts of T , for some finite 0-definable set C of imaginaries of N ′ , N ′ ⊆ dcl(N ∪C) . If Aut(N ′/C) →
Aut(N) is surjective, we say that the cover is split.

Thus “T ′ almost split over T ” is the same as: “T ′
acl(∅) is split, over acl(∅).”
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Definition 3.7 T eliminates (finite, strict) generalized imaginaries if every concrete groupoid (with finite

automorphism groups, with one isomorphism class) G is equivalent to a canonical one.

Note that ordinary elimination of imaginaries holds iff every groupoid with trivial groups is equivalent to
a canonical one.

Lemma 3.8 T eliminates finite generalized imaginaries iff T eliminates finite imaginaries, and every finite
internal cover of T is split.

Proof. We use Theorem 3.2. T eliminates finite generalized imaginaries iff every concrete groupoid G with
finite automorphism groups and one isomorphism class is equivalent to a group action. If G is a group action,
the finite internal cover corresponding to G is clearly split. Conversely if the cover T ′ of T is split, it has
an expansion T ′′ bi-interpretable with T . T ′′ is still a finite internal cover, and by Theorem 3.2 corresponds
to a sub-groupoid G′′ of G , with one isomorphism class and trivial automorphism groups. Let ∗ be a for-
mal element corresponding to the isomorphism class of G . We may assume ObG = ObG′ . For a ∈ ObG ,
let Mor(a, ∗) = MorG(a, a). Given a, b ∈ ObG , there is a unique fa,b ∈ MorG′(a, b). Use δ(fa,b) to identify

δ(a), δ(b), and let δ(∗) be the quotient. Also use fa,b to identify Mor(a, a) and Mor(b, b), by composition, and

let Mor(∗, ∗) be the quotient. We have found a common extension of the group action of Mor(∗, ∗) on δ(∗),
and of the concrete groupoid (G, δ). �

Remark 3.9 If algebraic points form an elementary submodel of M , then every finite internal cover is almost
split. Indeed by definition, a finite internal cover N satisfies N ⊂ dcl(M, C) with C a finite, M -definable set.

As acl(∅) ≺ M , we can choose C ⊂ acl(∅).

A definable group homomorphism f : H̃ → H is a definable central extension if f is surjective and
ker f is contained in the center of H . We now relate finite internal covers of internal covers of a theory τ to
definable central extensions of the liaison group of the latter. Assumption (3) below says that finite generalized
imaginaries of M arising from definable finite central extensions of groups are eliminable; the conclusion is that
all finite generalized imaginaries are.

Proposition 3.10 Let T be a theory with a distinguished stably embedded sort k, τ = Th(k) . Let M |= T .
Assume T eliminates imaginaries, and:

1. Every finite internal cover of k is almost split.

2. Let D be a T -definable set. Then D is k-internal, and Aut(D/k) is TM -definably isomorphic to a
τ -definable group H .

3. Let F0 be a finite definable set of imaginaries of T , D a TF0 -definable set, h : Aut(D/k, F0) → H an

MT -definable group isomorphism (as in (2)). Let f : H̃ → H be a τ -definable central extension. Then

there exists a finite T -definable F containing F0 , and a TF - definable D̃ containing D , and injective

TM -definable group homomorphisms h̃ : Aut(D̃/k, F ) → H̃ , h : Aut(D/k, F ) → H , with images of finite

index, and fh̃ = h .
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4. For any τ -definable group H , and any finite Abelian group K , the group of M -definable homomorphisms
H → K is finite.

Then any finite internal cover of M is almost split.

Proof. Let M ′ = M ∪ {C} be a finite internal cover of M , with C definable; T ′ = Th(M ′). We have

G := Aut(M ′/M) = Aut(C/M) = Aut(C/D) for some definable set D of T ; G is a finite group. We may
enlarge C so that D ⊆ C .

Two preliminary remarks:

If F is a finite definable set of imaginaries of T ′ , there exist finite definable sets FT , Fτ of imaginaries
of M, k respectively, such that for for any M, M ′ as above,
textrmdcl(F ) ∩ M eq = dcl(FT ) ∩ M eq , dcl(F ) ∩ keq = dcl(Fτ) ∩ keq . Thus Aut(M ′/F ) → Aut(M ′/FT ) →
Aut(kM/Fτ) are defined and surjective. Thus to show that T ′ is split, it suffices to prove the same for T ′

F . In

particular, taking F to be the finite group G , we may assume each element of G is 0-definable. In this case,
G is central in Aut(M ′/k). We have a central extension

1 → G → Aut(C/k) → Aut(D/k) → 1

By internality, the sequence is isomorphic to a central extension

1 → K → H̃ → H → 1

of τ -definable groups, via an M ′ -definable map f̃ : Aut(C/k) → H̃ , and an M -definable map f : Aut(D/k) →
H .

The condition in (3) is stated for central extensions with prime cyclic kernel; by iteration it is closed
under all finite central extensions.

Hence, after naming parameters for a further finite definable set, and passing to corresponding subgroups

of finite index in H̃, H , there exists a T -definable D̃ (containing D) such that Aut(D̃/k) → Aut(D/k) is

isomorphic to H̃ → H , by T -definable maps h̃, h ; and h = f .

Now H̃ ×H H̃ has a subgroup of finite index isomorphic to H̃ , namely the diagonal subgroup Δ
�H . Δ

�H

is invariant under any M -definable automorphism of H̃ ×H H̃ of the form (α ×β α), with α : H̃ → H̃ an

automorphism lying over β : H → H . But any automorphism of H̃ over H has the form x �→ z(x)x for some

homomorphism z : H̃ → K . By (4), there are only finitely many such definable homomorphisms, and so the

group of M -definable automorphisms of H̃ over H is finite, and hence the automorphisms (α×β α) have finite

index within the group of all M -definable automorphisms of H̃ → H . So Δ
�H has finitely many conjugates

by such automorphisms. Taking their intersection, we find a subgroup S of H̃ ×H H̃ of finite index, mapping

injectively to each factor H̃ , and invariant under all M -definable automorphisms of (H̃, H).

It follows that the pullback S′ of S under (h̃, f̃ , f) does not depend on the choice of the triple (h̃, f̃ , f).

It is thus a definable subgroup of Aut(D̃/k) ×Aut(D/k) Aut(C/k). Hence Aut(D̃, C/k) also has a definable

subgroup of finite index S′′ mapping injectively to Aut(D̃/k).

By [15], there exists a T ′ -definable set Q with Aut(Q/k) = Aut(D̃/k), and such that Aut(D̃/k) acts

transitively on Q , with trivial point stabilizer. The quotient Q/S′′ is a finite internal cover of k . By (1),

184



HRUSHOVSKI

for some 0-definable finite set F ′ we have Q/S′′ ⊆ dcl(F ′). So Aut(M ′/F ′) is contained in S′′ . Hence

Aut(M ′/F ′, M) ⊆ Aut(M ′/F ′, D̃) = 1. So M ′ is an almost split extension of M . �

Groupoids in ACF. Consider ACFL , the theory of algebraically closed fields containing a field L . Let La be
the algebraic closure of L . Every concrete groupoid is equivalent to a a subgroupoid with finitely many objects
in each equivalence class. The question essentially reduces to concrete groupoids with finitely many objects.

If L is real-closed, the Galois group Aut(La/L) is Z/2Z , and admits nontrivial central extensions

1 → Z → Ea → Aut(La/L) → 1. Ea lifts to an extension E of Aut(K/L) (where K |= ACFL .) The

sequence 1 → Z → E → Aut(K) → 1 is not split, any more than the Ea -sequence. As in Example 3.3 there

exists a finite internal cover M of ACFL with Aut(M) = E . The concrete groupoid corresponding to M

cannot be equivalent to a canonical one.

On the other hand, if L is PAC, then (cf. [12]) Aut(La/L) is a projective profinite group. In this case
every finite concrete groupoid should be equivalent to a canonical one.

Problem 3.11 Give a geometric description of the groupoid-imaginaries when when L is a finitely generated
extension of an algebraically closed field.

4. Higher amalgamation

Let T be a theory (or Robinson theory), for simplicity with quantifier elimination. A T -structure is an
algebraically closed substructure of a model of T . Let CT be the category of algebraically closed T -structures.
A partially ordered set P can also be viewed as a category, and we will consider functors P → CT . Specifically

let P (N) be the partially ordered set of all subsets of {1, . . . , N} , and let P (N)− be the sub-poset of proper
subsets.

By an N -amalgamation problem we will mean a functor A : P (N)− → CT . A solution is a functor

Ā : P (N) → CT , where P (N) is the partially ordered set of all subsets of P (N), extending A . We will demand

for both a = A, Ā that a(s) = acl{a(i) : i ∈ s} (this is by no means essential, but simplifies the definitions of

independence-preservation and of uniqueness of solutions below.)

We assume T is given with a notion of canonical 2-amalgamation. That is, we are given a functorial
solution of all 2-amalgamation problems. Equivalently, we have a notion of independence of two substructures
of a model of T , over a third; or again, a functorial extension process p �→ p|B of types over A to types over

B , where A ≤ B ∈ CT . We assume that this notion of independence is symmetric and transitive, cf. [4]. When

for any B , p|B is an A- definable type, we will say that amalgamation is definable at p . (This is always the

case for stable theories, cf. [22].)

(The “uniqueness of non-forking extensions” comes with the presentation here; some of the considerations

below generalize easily to the case of a canonical set of solutions rather than one.)

A functor A : P → CT is (2)-independence-preserving if it is compatible with the given canonical 2-

amalgamation; i.e. whenever s = s1 ∩ s2 ⊂ s′ ∈ P , A(s1), A(s2) are independent over A(s) within A(s′).

At this point, we consider the problem of independent amalgamation. An independent amalgamation

problem (or solution) is a functor A : P → CT (where P = P (N)− , respectively P = P (N)) compatible
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with the given canonical 2-amalgamation; i.e. such that whenever s = s1 ∩ s2 ⊂ s′ ∈ P , A(s1), A(s2) are

independent over A(s) within A(s′). We will also demand: A(∅) = acl(∅).
Let us say that T has n-uniqueness (existence, exactness) if every independent n-amalgamation problem

has at most one (at least one, exactly one) solution, up to isomorphism.

Similar diagrams appear in work of Shelah in various contexts, cf. e.g. [23]. Elimination of imaginaries

was introduced in [22] precisely in order to obtain 2-exactness for stable theories. 3-existence follows, but

4-existence, and 3-uniqueness, can fail: cf. [17]. We will see below, however, that with generalized imaginaries
taken into account, stable theories are 3-exact.

Occasionally we will also require (n− 1, n + k)-existence for k ≥ 1. This means that a solution exists to

every partial independent amalgamation problem (a(u) : u ⊂ {1, . . . , n + k}, |u| < n} . We have however:

Lemma 4.1 Assume TA has n-existence for all A . Then

(1) T has (n − 1, n + k)-existence for any k ≥ 1 .

(2) If n-uniqueness holds, so does n + 1-existence.

Proof. (1) An easy induction. For instance take k = 1, and assume given (a(u) : u ⊂ {1, . . . , n+1}, |u| < n).

Let U = {u ⊂ {1, . . . , n + 1} : |u| ≤ n, (n + 1) ∈ u} . For u ∈ U , by (n − 1, n)-existence, one can find a∗(u)

extending a(v) for v ⊂ u, |v| < n . But U is isomorphic to the set of subsets of {1, . . . , n} of size < n , so by

another use of (n−1, n)-existence (a∗(u) : u ∈ U) admits a solution (b(u) : u ⊆ {1, . . . , n+1}); this also solves
the original problem a .

(2). We will use (n − 1, n + 1)-amalgamation. Given an n + 1-independent amalgamation problem b ,

let a be the restriction to the faces u with |u| < n . This problem has a solution c ; for each u with |u| = n , c

restricts to a solution c(u) of the problem (a(v) : v ⊂ u); by n-uniqueness, these solutions must be isomorphic

to the original solutions b(u). By means of these isomorphisms b(u) → c(u) ( |u| = n), c provide a solution to
the problem b . �

Lemma 4.2 Let T be a theory with a canonical 2-amalgamation, admitting elimination of imaginaries. For
any independence-preserving functor a : P (3) → CT , the following two conditions are equivalent:

(1) a(12) ∩ dcl(a(13), a(23)) = dcl(a(1), a(2))

(2) If c ∈ a(12) = acl(a(1), a(2)) , then tp(c/a(1), a(2)) implies tp(c/a(13), a(23)) .

Moreover, 3-uniqueness is equivalent to the truth of (1,2) for all such a .

Proof. Assume (1) holds. In the situation of (2), the solution set X of tp(c/a(13), a(23)) is a finite set,

hence coded in a(12), and defined over a(13)+a(23); thus by (1), X is defined over a(1), a(2); being consistent

with tp(c/a(1), a(2)), it must coincide with it.

Conversely, if c ∈ a(12) ∩ dcl(a(13), a(23)), then tp(c/a(13), a(23)) has the unique solution c , so if (2)

holds then the same is true of tp(c/a(1), a(2)), and hence c ∈ dcl(a(1), a(2)).

Suppose (1) fails. Then the restriction map

Aut(a(12)/a(13), a(23)) → Aut(a(12)/a(1), a(2))

is not surjective. Let σ ∈ Aut(a(12)/a(1), a(2)) be an automorphism that does not extend to a(13)a(23).

Let a′ be the same as a on subsets of {1, 2, 3} , and also the same on morphisms except for the inclusion
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i : {1, 2} → {1, 2, 3} ; and let a′(i) = a(i) ◦ σ . Then a′ is a solution to the independent amalgamation problem

a|P (3)− , and is not isomorphic to a . So 3-uniqueness fails.

Conversely, suppose we are given an independent amalgamation problem a : P (3)− → CT , and two solu-

tions a′, a′′ on P (3). We may take a′ to take the morphisms to inclusion maps. Then all a(ij) = a′(ij), and

are embedded in A = a′(123). We can identify a′′(123) with A = acl(a1, a2, a3) also. Then the additional data

in a′′ consists of isomorphisms a(i, j) → a(i, j), compatible with the inclusions of the a(i). By 2-uniqueness,

we may further assume that these isomorphisms are the identity on a(2, 3) and a(1, 2); so that a′′ reduces to

an automorphism f of a(1, 3), over a(1), a(3). By (1), f extends to an elementary map fixing a(12), a(13).

This further extends to an automorphism F of a(1, 2, 3). F shows that the two solutions a′, a′′ of the problem
a are isomorphic. �

Proposition 4.3 Let T be a stable theory admitting elimination of quantifiers and of imaginaries. Assume
every finite internal cover of TA almost splits over A . Then T has 3-uniqueness.

In place of stability, we can assume T is given with a notion of 2-amalgamation, and show Lemma 4.2
(1) holds whenever the amalgamation is definable at one of the vertices of the triangle in question.

We will see later that 4-existence is equivalent to 3-uniqueness.

Compare [5], where a finite internal cover was constructed in the same way; the purpose there was to

interpret a group from the group configuration, in a stable theory. This is also done for simple theories in [17],
where 4-existence is assumed. In hindsight, it all coheres.

Proof. Since by definition 3-uniqueness for Tacl(∅) implies 3-uniqueness for T , we may assume acl(∅) =

dcl(∅).
Let a : P (3) → CT be an independence-preserving functor, with notation as in Lemma 4.2. Replacing T

by Ta(∅) we may assume a(∅) = acl(∅) = dcl(∅). Fix an enumeration of a(i). We will describe a finite internal

cover T+ of T , associated with a .

Let FU be the set of formulas S(x1 , x2; u) such that whenever M |= S(a1 , a2; c),

1. c ∈ acl(a1, a2)

2. If tp(a3) = tp(a(3)) and a3 is independent from acl(a1, a2), then c ∈ dcl(acl(a1, a3), acl(a2, a3)).

If ai enumerates a(i), then by definability of the canonical extension of tp(a(3)), for any c ∈ a(12) ∩
dcl(a(13), a(23)) there exists S ∈ FU with S(a1 , a2, c).

Let S, S′, S′′, . . . ∈ FU . By definability of the canonical extension of tp(a(1)), for any formula

φ(x, y, z, y′, z′, y′′, z′′, . . . , w) there exists a formula φ∗(y, z, y′, z′, . . . , w) (depending on φ and on the sequence

S, S′, . . .) such that for any b, c, b′, c′, . . . , d , any any a |= tp(a(1)) with a independent from {b, c, b′, c′, . . . , d}
and such that S(a, b, c), S′(a, b′, c′), . . .,

φ(a, b, c, b′, c′, . . . , d) ⇐⇒ φ∗(b, c, b′, c′, . . . , d)

We construct a many-sorted cover T ′ of T as follows.
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Let L+ be a language containing L , as well as a new sort NS(u) for any S ∈ FU ; and a definable

map fS ; and for each S, S′, S′′ . . . ∈ FU and each φ(x, y, z, y′, z′, . . . , w), a relation Nφ(z, z′, . . . , w). Given

M |= T , we construct an L+ -structure M+ as follows. Within some elementary extension M∗ of M , let

a |= tp(a(1))|M . Let

NS(M+) = {(b, c) : b ∈ M, M∗ |= S(a, b, c)}

and let fS(y, z) = y . For d ∈ M, c ∈ NS(M+), c′ ∈ NS′(M+), . . ., interpret Nφ so that

Nφ((b, c), (b′, c′), . . . , d) ⇐⇒ φ(a, b, c, b′, c′, . . . , c)

Using the definability of tp(a(1))|M , one sees that T+ = Th(M+) does not depend on any of the choices
made.

We now use Remark 1.2. Each sort of T+ will be seen to be a finite internal cover of T , as soon as we
show:

Claim. T+ is a bounded internal cover of T .

Proof. Given M |= T , we constructed an expansion M+ |= T+ of the same cardinality, such that

Aut(M+) → Aut(M) is surjective. It remains to show that the kernel is bounded. M+ can be constructed as fol-

lows. We have M |= T . Let M3 be an elementary extension of M , with a3 ∈ M3 , a3 |= tp(a(3))|M . Let M∗ be

an elementary extension of M3 , with a1 ∈ M∗ , a1 |= tp(a(1))|M3 . We can construct M+ using M, a1 , so that

M+ ⊆ acl(M, a1); actually M+ ⊆ ∪a2∈M acl(a1, a2) ∩ dcl(acl(a2, a3), acl(a1, a3)). Any automorphism of M+

over M lifts to an automorphism of M+
3 over M3 , which in turn is an elementary automorphism of M+

3 (viewed

as a subset of M∗ ) over M3(a1). Thus the homomorphism Aut(dcl(acl(a1, a3), M3)/M3, a1, a3) → Aut(M+)
is surjective. But the first group is clearly bounded. �

Now by assumption, every finite internal cover of T is almost split. Let M be a model of T contain-

ing a(2), and let a(1) be independent from M , in some elementary extension M∗ of M . Then M+ can be

embedded into dcl(a(1), M). Let c ∈ a(12) ∩ dcl(a(13), a(23)), so that c ∈ M+ . Then c ∈ dcl(a(1), M). But

tp(a(1), c/M) is a(2)-definable, since tp(a(1)/M) is definable, and c ∈ acl(a(1), a(2)), and a(2) is algebraically

closed. Thus c ∈ dcl(a(1), a(2)). This proves the property of Lemma 4.2 (1). �

4.4. Adding an automorphism

We include a general lemma on adding an automorphism to a stable theory, that will aid in describing the
linear imaginaries of pseudo-finite fields. This was the route taken in [14] to the imaginaries of the pseudo-finite

fields themselves; it appears best to repeat it from scratch in the linear context. In [14], as here, only the

fixed field was actually needed. The imaginaries for the full theory were considered (and eliminated) in [7] for

strongly minimal T (in [6] for T = ACFA). An unpublished example of Chatzidakis and Pillay shows that it
is not true in general. We show however that the principle is correct if generalized imaginaries are taken into
account.

Let T be a theory with elimination of quantifiers and elimination of imaginaries. (In our application, T

will be a linear extension of the theory of algebraically closed fields.)
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Let C̃ = {(A, σ) : A ∈ CT , σ ∈ Aut(A)} . We define independence for C̃ by ignoring the automorphism
σ . In the present framework, 2-uniqueness will not hold; this is because of the choice involved in extending an
automorphism from dcl(A1 ∪A2) to acl(A1 ∪ A2).

Consider pairs (A, σ), with A an algebraically closed substructure of a model of T , and σ an auto-

morphism of A . This is the class of models of a theory T ∀
σ , in a language where quantifiers over T -definable

finite sets are still viewed as quantifier-free. Under certain conditions, including the application in §4 to linear

theories over ACF, T ∀
σ has a model completion, a theory T̃σ whose models are the existentially closed models

of T ∀
σ . T̃σ is unique if it exists. At all events, C̃ amalgamates to a universal domain, and can be viewed as a

Robinson theory.

Proposition 4.5 Let T be a theory with a canonical 2-amalgamation, admitting elimination of imaginaries.
Assume TA has n-existence Then conditions (1)–(4) are equivalent.

1. n-uniqueness.

2. n-existence for C̃

3. Let a : P (n)− → CT be independence-preserving. Let u0 = {1, . . . , n − 1} ; let a(< v) = dcl({a(v′) : v′ ⊂
v, v′ �= v}) , a(�≥ v) = dcl({a(v′) : v �⊆ v′}) . then

a(u0) ∩ a(�≥ u0) = a(< u0)

4. With a, u0 as in (3),

Aut(a(u0)/a(�≥ u0)) = Aut(a(u0)/a(< u0))

Proof. (1) =⇒ (3) is proved as in Lemma 4.2.

(3) ⇐⇒ (4): Using imaginary Galois theory, cf. [20]).

(4) =⇒ (1): Let a : P (n)− → CT be an n-amalgamation problem, and let a′, a′′ be two solutions. As

in Lemma 4.2 we may assume that for each u ⊂ n , a′(Idu) is the inclusion of a(u) in acl(a(1), . . . , a(n)). Now

for i ∈ {1, . . . , n} , ui = {1, . . . , n} \ {i} , Idui the inclusion of ui in {1, . . . , n} , a′′(Idui) is an isomorphism

a′′(ui) → a′′({1, . . . , n}), i.e. an automorphism f i of a(ui) = acl(a(j) : j ∈ ui); and since a′′ extends a ,

f i ∈ Aut(a(ui)/a(< ui)). By (4), f i ∈ Aut(a(ui)/a(�≥ ui)). So f i extends to an automorphism F i of

a({1, . . . , n}) fixing a(�≥ ui)). Let F be the product of the F i (choose any ordering.) Then F |a(ui) = f i . So

F shows that a′′, a′ are isomorphic.

(1) =⇒ (2): consider an independent n-amalgamation problem for C̃ ; it consists of an independent n-

amalgamation problem a = (a(u) : u ⊂ {1, . . . , n}) and a compatible system of automorphisms σu ∈ Aut(a(u)).

Using n-existence, extend a to a solution; it is a system (b(u) : u ⊆ {1, . . . , n}), and compatible embeddings

fu : a(u) → b(u). Now let gu = fu ◦ σ(u) : a(u) → b(u). Then (b, g) is another solution. By n-uniqueness, the

two solutions must be isomorphic; so there exists σ : b({1, . . . , n}) → b{1, . . . , n}) such that gu = σfu . This

shows exactly that (b, σ) is a solution to the original automorphic problem, via f .

(2) =⇒ (3): Let σ0 ∈ Aut(a(u0)/a(< u0)), let σu = Ida(u) for every u �≥ u0 . View this data as

an independent amalgamation problem for C̃ . By (3), it has a solution a′ . We use 2-uniqueness to note that
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tp(a′(u0), a′(n)) = tp(a(u0), a(n)). Thus σ0 has an extension to Aut(a({1, . . . , n})) fixing a(�≥ u0). So σ0 fixes

a(u0) ∩ a(�≥ u0). By imaginary Galois theory again, a(u0) ∩ a(�≥ u0) ⊆ a(< u0).

�

Remark 4.6 If n-uniqueness fails, it fails already for the Abelian algebraic closure. For the Abelian algebraic
closure, a formulation in terms of homological algebra becomes possible.

Fix types p1, p2, . . . or more simply one type p . Let a1, . . . , ak be k independent realizations of p . Let Gk be

the Abelianization of Aut(acl(a1, . . . , ak)/dcl(a1, . . . , ak)). There is a natural homomorphism Gk+1 → Gk+1
k ,

restricting to each k -face. In terms of this basic data, one can describe homologically the questions of n-
existence and uniqueness. The point is that in the independence preserving functors a , the a(u) can be taken

to be standard objects acl(ai : i ∈ u), so only the image of morphisms under the functor matters.

The proof of Proposition 4.7 below is follows the same outline as [14],[6], [7]. It may be possible to give

a proof based on minimizing tp(a/A) in the fundamental order, subject to consistency with tp
�Tσ

(a/Ae); this

would be even closer to the original proof.

Proposition 4.7 Let T be a stable theory admitting elimination of quantifiers, and let T̃σ be the theory
described above. Assume T eliminates imaginaries and, and for any A = acl(A) , TA eliminates finite

generalized imaginaries. Then T̃σ admits elimination of imaginaries.

Remark 4.8 The stability condition can be weakened. It suffices to assume U carries a notion of independence
with 2-existence and uniqueness, and the following characterization of independence: if (ai) is an indiscernible

sequence over A , Aw = acl(A ∪ {ai : i ∈ w}) , and Aw ∩ Aw′ = A for w < w′ , then the (ai) are independent
over A .

Proof. By Proposition 4.3, T has 3-uniqueness. It follows that C̃ has 3-existence (Proposition 4.5). Let Ũ

be a saturated model of T̃σ .

Part of the assumption is that finite sets are codes in T ; hence also in T̃σ . Thus it suffices to prove
elimination of imaginaries to the level of finite sets; in other words we have to show: if e is an imaginary element

of Ũ , and A is the set of real elements of acl
�Tσ

(e), then e ∈ dcl
�Tσ

(A).

We have e ∈ dcl
�Tσ

(Aa) for some real tuple a ; e = a/E for some Ũ-definable equivalence relation E .

Let B be the set of real elements of acl
�Tσ

(Aa).

If b ∈ B \ A , then b /∈ acl(Ae), so Aut(U/Aeb) has infinite index in Aut(U/Ae). It follows that

{g : g(b) = b} is a subgroup of Aut(U/Ae) of infinite index. By Neumann’s Lemma [19, Lemma 2.3] , and

compactness, it follows that there exists g ∈ Aut(U/Ae) such that g(b) �= b′ for any b, b′ ∈ B \ A .

Hence there exists a conjugate a′ = g(a) of a over Ae such that any real element of acl(Aa) ∩ acl(Aa′)
lies in A .

Let a1 = a, a2 = a′ , and define an inductively so that tp(an, an+1/A) = tp(a1, a2/A) and an+1 is

independent from a1, . . . , an−1 over A(an). It is then easy to see that acl(A, aw) ∩ acl(A, aw′) = A for any

two sets of indices w, w′ with w < w′ . (Observe first that acl(A, aw)∩ acl(A, aw′) ⊂ acl(A, am)∩ acl(A, am+1),
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where m is the maximal element of w .) This remains true if we extract (using Ramsey and compactness) an
indiscernible sequence ai . Thus by the property in Remark 4.8, aw, aw′ are A- independent as tuples of U ,

the T -restriction of Ũ . Hence by definition they are A-independent in Ũ .

We have found an A-independent pair of E -equivalent realizations of tp(a/A), namely a1, a2 . On the

other hand, one easily obtains E -inequivalent independent elements realizing tp(a/A). Namely let c, c′ be any

two realizations of tp(a/A) with (c, c′) /∈ E . (E.g. c = a, c′ = g(a) where g ∈ AutA(Ũ) and g(e �= e).) Let

b |= tp(a/A) be such that (c, c′), b are A-independent. Then either (c, b) or (c′, b) /∈ E .

But a triangle with two equivalent and one inequivalent side cannot exist. This contradicts 3-existence

for C̃ . �

Proposition 4.9 Let T be a stable theory admitting elimination of imaginaries. Then T has 4-existence iff
(with A = acl(∅)) TA eliminates finite generalized imaginaries.

Proof. Since T is stable, TA has 2-uniqueness and hence 3-existence over any algebraically closed set A′ .
By Proposition 4.3, T has 3-uniqueness; by Lemma 4.1, it has 4-existence.

Conversely, assume T has 4-existence. Let G be a definable concrete groupoid with finite automorphism
groups, defined in TA . Fix a type p of elements of G , and let tp be the set of types of triples (a, b, d) with

a, b |= p , a, b independent over A , and c ∈ MorG(a, b). Consider (q12, q23, q13) ∈ tp such that there exist

independent a1, a2, a3 |= p and cij with (ai, aj, cij) |= qij for i < j , and such that c12 = c−1
23 c13 . We can take

q23 = q13 . Such triples can be 4-amalgamated. It follows easily that for any independent a1, a2, a3 and cij with

(ai, aj, cij) |= qij for i < j , one has c12 = c−1
23 c13 . (Otherwise, 3 triples with this property and 1 triple without

it could not be 4-amalgamated.) Pick (q12, q23, q13) ∈ tp with q23 = q13 . It follows that for any independent

a1, a2 |= p there exists a unique c ∈ MorG(a1, a2) with q12(a1, a2, c). Moreover, we have a sub-groupoid G′ of

G with the same objects and such that MorG′(a1, a2) is the unique realization of q12 . For any functor F on G

into definable sets, we now obtain an equivalence relation on the disjoint union of the objects of G , identifying
e ∈ F (a), e′ ∈ F (a′) if h(e) = e′ for the unique h ∈ MorG′(a, a′). Using elimination of imaginaries, it is now
easy to construct a finite group action equivalent to G . �

Corollary 4.10 For stable T , the following are equivalent: 4-existence, 3-uniqueness, elimination of finite

generalized imaginaries, 3-existence for C̃ .

Proof. By Proposition 4.9, Proposition 4.5, Lemma 4.1, Proposition 4.3. �

Discussion. In many proofs regarding stable theories, there is no harm in passing to a theory T ′ with
more sorts, as long as T remains stably embedded and with the same induced structure; especially if M ′ =
acl(M ′|L(T )) for M ′ |= T ′ . In this situation, by interpreting algebraic closure more widely in such extensions

T ′ , the 3-uniqueness or 4-existence property for amalgamation holds.

A generalization of the above proof for n > 3 using an appropriate notion of higher groupoids, would be

very interesting. 2

2I have recently become aware of Jacob Lurie’s work [18], which may hold the key to this. Note the apparent resonance between
Lurie’s main theorem 6.1.0.6 there, and our Theorem 3.2.
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We do not at present have a concrete description of the requisite sorts (analogous to equivalence relations

or groupoids), but can at least prove their existence.

Proposition 4.11 Let T be a theory with a canonical 2-amalgamation. There exists an expansion T ∗ of T to
a language with additional sorts, such that:

(1) T is stably embedded in T ∗ , and the induced structure from T ∗ on the T -sorts is the structure of
T . Each sort of T ∗ admits a 0-definable map to a sort of T , with finite fibers.

(2) T ∗ has existence and uniqueness for n-amalgamation.

We sketch the proof.

Condition (1) is equivalent to:

(1’) If N∗ |= T ∗ and N is the restriction to the sorts of T , then Aut(N∗) → Aut(N) is surjective, with
profinite kernel.

For T with canonical 2-amalgamation, and p a type of T over acl(∅), consider an expansion Tp of T as

in Proposition 4.3: the points of a model Mp of Tp correspond to acl(a, M) where M is the restriction to T

of Mp , a |= p , and a, M are embedded in some bigger model of T via canonical 2-amalgamation.

The proof of Proposition 4.3 shows that if each Tp has unique (n − 1, n + 1)-amalgamation then T has

unique (n, n + 1)-amalgamation.

To prove the proposition, construct first an expansion T ∗ of T with property (1), such that (U) any

expansion of T together with finitely many sorts of T ∗ with property (1) is equivalent to a sort of T ∗ .

Note that T ∗
p enjoys the same property; since a relatively finite cover of T ∗

p , fibered over a sort Ya , arises

from a relatively finite cover of T ∗ , fibered over Y .

Suppose that unique (n, n+ 1)-amalgamation fails for a theory T with the universal property (U). Take

n minimal. Then uniqueness at (n− 1, n + 1) fails for Tp for appropriate p . By Lemma 4.1, T ′ does not have

(n − 1, n)-uniqueness. But Tp also has (U). This contradicts the minimality of n .

Problem 4.12 For T ∗ , prove an analog of §4.4 for n commuting automorphisms.

5. Linear imaginaries

We first discuss linear imaginaries in general; then restrict attention to the triangular imaginaries that
we will need.

Definition 5.1 Let t be a theory of fields (possibly with additional structure.)

A t-linear structure A is a structure with a sort k for a model of t , and additional sorts Vi (i ∈ I = I(A))

denoting finite-dimensional vector spaces. Each Vi has (at least) a k-vector space structure, and dimi Vi < ∞ .

We assume:

1. k is stably embedded;

2. the induced structure on k is precisely given by t ;

3. the Vi are closed under tensor products and duals.
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Explanation The language includes the language of t (applying to k), and for each i , a symbol for
addition + : Vi × Vi → Vi , and scalar multiplication · : k × Vi → Vi .

Given i, j , for some k , the language includes bilinear map b : Vi × Vj → Vk , inducing an isomorphism
Vi⊗Vj → Vk .

For each i , there is j and a function symbol for a pairing Vi×Vj → k , inducing an isomorphism
∨
Vi → Vj .

Additional structure is permitted, subject to the embeddedness conditions (1,2).

Note that the tensor product V ⊗W and dual
∨
V are at all events interpretable in (k, V, W ); so the

conditions (3) can be viewed as (partial) elimination of imaginaries conditions.

For any finite tuple s = (s1, . . . , sk) of indices, let Vs = Vs1 ⊕· · ·⊕Vsk , and let Ps be the projectivization

Vs \ (0)/k∗ . These can also clearly be viewed as imaginary sorts of A .

Proposition 5.2 Let k be an algebraically closed field. Then any k-linear theory eliminates imaginaries to
the level of the projective spaces Ps .

Proof. This goes back to the 19th century (cf. references to Darboux in [24]) and occurs also in [13],
Proposition 2.6.3, but not in easily quotable form. If W is a direct sum of some of the Vi , note first that

the elements of the exterior powers ΛiW can be coded. Indeed an element of ΛiW can be viewed as a certain

multilinear map on
∨
W , thus as an element of W⊗i . This is again a direct sum of some of the Vi .

A d -dimensional subspace of such a W corresponds to a certain 1-dimensional subspace of ΛkW , and

hence of W⊗d . Hence it can always be coded as an element of the projectivization Ps .

Now any Zariski closed subset Z of W is determined, for some l , by the space of polynomials of degree

≤ l vanishing on Z . This is a subspace of
⊕

i≤l(
∨
W )⊗i . Hence it is coded.

It follows by induction on dimension that every definable subset of W is coded (code the Zariski closure,

and then the complement.) �

A couple of remarks via the following lemmas.

Lemma 5.3 Let A = (k, Vi)i∈I(A) be a t linear structure, and let k∗ be an elementary extension of k. Let

V ∗
i = k∗⊗kVi , and let A∗ = (k∗, V ∗

i )i∈I . Then A∗ expands uniquely to an elementary extension of A . (And

every elementary extension of A is obtained in this way.)

Proof. Clearly, if A ≺ A∗ , then k ≺ k∗ and (by the finite dimension) V ∗
i = k∗⊗kVi .

Also, any Vi has a basis bi in A . There is a bi -definable bijection f : Vi → kni . If R is a relation on Vi ,

or among several Vi , then fR is a relation S on k , and in any elementary extension one must have: R = f−1S .
Thus uniqueness of the expansion is clear, and it remains to show that this prescription always does yield an el-
ementary extension. We may fix constants for each bi . But then Vi ⊆ dcl(k), and the assertion is immediate. �

Lemma 5.4 Let T be a theory, internal to a predicate k, and with elimination of imaginaries. Let T′ be an
expansion of T , such that every subset of km , T′ -definable with parameters, is k-definable with parameters.
Then T′ admits elimination of imaginaries.
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Proof. Claim If X is a definable subset of T′ (with parameters), then X is also T -definable (with

parameters). �

Proof. By internality, there exists a T definable (with parameters) map f on kn , whose image contains X .

f−1(X) is T -definable (with parameters) by the assumption regarding new structure on k . Thus X = ff−1X

is T -definable (with parameters.)

Hence any T′ -definable set can be written X = Yc where c is a canonical parameter for Yc in T . It
follows that Yc is T′ -definable and c is a canonical parameter for Yc in T′ . �

Linear structures with flags.

We now consider flagged spaces. For us this will mean: a finite dimensional vector space V together with
a filtration V1 ⊂ . . . ⊂ Vn = V by subspaces, with dim Vi = i .

Given V , we form the dual
∨
V with the natural filtration

∨
V i . If V , W are filtered spaces, take the tensor

product with the filtration V1⊗W1 ⊂ V1⊗W2 ⊂ · · · ⊂ V1⊗W ⊂ V2⊗W1 +V1⊗W ⊂ · · · ⊂ V2⊗W ⊂ · · · ⊂ V ⊗W .

Thus a family of flagged spaces can be closed under tensors and duals, without losing the flag property.

Definition 5.5 A t-linear structure A has flags if:

(*) For any i with dim(Vi) > 1 , for some j, k with dim(Vj) = dim(Vi) − 1 , dimVk = 1 , there exists a

0-definable exact sequence 0 → Vk → Vi → Vj → 0 .

Lemma 5.6 (Elimination of projective imaginaries.) Let A be a flagged t-linear structure. Then elements of
projectivizations of the vector spaces of A can be coded in A . In particular if k is an algebraically closed field,
A admits elimination of imaginaries.

Proof. Lemma 5.2 applies here: (k, V1 ⊂ . . . ⊂ Vn) can be viewed as an expansion of (k, V1 ⊕ . . .⊕ Vn). By
Proposition 5.2 and Lemma 5.4, when k is algebraically closed, all imaginaries of A are coded by elements of
projective spaces.

So it suffices to show in general how to code the projectivizations of the vector spaces W of A . Say
dim(W ) = d . W comes with a 0-definable filtration, including W0 ⊂ W1 ⊂ · · ·Wdim W = W by subspaces

Wi with dim(Wi) = i . Thus it suffices to code a 1-dimensional subspace U of a filtered vector space W . Say

U ⊂ Wk+1, U �⊆ Wk . Let f : Wk+1 → Y = Wk+1/Wk be the natural map. Given U , one obtains f |U and

hence (f |U)−1 : Y → W . But this is an element rather than a subspace of Hom(Y, W ) =
∨
Y ⊗W , and hence is

coded. �

Linear structures with roots.
We say that a linear structure A has roots if for any one-dimensional V = Vi , and any m ≥ 2, there

exists W = Vj and 0-definable k-linear embeddings f : W⊗m → Vl and g : V → Vl , with g(V ) ⊂ f(W ).

A good linear structure is one with flags and roots.

Proposition 5.7 Let A be a linear structure with flags and roots, for an algebraically closed field k of charac-
teristic 0 . Then every finite internal cover of A almost splits.
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Proof. We may expand the theory by algebraic points; in particular we may assume that the definable
points of k form an algebraically closed field. For k itself, the lemma follows from Remark 3.9. For A , we
use Proposition 3.10. Let D a 0-definable set of A . Aut(D/k) definably isomorphic to the k-linear group H .

Since A has flags, for each sort W of A , Aut(W/k) preserves a flag, so it is a solvable group, and hence so is

H . Thus H = UT where U is the unipotent part of H . Let f : H̃ → H be a central extension of H with

prime cyclic kernel Z = Z/lZ . We have to show that H̃ is represented as Aut(D̃/k) for some D̃ .

We may take H and H̃ connected. Then H̃ is solvable. So H̃ = Ũ T̃ with Ũ unipotent. f |Ũ has finite

kernel, hence trivial kernel (unipotent groups in characteristic zero have no nontrivial torsion elements). We

obtain an induced map T̃ → H̃/Ũ → H/U = T , and see that H̃ → H is induced from a central extension

0 → Z → T̃ → T → 0. Now T ∼= (Gm)n , and every central extension of T with kernel Z is induced from the

extension Gm → Gm , x �→ xl , via some rational character χ : T → Gm .

Let D′ be the set of bases (of the k-space spanned by D) contained in D ; then Aut(D′/k) = H also; let

D′′ = D′/Ker(χ); by Lemma 5.2 and Lemma 5.6, A admits elimination of imaginaries, so D′′ can be viewed

as a 0-definable set in A . Now Aut(D′′/k) = Gm , and we have to represent the finite central cover x �→ xl .

D′′ lies in some vector space W in A . Since Aut(W/k) = Gm , W = ⊕Wi , and Gm acts on Wi via a

character χi . Each 1-dimensional subspace S of Wi is Aut(W/k)-invariant.

At the same time, W contains a 0-definable one-dimensional subspace W1 ; and W/W1 is 0-definable.

Either S = W1 , or S embeds into W/W1 . Continuing this way we find a 0-definable 1-dimensional space

V such that Aut(V/k) = Aut(S/k). Doing this for each S in some some decomposition of W into one-

dimensional Aut(W/k)-invariant subspaces as above, we find 0-definable one-dimensional V1, . . . , Vj with

Aut(W/k) = Aut(V1, . . . , Vj/k).

Now by taking roots of the Vi we can find Ṽi and maps (Ṽi)⊗l → Vi such that Aut(Ṽi/k) → Aut(Vi/k)

is isomorphic to x �→ xl, Gm → Gm . Pulling back to Aut(Ṽ1, . . . , Ṽj/k) we succeed in splitting the cover. �

Note that a 1-dimensional vector-space V amounts to the same thing as a set V ∗ = V \ (0) and a regular

action of k∗ on V ∗ . (Given such an action, recover the vector space structure on V = V ∗ ∪ {0} : 0 · v = 0,

αu + βu = (α + β)u .) So one has the usual H1 formalism; the tensor product corresponds to the sum in H1 .

An m ’th root W of V , i.e. a one-dimensional vector space with an isomorphism f : W⊗m → V ,
yields a (k∗)m T = T (W ) ⊂ V ∗ , i.e. a class of the equivalence relation of (k∗)m -conjugacy. Namely, let

t(w) = f(w⊗ · · ·⊗w), and T = t(W ).

Note that (because of t and the k- linear structure on W ), Aut(W/V, k) ≤ μm(k), the group of m ’th

roots of unity in k . Thus W can be regarded as a finite internal cover of (V, k), and in particular as a
generalized imaginary sort.

Remark 5.8 Assume t admits linear elimination of imaginaries for structures with flags and roots, and let A

be a t-linear structure with flags. Assume that for any 1-dimensional V of A , and any m, V has a distinguished
(k∗)m -class (over ∅ .) Then A admits elimination of imaginaries.

Proof. We can arrive at a structure with EI by successively adding roots to one -dimensional vector spaces

V of A . This involves adding an m ’th root W , all tensor powers W⊗n for n ∈ Z , and all tensor products
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W⊗n⊗U for U a vector space of A . If μm(k) = 1, then W can be identified with a (k∗)m -class in V , and

W⊗n⊗U embeds into V ⊗n⊗U via this class. Otherwise, μm(k) acts on the new structure, fixing k and A ,

and one sees that if an element w⊗u ∈ W⊗n⊗U is fixed by μm(k), then n = 0, or w = 0. Thus any imaginary
of A coded in the new structure already lies in A . Applying this iteratively, we see that A has EI. �

5.9. Pseudo-finite fields

A pseudo-finite field is a perfect PAC field (i.e. every irreducible variety over F has an F -point), with

Galois group Ẑ . Ax showed that F is pseudo-finite iff every sentence true in F is true in infinitely many finite

fields. ([3], [12], [14].) We take F to come together with an isomorphism Ẑ → Gal(F ) . In terms of language,

this means that we fix, for each d ∈ N , an imaginary element coding a generator of Gal(Fd/F ) (where Fd is

the extension of F of order d .) (This is a little more than the pure field structure; but all finite fields do have a

canonical generator of Galois, so perhaps it’s only fair that the pseudo-finite ones should.) When char(k) = 0,

this is equivalent to fixing a surjective group homomorphism k[μd]∗ → μd ; cf. [6]. As noted there, in this

language, F admits elimination of imaginaries. (I take this opportunity to note an mistake: it is also asserted
there that F admits elimination of imaginaries in the field language, up to sorts coding elements of the Galois
group; but this slightly stronger statement is incorrect.)

Theorem 5.10 Let F be a pseudo-finite field of characteristic 0 (with fixed generator of Galois). Then a good
linear structure over F admits elimination of imaginaries.

Proof. Let t = Th(F ), and let A be a good t -linear structure. If A′ is a reduct of A , with the same sorts,
with the full structure on the field sort, and remembering the F -linear structure of each vector space in A and
all 0-definable linear maps among them, then A′ is also good. Moreover A admits EI if A′ does (Lemma 5.4.)
Thus we may assume the structure on A consists just of the structure on k , the k-linear structures and the
0-definable k-linear maps among them.

Let Aa be the linear structure over the algebraic closure F a , and with vector spaces V a = F a⊗F V for
each vector space V of A . Any 0-definable linear map in A extends uniquely to a 0-definable linear map in
Aa , and we take this to define a structure on Aa . Since A is good, so is Aa . Let T1 = Th(F a, V a)V ∈A .

1. T1 admits elimination of imaginaries (Lemma 5.2) and of generalized finite imaginaries, and is stable

(every sort has finite Morley rank.)

2. Let T2 be the model companion of the theory of pairs (M, σ) where M |= T1 and σ ∈ Aut(M). Then

T2 admits elimination of imaginaries. (Lemma 4.7.)

3. Let (K, V, σ) |= T2 . Let (F, V ) be the fixed field and fixed vector spaces of σ . Then dimF V = d . F is
pseudo-finite, and K can be chosen so that the fixed field will have the same theory as the original F .
(cf. [6].)

4. Any imaginary of (F, V ) is in particular an imaginary of (K, V, σ), and thus can be coded by a tuple of

elements of (K, V ). Each of these elements must be fixed by σ .

5. (F, VF ) coincides with the σ -fixed part of (K, V ). This follows from the fact that V has a σ -fixed basis.

�
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