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A generalization of Banach’s contraction principle for some
non-obviously contractive operators in a cone metric space
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Abstract

This paper investigates the fixed points for self-maps of a closed set in a space of abstract continuous

functions. Our main results essentially extend and generalize some fixed point theorems in cone metric

spaces. An application to differential equations is given.
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1. Introduction

Fixed point theory is a mixture of analysis, topology and geometry. The theory of existence of fixed
points of maps has been revealed as a very powerful and important tool in the study of nonlinear phenomena
[3, 5–9, 15–23, 27–29]. If a topological space is a metric space, or a linear topological space, then the fixed

point theory in such spaces is very abundant. Cone metric spaces were introduced in [10]. The authors there
described convergence in cone metric spaces and introduced completeness, then they proved some fixed point
theorems of contractive mappings on cone metric spaces. Recently, in [1, 2, 4, 11–14, 16, 21, 24–25] some fixed

point theorems were proved for maps on cone metric spaces. In particular, Du [26] showed that from each cone

metric one can get the usual metric by using a scalarization function. Hence the results of Huang-Zhang [10]

and the results of many other authors are obtained trivially by Du’s method. But there is a paper, [15], on cone
metric spaces in which Du’s method is not applicable.

In this work we prove some fixed point theorems in cone metric spaces, including results which generalize
those from Huang and Zhang’s work. Given the fact that, in a cone, one has only a partial ordering, it is
doubtful that their Theorem 2.1 can be further generalized.

The organization of this paper is as follows. In Section 2, problem formulation and preliminaries are
given. In Section 3, some new results are given. Section 4 gives an example to illustrate the effectiveness of our
results.
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2. Preliminaries

Consistent with Guang and Xian [8], the following definitions and results will be needed in the sequel.

Let E be a real Banach space with norm | · | . A subset P of E is called a cone if and only if:

(a) P is closed, nonempty and P �= 0;

(b) a, b ∈ R, a, b ≥ 0, x, y ∈ P implies ax + by ∈ P ;

(c) x ∈ P and x /∈ P ⇒ x = 0.

Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by x ≤ y if and only if y−x ∈ P .
We shall write x < y to indicate that x ≤ y but x �= y, while x � y stands for y − x ∈ intP (interior of P ).

A cone P is called normal if there is a number L > 0 such that for all x, y ∈ E,

0 ≤ x ≤ y implies ‖x‖ ≤ L‖y‖.

The least positive number satisfying the above inequality is called the normal constant of P.

Remark 2.1 We note that there are no normal cones with normal constant L < 1 and for each k > 1 there
are cones with normal constant L > k by [18].

Definition 2.1 Let X be a nonempty set. Suppose that the mapping d : X × X → E satisfies

(d1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;

(d2) d(x, y) = d(y, x) for all x, y ∈ X;

(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric space. The concept of a cone
metric space is more general than that of a metric space.

Definition 2.2 Let (X, d) be a cone metric space. We say that {xn} is:

(e1) a Cauchy sequence if for every c in E with c � 0, there is N such that for all n, m > N, d(xn, xm) �
c ;

(e2) a Convergent sequence if for every c in E with c � 0, there is N such that for all n > N, d(xn, x) �
c for some fixed x in X.

When {xn} converges to x, we say x is the limit of {xn}. We denote this by

lim
n→∞

xn = x or xn → x (n → ∞).

A cone metric space X is said to be complete if every Cauchy sequence in X is convergent in X. It is known
that {xn} converges to x ∈ X if and only if d(xn, x) → 0 as n → ∞. The limit of a convergent sequence is

unique provided P is a normal cone with normal constant L (see [8] and [18, 20]).

3. Main results

Let (X, d) be a completely cone metric space, P be a normal cone. I = [0, T ](T > 0). Denote

C[I, X] = {u : I → X|u(t) is continuous on I}. It is easy to see that C[I, X] is a Banach space with the

norm ‖u − v‖ = max
∀t∈I

|d(u(t), v(t))| for u, v ∈ C[I, X].
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Theorem 3.1 Let F be a closed subset of C[I, X] and A : F → F an operator. If there exist α, β ∈ [0, 1), M ∈
C(I, [0,∞)) such that for any u, v ∈ F,

d(Au(t), Av(t)) ≤ βd(u(t), v(t)) +
M(t)
tα

∫ t

0

d(u(s), v(s))ds, ∀ t ∈ (0, T ], (3.1)

then A has exactly one fixed point u∗ in F. For any x0 ∈ F, the iterative sequence xn = Axn−1(n = 1, 2, 3, . . .)
converges to u∗ in F and for all s > 0,

‖xn − u∗‖ = o(n−s) as n → ∞.

Proof. For any u0 ∈ F, set un = Aun−1(n = 1, 2, 3, . . .). By (3.1) we get

d(u2(t), u1(t)) ≤ (β + M(t)t1−α)‖u1 − u0‖ ≤ (β + Kt1−α)‖u1 − u0‖, ∀ t ∈ (0, T ],

where K = max{M(t)|t ∈ I}. It follows by induction and (3.1) that, for any t ∈ (0, T ],

d(un+1(t), un(t)) ≤
(
βn + C1

nβn−1Kt1−α +
C2

nβn−2K2t2−2α

2 − α
+ · · ·

+
Kntn−nα

(2 − α)(3 − 2α) · · · (n − (n − 1)α)

)
‖u1 − u0‖,

(n = 1, 2, 3, . . .).

therefore

‖un+1 − un‖ ≤
(
βn + C1

nβn−1h +
C2

nβn−2h2

2!
+ · · ·+ hn

n!

)
‖u1 − u0‖, (3.2)

where h = KT 1−α(1 − α)−1. For any n, set n = km + j(0 ≤ j < k), where k(k �= 1) is any given positive
integer. Then whenever n is sufficiently large, it follows from the Stirling formula that

L1 ≡ βn + C1
nβn−1h +

C2
nβn−2h2

2!
+ · · ·+ Cm

n βn−mhm

m!

≤ Cm
n βn−m(1 + h +

h2

2!
+ · · ·+ hm

m!
)

=
O(1)βn−mnΓ(n)

m(n − m)Γ(m)Γ(n − m)

=
O(1)nβn−m

m(n − m)
·

√
2π
n

(n
e
)n(1 + O( 1

n
))√

2π
m

(m
e

)m(1 + O( 1
m

))
√

2π
n−m

(n−m
e

)n−m(1 + O( 1
n−m

))

=
O(1)βn−m

√
2nπnn

√
2mπmm(1 + O( 1

m))
√

2(n − m)π(n − m)n−m

= O

(
km

√
m

)(
βn

n − m

)n−m

= O

⎛
⎝

(
βk−1k( k

k−1)k−1
)m

√
m

⎞
⎠

= O

((
βk−1

)m

√
m

)
= O

(
βn

√
n

)
,
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Similarly,

L2 ≡ Cm+1
n βn−m−1hm+1

(m + 1)!
+ · · ·+ hn

n!

≤ C
[ n
2 ]

n

(m + 1)!
(βn−m−1hm+1 + · · ·+ hn)

= o

(
1

(m + 1)s

)
= o(

1
ns

) (n → ∞),

where s > 1 can be any real constant. Consequently, by (3.2) we have

‖un+1 − un‖ ≤ (L1 + L2)‖u1 − u0‖

= O

(
βn

√
n

)
+ o(

1
ns

) = o(
1
ns

) (n → ∞),
(3.3)

which implies that, for any fixed s > 0, there exists n0 > 0 such that

‖un+1 − un‖ <
1

ns+1
, ∀ n > n0.

Therefore, for any positive integers p > 0, n > n0, we have

‖un+p − un‖ ≤ ‖un+p − un+p−1‖ + · · ·+ ‖un+1 − un‖ <

∞∑
i=n

1
is+1

=
1

s(n − 1)s
+ o

(
1

(n − 1)s+1

)
(see[2])

= O

(
1
ns

)
(n → ∞),

where s > 0. Hence {un} is a Cauchy sequence and there exists u∗ ∈ F such that ‖un − u∗‖ → 0 as n → ∞.

By (3.1),

d(Au∗(t), u∗(t)) ≤ d(Au∗(t), Aun(t)) + d(Aun(t), u∗(t))

≤ (β + Kt1−α)‖un − u∗‖ + ‖un+1 − u∗‖,

for any ∀ t ∈ (0, T ]. Then

‖Au∗(t) − u∗(t)‖ ≤ ‖(β + Kt1−α)‖un − u∗‖ + ‖un+1 − u∗‖,

which implies by ‖un − u∗‖ → 0 (n → ∞) that Au∗ = u∗.

For any x0 ∈ F, set xn = Axn+1(n = 1, 2, 3, · · ·). By (3.1) and using a similar way as establishing (3.3)
we can get, for any s > 0,

‖xn − u∗‖ = o(n−s) as n → ∞,

which means that u∗ is the unique fixed point of A since x0 ∈ F is arbitrary. This completes the proof. �
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Remark 3.1 We show that Theorem 3.1 is a generalization of the Theorems 1-4 of [10] in C[I, E].

On one hand, it is easy to give some self-maps of a closed subset of C[I, E], which satisfy (3.1)

but are not contractions on a complete cone metric space (see theorem 1 in [10]). For example, operator

A : C[J, E] → C[J, E](J = [0, 1]) defined by

Au(t) =
2
3

∫ 1

0

u(t)dt + 3t−
1
2

∫ t

0

u(s)ds, ∀ t ∈ (0, 1], Au(0) =
2
3
u0

is such a map.

On the other hand, if F is a closed subset of a complete cone metric space (X, d) operator A : F → F

satisfies
d(Au, Av) ≤ αd(u, v) ∀ u, v ∈ F, (3.4)

where α ∈ [0, 1). Then Theorem 1 of [10] shows that A has exactly one fixed point in F. We assert that

this conclusion can also be obtained by Theorem 3.1. In fact, we can embed F into C[I, X] by regarding the

elements of F as constant-value functions of C[I, X]. Then F is a closed set in C[I, X] and A : F → F can

be regarded as a map in C[I, X]. So (3.4) implies that A satisfies (3.1) for K = 0 and then, in the subset F

of C[I, E], A has exactly one fixed point by Theorem 3.1, which is the unique fixed point of A in the subset F

of X.

As we proved Theorem 3.1, we can similarly prove

Theorem 3.2 Let F be a closed subset of C[I, X] and A : F → F an operator. If there exist α, β ∈ [0, 1), M ∈
C(I, [0,∞)) , where α satisfies (−1)α = −1, such that, for some fixed η ∈ I = [0, T ] and for any u, v ∈ F,

d(Au(t), Av(t)) ≤ βd(u(t), v(t)) +
M(t)

(t − η)α

∫ t

η

d(u(s), v(s))ds, ∀t ∈ (η, T ], (3.5)

then the conclusions of Theorem 3.1 hold.

4. An example

In this section, an example is used to demonstrate that the method presented in this paper is effective.

Example 4.1 Consider the following third-order three-point problem:

⎧⎪⎪⎨
⎪⎪⎩

D3/2u(t) = u
3t2 cos t

2
√

1 − t
+ t3 + sin t, 0 < t < 1,

u(0) = 0, u(1) = βu(
1
2
).

(4.1)

where Dα is the Riemann-Liouville differential operator of order 3
2
.

Theorem 4.2 If β > 8
√

2+8
√

2π
8
√

π−
√

2
, then (4.1) has exactly one nontrivial solution.
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Proof. By Lemma 3.1 in [27], problem (4.1) has a solution u = u(t) if and only if u is a solution in C[J,

R](J=[0,1]) of the operator equation

(Tu)(t) = − 1
Γ(α)

∫ t

0

(t − s)α−1

(
u(s)

3s2 cos s

2
√

1 − s
+ s3 + sin s

)
ds

+
tα−1

1 − βηα−1

1
Γ(α)

∫ 1

0

(1 − s)α−1

(
u(s)

3s2 cos s

2
√

1 − s
+ s3 + sin s

)
ds

− βtα−1

1 − βηα−1

1
Γ(α)

∫ η

0

(η − s)α−1

(
u(s)

3s2 cos s

2
√

1 − s
+ s3 + sin s

)
ds,

where η = 1
2 . So we only need to seek a fixed point of T in C[J, R]. For any u1, u2 ∈ C[J, R],

|(Tu1)(t) − (Tu2)(t)|

=
∣∣∣ − 1

Γ(α)

∫ t

0

√
t − s(u1(s) − u2(s))

3s2 cos s

2
√

1 − s
ds

+
tα−1

1 − βηα−1

1
Γ(α)

∫ 1

0

√
1 − s(u1(s) − u2(s))

3s2 cos s

2
√

1 − s
ds

− βtα−1

1 − βηα−1

1
Γ(α)

∫ η

0

√
η − s(u1(s) − u2(s))

3s2 cos s

2
√

1 − s

∣∣∣
≤ D

Γ(α)

∫ t

0

|u1(s) − u2(s)|ds

(
here D =

∫ 1

0

√
1 − s

3s2 cos s

2
√

1 − s
ds

)

+ |L1(u1(t) − u2(t))| + |L2(u1(t) − u2(t))|.

Where

L1u(t) =
t

|1 − βηα−1|
1

Γ(α)

∫ 1

0

√
1 − s

3s2 cos s

2
√

1 − s
|u(s)|ds,

and

L2u(t) =
|β|

|1− βηα−1|
t

Γ(α)

∫ η

0

(
√

η − s
3s2 cos s

2
√

1 − s
|u(s)|ds.

We have that

‖L1‖ + ‖L2‖ ≤ 1
|1 − βηα−1|

1
Γ(α)

∫ 1

0

√
1 − s

3s2 cos s

2
√

1 − s
ds

+
|β|

|1 − βηα−1|
1

Γ(α)

∫ η

0

√
η − s

3s2 cos s

2
√

1 − s
ds.

Since β > 8
√

2+8
√

2π
8
√

π−
√

2
, we have that

‖L1‖ + ‖L2‖

≤ 1
Γ(3/2)

[ √
2

β −
√

2

∫ 1

0

√
1 − s

3s2

√
1 − s

ds +
√

2β
β −

√
2

∫ 1/2

0

√
1/2 − s

3s2

√
1 − s

ds
]

<
1

Γ(3/2)
·
[ √

2
β −

√
2

+
√

2β

β −
√

2
· 1
8

]
< 1.
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Then, by Theorem 3.1, we know Equation (4.1) has a nontrivial solution. This completes the proof. �

Remark 4.1 However, when 8
√

2+8
√

2π
8
√

π−
√

2
< β ≤ 34

√
2

9 , we don’t know if Equation (4.1) has a nontrivial solution

by Theorem 3.2 in [27] (see [27, Example 4.1]). Therefore, our results in this paper extend and improve them

in [27].
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