

Turk J Math 36 (2012) , 291 – 295. © TÜBİTAK doi:10.3906/mat-1011-5

Invariant subspaces of weakly compact-friendly operators

Mert Çağlar and Tunç Mısırlıoğlu

Abstract

We prove that if a non-zero weakly compact-friendly operator B on a Banach lattice with topologically full center is locally quasi-nilpotent, then the super right-commutant $[B\rangle$ of B has a non-trivial closed invariant ideal. An example of a weakly compact-friendly operator which is not compact-friendly is also provided.

Key Words: Banach lattice, topologically full center, invariant subspace, weakly compact-friendly

1. Introduction

Weakly compact-friendly operators have been defined in [3] as a natural extension of compact-friendly operators. Therein, it was shown [3, Theorem 2.3], among others, that a locally quasi-nilpotent weakly compact-friendly operator on a Banach lattice has a non-trivial closed invariant ideal. The purpose of this note is to extend some results in [1] and [4] in the setting of weakly compact-friendly operators on Banach lattices with topologically full center. In doing so, we also provide an example of a weakly compact-friendly operator which is not compact-friendly.

Throughout the paper E denotes an infinite-dimensional Banach lattice. As usual, $\mathcal{L}(E)$ and $\mathcal{L}(E)^+$ stand, respectively, for the algebra of all bounded linear operators and the collection of all positive operators on E. For a positive operator B on a Banach lattice E, the super right-commutant $[B\rangle$ of B is defined by

$$|B\rangle := \{A \in \mathcal{L}(E)^+ \mid AB - BA \ge 0\}.$$

A subspace V of a Banach space X is called *non-trivial* if $\{0\} \neq V \neq X$. If V is a subspace of a Banach lattice and if $v \in V$ and $|u| \leq |v|$ imply $u \in V$, then V is called an *ideal*. A subspace V of a Banach space X for which $TV \subseteq V$ for a bounded operator T on X is called an *invariant subspace* for T or a T-invariant subspace.

An operator T on E is said to be *dominated* by a positive operator B on E, denoted by $T \prec B$, provided $|Tx| \leq B|x|$ for each $x \in E$. An operator on E which is dominated by a multiple of the identity operator is called a *central operator*. The collection of all central operators on E is denoted by Z(E) and is referred to as the *center* of the Banach lattice E. A positive operator $B: E \to F$ between two Banach lattices is said to be a *lattice homomorphism* if $B(x \lor y) = Bx \lor By$ for all $x, y \in E$. Every positive central operator is a lattice

²⁰⁰⁰ AMS Mathematics Subject Classification: 47A15, 47B60, 47B65, 46B42.

homomorphism. A positive operator B on E is said to be *compact-friendly* [1] if there exist three non-zero operators R, K, and C on E with R, K positive and K compact such that R and B commute, and C is dominated by both R and K. It is worth mentioning that the notion of compact-friendliness is of substance only on infinite-dimensional Banach lattices, since every positive operator on a finite-dimensional Banach lattice is compact. Also, if B is compact, letting R = K = C = B in the definition, it is seen that compact operators are compact-friendly, but the converse is not true, as the identity operator on an infinite-dimensional space shows. Furthermore, it is straightforward to observe that any power (even every polynomial with non-negative coefficients) of a compact-friendly operator is also compact-friendly. A fairly complete treatment of compact-friendly operators is given in [1]. Lastly, an operator from a Banach lattice to a Banach space is AM-compact if it takes order intervals into relatively compact sets. Clearly, each compact operator is necessarily AM-compact.

For all unexplained notation and terminology, we refer to [1, 2].

Definition 1.1 A positive operator $B \in \mathcal{L}(E)$ is called weakly compact-friendly if there exist three non-zero operators R, K, and C on E with R, K positive and K compact such that $R \in [B\rangle$, and C is dominated by both R and K.

Let us start by recalling some more terminology. A continuous function $\varphi : \Omega \to \mathbb{R}$, where Ω is a topological space, has a *flat* if there exists a non-empty open set Ω_0 in Ω such that φ is constant on Ω_0 . If Ω is a compact Hausdorff space and $\varphi : \Omega \to \mathbb{R}$ is a continuous function, then $M_{\varphi} : C(\Omega) \to C(\Omega)$ denotes the *multiplication operator* generated by φ , i.e., for each function $f \in C(\Omega)$ and each $\omega \in \Omega$ we have $(M_{\varphi}f)(\omega) := \varphi(\omega)f(\omega)$, or briefly $M_{\varphi}f = \varphi f$. The function φ is called the *multiplier*. It is straightforward to check that a multiplication operator M_{φ} is positive if and only if the multiplier φ is positive.

The following result, which is Theorem 10.65 in [1], characterizes compact-friendly multiplication operators on $C(\Omega)$ -spaces.

Theorem 1.2 A positive multiplication operator M_{φ} on a $C(\Omega)$ -space, where Ω is a compact Hausdorff space, is compact-friendly if and only if the multiplier φ has a flat.

Unlike Theorem 1.2, the multiplier of a positive multiplication operator having a flat is not necessary for the multiplication operator to be weakly compact-friendly. This fact, which is the subject matter of the following example, also shows that there are weakly compact-friendly operators that are not compact-friendly.

Example 1.3 Consider the space E of all continuous functions $f : [0, 1/2] \to \mathbb{R}$ equipped with the usual uniform norm. The multiplication operator $M_{\varphi} : E \to E$ with the multiplier φ defined by $\varphi(\omega) := 1 - 2\omega$ for all $\omega \in [0, 1/2]$ is not compact-friendly by Theorem 1.2, since φ has no flats. To see that M_{φ} is weakly compact-friendly, choose R = C = K as the required three operators for the weak compact-friendliness of M_{φ} , where K is the rank-one (and hence, compact) operator on E defined by $(Kf)(\omega) := (1-2\omega)f(0)$ for all $f \in E$ and $\omega \in [0, 1/2]$.

2. Invariant subspaces of weakly compact-friendly operators

We start this section, in which the main results of the present note are provided, with the notion of topological fullness of the center of a Banach lattice.

Definition 2.1 The center Z(E) of a Banach lattice E is called topologically full if whenever $x, y \in E$ with $0 \le x \le y$ one can find a sequence $(T_n)_{n \in \mathbb{N}}$ in Z(E) such that $||T_n y - x|| \to 0$.

Banach lattices with topologically full center were initiated in [5]. Spaces of this kind are quite large and contain, for instance, Banach lattices with quasi-interior points and Dedekind σ -complete Banach lattices (see [5, 6] for details).

Before proceeding, let us first observe that [6] if $0 \le x \le y$ and $T_n y \to x$, then one has $(T_n^+ \land I)y = (T_n y)^+ \land y \to x \land y = x$, so we may assume that $0 \le T_n \le I$ for all $n \in \mathbb{N}$. Set $Z(E)_{1+} := \{T \in Z(E) \mid 0 \le T \le I\}$.

It is shown in [4, Theorem 3.10] that for a locally quasi-nilpotent positive operator B on a Banach lattice E with a quasi-interior point for which $|B\rangle$ contains an operator which dominates a non-zero AM-compact operator, $|B\rangle$ has an invariant closed ideal. The following result extends this to positive operators on a Banach lattice with topologically full center, following similar lines of thought.

Theorem 2.2 Suppose that B is a positive operator on a Banach lattice E with topologically full center such that

- (i) B is locally quasi-nilpotent at some $x_0 > 0$, and
- (ii) there is $S \in [B)$ such that S dominates a non-zero AM-compact operator K.

Then $[B\rangle$ has an invariant closed ideal.

Proof. Since the null ideal N_B of B is $[B\rangle$ -invariant, we may assume that $N_B = \{0\}$. Let $z \in E$ such that $Kz \neq 0$. This means that at least one of the vectors $(Kz)^+$ and $(Kz)^-$ is non-zero. Suppose $(Kz)^+ \neq 0$. Then, by topological fullness of Z(E), there exists an operator $M \in Z(E)_{1+}$ such that $M|Kz| \neq 0$. Indeed, otherwise for all $M \in Z(E)_{1+}$ we would have M|Kz| = 0. But then, for the sequence $(T_n)_{n\in\mathbb{N}}$ in $Z(E)_{1+}$ with $T_n(|Kz|) \to (Kz)^+$ in norm, we would have $(Kz)^+ = 0$, which is a contradiction. Suppose now that there exists $M \in Z(E)_{1+}$ such that $M|Kz| \neq 0$. From $M((Kz)^+) + M((Kz)^-) \neq 0$ it follows that $M((Kz)^+) \neq 0$ or $M((Kz)^-) \neq 0$. Suppose that $M((Kz)^+) \neq 0$. But since M is a lattice homomorphism, we have $(MKz)^+ \neq 0$, and so it follows from $M((Kz)^+) \wedge M((Kz)^-) = (MKz)^+ \wedge (MKz)^- = 0$ that $(MKz)^- = 0$ and MKz > 0. Put $K_1 := MK$. It follows from $N_B = \{0\}$ that $BK_1z \neq 0$, hence $BK_1 \neq 0$. It is also clear that BK_1 is AM-compact and is dominated by BS.

Let \mathcal{J} be the semigroup ideal in $[B\rangle$ generated by BS, that is,

$$\mathcal{J} = \{A_1 B S A_2 \mid A_1, A_2 \in [B\rangle\}.$$

It can be verified directly that \mathcal{J} is finitely quasi-nilpotent at x_0 . Since $BS \in \mathcal{J}$ and BS dominates a non-zero AM-compact operator, \mathcal{J} has an invariant closed ideal by [1, Theorem 10.44]. Now [1, Theorem 10.49] yields that $[B\rangle$ has an invariant closed ideal.

The next result is a generalization of [1, Theorem 10.57] which states that if a non-zero compact-friendly operator B on a Dedekind-complete Banach lattice E is locally quasi-nilpotent, then there exists a non-trivial closed ideal that is invariant under $|B\rangle$. We show that Dedekind completeness and compact-friendliness are not

needed and that E having topologically full center and B being weakly compact-friendly are sufficient. The proof is a modification of the proof of Theorem 10.57 in [1] and uses Theorem 2.2.

Theorem 2.3 Let E be a Banach lattice with topologically full center. If B is a locally quasi-nilpotent weakly compact-friendly operator on E, then $[B\rangle$ has a non-trivial closed invariant ideal.

Proof. For each x > 0, denote by J_x the ideal generated by the orbit $[B\rangle x$; that is

$$J_x := \{ y \in E \mid |y| \le Ax \text{ for some } A \in [B\rangle \}.$$

Since the identity operator belongs to $[B\rangle$, we have that $x \in J_x$, so this is a non-zero ideal. Note that J_x is $[B\rangle$ -invariant: because, if $y \in J_x$, then $|y| \leq Ax$ for some $A \in [B\rangle$ and hence for any $A_1 \in [B\rangle$ we have

$$|A_1y| \le A_1|y| \le A_1Ax,$$

yielding that $A_1 y \in J_x$ since the operator $A_1 A$ belongs to $[B\rangle$ which is a multiplicative semigroup. Therefore, in case where there exists a positive $x \in E$ such that the ideal J_x is not norm-dense in E, the proof is complete. So, suppose that $\overline{J_x} = E$ for each x > 0.

Fix three non-zero operators with R, K positive, K compact, and satisfying

$$BR \le RB, |Cx| \le C|x|, \text{ and } |Cx| \le K|x| \text{ for each } x \in E$$

Since $C \neq 0$ there exists some $x_1 > 0$ such that $Cx_1 \neq 0$. This means that at least one of the vectors $(Cx_1)^+$ and $(Cx_1)^-$ is non-zero. Suppose $(Cx_1)^+ \neq 0$. Then, by topological fullness of Z(E), there exists an operator $M_1 \in Z(E)_{1+}$ such that $M_1|Cx_1| \neq 0$. Indeed, otherwise for all $M_1 \in Z(E)_{1+}$ we would have $M_1|Cx_1| = 0$. But then, for the sequence $(T_n)_{n \in \mathbb{N}}$ in $Z(E)_{1+}$ with $T_n(|Cx_1|) \to (Cx_1)^+$ in norm, we would have $(Cx_1)^+ = 0$, which is a contradiction. Suppose now that there exists $M_1 \in Z(E)_{1+}$ such that $M_1|Cx_1| \neq 0$. From $M_1((Cx_1)^+) + M_1((Cx_1)^-) \neq 0$ it follows that $M_1((Cx_1)^+) \neq 0$ or $M_1((Cx_1)^-) \neq 0$. Suppose that $M_1((Cx_1)^+) \neq 0$. But since M_1 is a lattice homomorphism, we have $(M_1Cx_1)^+ \neq 0$, and so it follows from $M_1((Cx_1)^+) \wedge M_1((Cx_1)^-) = (M_1Cx_1)^+ \wedge (M_1Cx_1)^- = 0$ that $(M_1Cx_1)^- = 0$ and $M_1Cx_1 > 0$. Let $x_2 := M_1Cx_1 > 0$ and $\pi_1 := M_1C$. Note that π_1 is dominated by R and K.

Now we have $\overline{J_{x_2}} = E$, and since $C \neq 0$ there exists some $y \in J_{x_2}$ and an operator $A_1 \in [B\rangle$ such that $0 < y \leq A_1x_2$ and $Cy \neq 0$. We claim that there exists $M \in Z(E)_{1+}$ such that $CMA_1x_2 \neq 0$. Otherwise, if $CMA_1x_2 = 0$ for all $M \in Z(E)_{1+}$, we would have $CT_nA_1x_2$ for each $n \in \mathbb{N}$ for the sequence $(T_n)_{n \in \mathbb{N}}$ for which $T_nA_1x_2 \to y$. This would yield $CT_nA_1x_2 \to Cy$ and Cy = 0, which is a contradiction. Since $CMA_1x_2 \neq 0$, one has $|CMA_1x_2| \neq 0$. Suppose $(CMA_1x_2)^+ \neq 0$. By topological fullness of Z(E), there exists a sequence $(T_n)_{n \in \mathbb{N}}$ in $Z(E)_{1+}$ such that $T_n(|CMA_1x_2|) \to (CMA_1x_2)^+$. Since $(CMA_1x_2)^+ \neq 0$, not all $T_n(|CMA_1x_2|)$ are zero, and we can choose $M_2 \in Z(E)_{1+}$ with $M_2|CMA_1x_2| \neq 0$. Notice that $M_2((CMA_1x_2)^+) \wedge M_2((CMA_1x_2)^-) = 0$. Since $M_2((CMA_1x_2)^+) \neq 0$, we have $M_2((CMA_1x_2)^-) = (M_2CMA_1x_2)^- = 0$, which yields $M_2CMA_1x_2 > 0$. Put $x_3 := M_2CMA_1x_2 > 0$ and $\pi_2 := M_2CMA_1$ and observe that π_2 is dominated by RA_1 and KA_1 . Repeating once more the preceding argument with x_2 replaced by x_3 , we then obtain an operator $A_2 \in [B\rangle$ and an operator $\pi_3 : E \to E$ such that $\pi_3x_3 > 0$ and π_3 is dominated by RA_2 and KA_2 . From $\pi_3\pi_2\pi_1x_1 = \pi_3x_3 > 0$, we see that $\pi_3\pi_2\pi_1 \neq 0$.

Set $S := RA_2RA_1R \ge 0$. Since $|\pi_3\pi_2\pi_1x| \le S|x|$ for each $x \in E$, it follows that $S \ne 0$. Moreover, since each π_i (i = 1, 2, 3) is dominated by a compact operator, we have by [2, Theorem 5.14] that $\pi_3\pi_2\pi_1$ is compact. Moreover, because R, A_1 , and A_2 belong to $|B\rangle$, so does S. Thus, $|B\rangle$ contains a non-zero positive operator which dominates a compact operator. Now, invoke Theorem 2.2 to complete the proof. \Box

References

- Abramovich, Y.A., Aliprantis, C.D.: An Invitation to Operator Theory. Graduate Studies in Mathematics. Vol. 50. Providence-RI. American Mathematical Society 2002.
- [2] Aliprantis, C.D., Burkinshaw, O.: Positive Operators. The Netherlands. Springer 2006.
- [3] Çağlar, M., Mısırlıoğlu, T.: Weakly compact-friendly operators. Vladikavkaz Mat. Zh. 11(2), 27–30 (2009).
- [4] Flores, J., Tradacete, P., Troitsky, V.G.: Invariant subspaces of positive strictly singular operators on Banach lattices. J. Math. Anal. Appl. 343(2), 743–751 (2008).
- [5] Wickstead, A.W.: Extremal structure of cones of operators. Quart. J. Math. Oxford. 32(2), 239-253 (1981).
- [6] Wickstead, A.W.: Banach lattices with topologically full centre. Vladikavkaz Mat. Zh. 11(2), 50-60 (2009).

Mert ÇAĞLAR, Tunç MISIRLIOĞLU Department of Mathematics and Computer Science, İstanbul Kültür University, Bakırköy 34156, İstanbul-TURKEY e-mail: t.misirlioglu@iku.edu.tr Received: 03.11.2010