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Invariant subspaces of weakly compact-friendly operators
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Abstract

We prove that if a non-zero weakly compact-friendly operator B on a Banach lattice with topologically

full center is locally quasi-nilpotent, then the super right-commutant [B〉 of B has a non-trivial closed

invariant ideal. An example of a weakly compact-friendly operator which is not compact-friendly is also

provided.
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1. Introduction

Weakly compact-friendly operators have been defined in [3] as a natural extension of compact-friendly

operators. Therein, it was shown [3, Theorem 2.3], among others, that a locally quasi-nilpotent weakly compact-
friendly operator on a Banach lattice has a non-trivial closed invariant ideal. The purpose of this note is to
extend some results in [1] and [4] in the setting of weakly compact-friendly operators on Banach lattices with
topologically full center. In doing so, we also provide an example of a weakly compact-friendly operator which
is not compact-friendly.

Throughout the paper E denotes an infinite-dimensional Banach lattice. As usual, L(E) and L(E)+

stand, respectively, for the algebra of all bounded linear operators and the collection of all positive operators
on E . For a positive operator B on a Banach lattice E , the super right-commutant [B〉 of B is defined by

[B〉 := {A ∈ L(E)+ | AB − BA ≥ 0}.

A subspace V of a Banach space X is called non-trivial if {0} �= V �= X . If V is a subspace of a Banach

lattice and if v ∈ V and |u| ≤ |v| imply u ∈ V , then V is called an ideal. A subspace V of a Banach space
X for which TV ⊆ V for a bounded operator T on X is called an invariant subspace for T or a T -invariant
subspace.

An operator T on E is said to be dominated by a positive operator B on E , denoted by T ≺ B , provided
|Tx| ≤ B|x| for each x ∈ E . An operator on E which is dominated by a multiple of the identity operator is

called a central operator. The collection of all central operators on E is denoted by Z(E) and is referred to as
the center of the Banach lattice E . A positive operator B : E → F between two Banach lattices is said to be
a lattice homomorphism if B(x ∨ y) = Bx ∨ By for all x, y ∈ E . Every positive central operator is a lattice
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homomorphism. A positive operator B on E is said to be compact-friendly [1] if there exist three non-zero
operators R, K , and C on E with R, K positive and K compact such that R and B commute, and C is
dominated by both R and K . It is worth mentioning that the notion of compact-friendliness is of substance
only on infinite-dimensional Banach lattices, since every positive operator on a finite-dimensional Banach lattice
is compact. Also, if B is compact, letting R = K = C = B in the definition, it is seen that compact operators
are compact-friendly, but the converse is not true, as the identity operator on an infinite-dimensional space
shows. Furthermore, it is straightforward to observe that any power (even every polynomial with non-negative

coefficients) of a compact-friendly operator is also compact-friendly. A fairly complete treatment of compact-

friendly operators is given in [1]. Lastly, an operator from a Banach lattice to a Banach space is AM -compact if
it takes order intervals into relatively compact sets. Clearly, each compact operator is necessarily AM -compact.

For all unexplained notation and terminology, we refer to [1, 2].

Definition 1.1 A positive operator B ∈ L(E) is called weakly compact-friendly if there exist three non-zero

operators R, K, and C on E with R, K positive and K compact such that R ∈ [B〉 , and C is dominated by
both R and K .

Let us start by recalling some more terminology. A continuous function ϕ : Ω → R , where Ω is a
topological space, has a flat if there exists a non-empty open set Ω0 in Ω such that ϕ is constant on Ω0 .
If Ω is a compact Hausdorff space and ϕ : Ω → R is a continuous function, then Mϕ : C(Ω) → C(Ω)

denotes the multiplication operator generated by ϕ , i.e., for each function f ∈ C(Ω) and each ω ∈ Ω we have

(Mϕf)(ω) := ϕ(ω)f(ω), or briefly Mϕf = ϕf . The function ϕ is called the multiplier. It is straightforward to

check that a multiplication operator Mϕ is positive if and only if the multiplier ϕ is positive.

The following result, which is Theorem 10.65 in [1], characterizes compact-friendly multiplication opera-

tors on C(Ω)-spaces.

Theorem 1.2 A positive multiplication operator Mϕ on a C(Ω)-space, where Ω is a compact Hausdorff space,

is compact-friendly if and only if the multiplier ϕ has a flat.

Unlike Theorem 1.2, the multiplier of a positive multiplication operator having a flat is not necessary
for the multiplication operator to be weakly compact-friendly. This fact, which is the subject matter of the
following example, also shows that there are weakly compact-friendly operators that are not compact-friendly.

Example 1.3 Consider the space E of all continuous functions f : [0, 1/2] → R equipped with the usual

uniform norm. The multiplication operator Mϕ : E → E with the multiplier ϕ defined by ϕ(ω) := 1 − 2ω

for all ω ∈ [0, 1/2] is not compact-friendly by Theorem 1.2, since ϕ has no flats. To see that Mϕ is weakly

compact-friendly, choose R = C = K as the required three operators for the weak compact-friendliness of Mϕ ,

where K is the rank-one (and hence, compact) operator on E defined by (Kf)(ω) := (1−2ω)f(0) for all f ∈ E

and ω ∈ [0, 1/2] .

2. Invariant subspaces of weakly compact-friendly operators

We start this section, in which the main results of the present note are provided, with the notion of topological
fullness of the center of a Banach lattice.

292
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Definition 2.1 The center Z(E) of a Banach lattice E is called topologically full if whenever x, y ∈ E with

0 ≤ x ≤ y one can find a sequence (Tn)n∈N in Z(E) such that ‖Tny − x‖ → 0.

Banach lattices with topologically full center were initiated in [5]. Spaces of this kind are quite large and

contain, for instance, Banach lattices with quasi-interior points and Dedekind σ -complete Banach lattices (see

[5, 6] for details).

Before proceeding, let us first observe that [6] if 0 ≤ x ≤ y and Tny → x , then one has (T+
n ∧ I)y =

(Tny)+ ∧ y → x ∧ y = x , so we may assume that 0 ≤ Tn ≤ I for all n ∈ N . Set Z(E)1+ := {T ∈ Z(E) | 0 ≤
T ≤ I} .

It is shown in [4, Theorem 3.10] that for a locally quasi-nilpotent positive operator B on a Banach lattice

E with a quasi-interior point for which [B〉 contains an operator which dominates a non-zero AM -compact

operator, [B〉 has an invariant closed ideal. The following result extends this to positive operators on a Banach
lattice with topologically full center, following similar lines of thought.

Theorem 2.2 Suppose that B is a positive operator on a Banach lattice E with topologically full center such
that

(i) B is locally quasi-nilpotent at some x0 > 0, and

(ii) there is S ∈ [B〉 such that S dominates a non-zero AM -compact operator K .

Then [B〉 has an invariant closed ideal.

Proof. Since the null ideal NB of B is [B〉-invariant, we may assume that NB = {0} . Let z ∈ E such

that Kz �= 0. This means that at least one of the vectors (Kz)+ and (Kz)− is non-zero. Suppose (Kz)+ �= 0.

Then, by topological fullness of Z(E), there exists an operator M ∈ Z(E)1+ such that M |Kz| �= 0. Indeed,

otherwise for all M ∈ Z(E)1+ we would have M |Kz| = 0. But then, for the sequence (Tn)n∈N in Z(E)1+ with

Tn(|Kz|) → (Kz)+ in norm, we would have (Kz)+ = 0, which is a contradiction. Suppose now that there

exists M ∈ Z(E)1+ such that M |Kz| �= 0. From M((Kz)+)+M((Kz)−) �= 0 it follows that M((Kz)+) �= 0 or

M((Kz)−) �= 0. Suppose that M((Kz)+) �= 0. But since M is a lattice homomorphism, we have (MKz)+ �= 0,

and so it follows from M((Kz)+) ∧ M((Kz)−) = (MKz)+ ∧ (MKz)− = 0 that (MKz)− = 0 and MKz > 0.

Put K1 := MK . It follows from NB = {0} that BK1z �= 0, hence BK1 �= 0. It is also clear that BK1 is
AM -compact and is dominated by BS .

Let J be the semigroup ideal in [B〉 generated by BS , that is,

J = {A1BSA2 | A1, A2 ∈ [B〉}.

It can be verified directly that J is finitely quasi-nilpotent at x0 . Since BS ∈ J and BS dominates a non-zero
AM -compact operator, J has an invariant closed ideal by [1, Theorem 10.44]. Now [1, Theorem 10.49] yields

that [B〉 has an invariant closed ideal. �

The next result is a generalization of [1, Theorem 10.57] which states that if a non-zero compact-friendly
operator B on a Dedekind-complete Banach lattice E is locally quasi-nilpotent, then there exists a non-trivial
closed ideal that is invariant under [B〉 . We show that Dedekind completeness and compact-friendliness are not
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needed and that E having topologically full center and B being weakly compact-friendly are sufficient. The
proof is a modification of the proof of Theorem 10.57 in [1] and uses Theorem 2.2.

Theorem 2.3 Let E be a Banach lattice with topologically full center. If B is a locally quasi-nilpotent weakly
compact-friendly operator on E , then [B〉 has a non-trivial closed invariant ideal.

Proof. For each x > 0, denote by Jx the ideal generated by the orbit [B〉x ; that is

Jx := {y ∈ E | |y| ≤ Ax for some A ∈ [B〉}.

Since the identity operator belongs to [B〉 , we have that x ∈ Jx , so this is a non-zero ideal. Note that Jx is

[B〉-invariant: because, if y ∈ Jx , then |y| ≤ Ax for some A ∈ [B〉 and hence for any A1 ∈ [B〉 we have

|A1y| ≤ A1|y| ≤ A1Ax,

yielding that A1y ∈ Jx since the operator A1A belongs to [B〉 which is a multiplicative semigroup. Therefore,
in case where there exists a positive x ∈ E such that the ideal Jx is not norm-dense in E , the proof is complete.

So, suppose that Jx = E for each x > 0.

Fix three non-zero operators with R, K positive, K compact, and satisfying

BR ≤ RB, |Cx| ≤ C|x|, and |Cx| ≤ K|x| for each x ∈ E.

Since C �= 0 there exists some x1 > 0 such that Cx1 �= 0. This means that at least one of the

vectors (Cx1)+ and (Cx1)− is non-zero. Suppose (Cx1)+ �= 0. Then, by topological fullness of Z(E), there

exists an operator M1 ∈ Z(E)1+ such that M1|Cx1| �= 0. Indeed, otherwise for all M1 ∈ Z(E)1+ we would

have M1|Cx1| = 0. But then, for the sequence (Tn)n∈N in Z(E)1+ with Tn(|Cx1|) → (Cx1)+ in norm, we

would have (Cx1)+ = 0, which is a contradiction. Suppose now that there exists M1 ∈ Z(E)1+ such that

M1|Cx1| �= 0. From M1((Cx1)+) + M1((Cx1)−) �= 0 it follows that M1((Cx1)+) �= 0 or M1((Cx1)−) �= 0.

Suppose that M1((Cx1)+) �= 0. But since M1 is a lattice homomorphism, we have (M1Cx1)+ �= 0, and so it

follows from M1((Cx1)+) ∧M1((Cx1)−) = (M1Cx1)+ ∧ (M1Cx1)− = 0 that (M1Cx1)− = 0 and M1Cx1 > 0.
Let x2 := M1Cx1 > 0 and π1 := M1C . Note that π1 is dominated by R and K .

Now we have Jx2 = E , and since C �= 0 there exists some y ∈ Jx2 and an operator A1 ∈ [B〉 such that

0 < y ≤ A1x2 and Cy �= 0. We claim that there exists M ∈ Z(E)1+ such that CMA1x2 �= 0. Otherwise,

if CMA1x2 = 0 for all M ∈ Z(E)1+ , we would have CTnA1x2 for each n ∈ N for the sequence (Tn)n∈N

for which TnA1x2 → y . This would yield CTnA1x2 → Cy and Cy = 0, which is a contradiction. Since

CMA1x2 �= 0, one has |CMA1x2| �= 0. Suppose (CMA1x2)+ �= 0. By topological fullness of Z(E), there

exists a sequence (Tn)n∈N in Z(E)1+ such that Tn(|CMA1x2|) → (CMA1x2)+ . Since (CMA1x2)+ �= 0,

not all Tn(|CMA1x2|) are zero, and we can choose M2 ∈ Z(E)1+ with M2|CMA1x2| �= 0. Notice that

M2((CMA1x2)+) ∧ M2((CMA1x2)−) = 0. Since M2((CMA1x2)+) �= 0, we have M2((CMA1x2)−) =

(M2CMA1x2)− = 0, which yields M2CMA1x2 > 0. Put x3 := M2CMA1x2 > 0 and π2 := M2CMA1

and observe that π2 is dominated by RA1 and KA1 . Repeating once more the preceding argument with x2

replaced by x3 , we then obtain an operator A2 ∈ [B〉 and an operator π3 : E → E such that π3x3 > 0 and π3

is dominated by RA2 and KA2 . From π3π2π1x1 = π3x3 > 0, we see that π3π2π1 �= 0.
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Set S := RA2RA1R ≥ 0. Since |π3π2π1x| ≤ S|x| for each x ∈ E , it follows that S �= 0. Moreover, since

each πi (i = 1, 2, 3) is dominated by a compact operator, we have by [2, Theorem 5.14] that π3π2π1 is compact.

Moreover, because R , A1 , and A2 belong to [B〉 , so does S . Thus, [B〉 contains a non-zero positive operator
which dominates a compact operator. Now, invoke Theorem 2.2 to complete the proof. �
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